

Track Reconstruction in the ATLAS Inner Detector

acknowledgements

I'd like to thank my colleagues in ATLAS for providing the excellent results I'll try to summarize in the following and for their help in preparing this seminar !

Outline

- short introduction
- expected tracking performance
- commissioning of Inner Detector reconstruction
 - ➡ calibration, tracking, alignment, material, ...

tracking performance

- ➡ especially in jets and with pileup
- ➡ vertexing and b-tagging

• upgrade

- → expected performance improvements with the Insertable B-Layer (IBL)
- ➡ FTK as a fast track trigger and GPU based tracking studies

Introduction

broad physics program covered by ATLAS

- → general purpose pp experiment to cover:
 - SM QCD/W/Z/top, Higgs, SUSY, Exotics, ...
 - some aspects in b-physics
 - ability to do heavy ion physics

• detector designed to optimize physics performance

- → at design luminosities (10³⁴ cm⁻²s⁻¹) and pileup (~23 min.bias events)
- ➡ possibly sustain heavy ion "central" event multiplicities

• task of event reconstruction is to identify objects

- \Rightarrow e/µ/ τ leptons, photons, (b) jets, missing E_T, exclusive hadronic states...
- requires combining information from tracking detector with calorimetric and muon spectrometer measurements
- → tracking is a central aspect of the event reconstruction

Introduction

requirements on ATLAS Inner Detector

- precision tracking at LHC luminosities (central heavy ion event multiplicities) with a hermitic detector covering 5 units in η
- precise primary/secondary vertex reconstruction and to provide excellent b-tagging in jets
- ➡ reconstruction of electrons (and converted photons)
- tracking of muons combined with muon spectrometer, good resolution over the full accessible momentum range
- ➡ enable (hadronic) tau, exclusive b- and c-hadron reconstruction
- ➡ provide particle identification
 - transition radiation in ATLAS TRT for **electron identification**
 - as well dE/dx in Pixels or TRT
- → not to forget: enable fast tracking for (high level) trigger

constraints on detector design

- minimize material for best precision and to minimize interactions before the calorimeter
- ➡ increasing sensor granularity to reduce occupancy
 - increase number of electronics channels and heat load
 - leading to more material

ATLAS Inner Detector Layout

• 3 subsystems:

- → 3 layer **Pixel** system, 3 endcap disks
 - 1744 Pixel modules
 - 80.4 million channels
 - pitch 50 $\mu m \times 400 \ \mu m$
 - total of 1.8 m²
- → 4 layers of small angle stereo strips,
 9 endcap disks each side (SCT)
 - 4088 double sided modules
 - 6.3 million channels
 - pitch 80 μm, 40 mrad stereo angle
 - total of 60 m²
- → Transition Radiation Tracker (TRT)
 - typically 36 hits per track
 - transition radiation to identify electrons
 - total of 350K channels

pre-precessing

- Pixel+SCT clustering
- ➡ TRT drift circle formation
- space points formation

 \rightarrow

➡ refit of track and selection

→ uses Hough transform

Markus Elsing

refit of track and selection

TRT segment finder

- on remaining drift circles
- ➡ uses Hough transform

Markus Elsing

combinatorial track finder

- ➡ iterative :
 - 1. Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- restricted to roads
- bookkeeping to avoid duplicate candidates

ambiguity solution

- precise least square fit with full geometry
- selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

extension into TRT

- progressive finder
- refit of track and selection

Expected Performance

excellent preparation before startup

- → more than 10 years of simulation and test beam
- → cosmics data taking in 2008 and 2009
- ⇒ payed off last year !

detailed simulation studies

- ➡ document expected performance in TDRs
- → few of the known **critical items**:
 - material effects limit efficiency and resolution at low p_T

.0 < |n| < 1.5

ATLAS

20

25

30

- good (local) alignment for b-tagging
- momentum scale and alignment "weak modes"

Material Budget limits Performance !

 tracking resolution and efficiency mostly driven by interactions in detector material

Weighing Detectors during Construction

huge effort in experiments

- put each individual detector part on balance and compare with model
- measured weight of their tracker and its components
- correct the geometry implementation in simulation and reconstruction

ATLAS	estimated from measurements	simulation
Pixel package	201 kg	197 kg
SCT detector	672 ±15 kg	672 kg
TRT detector	2961 ±14 kg	2962 kg

example: ATLAS TRT measured before and after insertion of the SCT

• notice:

 significant increase in material budget since Technical Proposal (we see a similar trend with IBL now)

	ATLAS		CMS	
Date	$\etapprox 0$	$\eta pprox 1.7$	$\eta pprox 0$	$\eta pprox 1.7$
1994 (Technical Proposals)	0.20	0.70	0.15	0.60
1997 (Technical Design Reports)	0.25	1.50	0.25	0.85
2006 (End of construction)	0.35	1.35	0.35	1.50

Required new Software Technologies

- complex G4 geometries not optimal for reconstruction
 - → simplified tracking geometries
- reduced number of volumes
 - blending details of material

	G4	tracking
ATLAS	4.8 M	10.2K *

*² plus a surface per Si sensor

use embedded navigation scheme to optimize CPU performance

ATLAS	G4	tracking	ratio
crossed volumes in tracker	474	95	5
time in SI2K sec	19.1	2.3	8.4

(neutral geantinos, no field lookups)

as well basis of fast simulation engine

Markus Elsing

Alignment and Weak Modes

• global-χ² alignment

- → diagonalize alignment matrix (6 x 6k)²
- enables studies of Eigenvalue spectrum
 - well constraint : local movements
 - less well constraint : overall deformations
 - not constraint : global transform

residuals relevant for b-tagging

 mostly sensitive to local movements
 well constraint by module overlaps and beam spot constraint

Did we expect Weak Mode Effects ?

• "Detector Paper" MC study:

- → ideal Z mass resolution 2.6 GeV
- \rightarrow misalign MC by 100 µm, re-align using:
 - high-p_T muons and cosmics
- → Z mass resolution degraded to 3.9 GeV (!)
 - not corrected by alignment procedure

cosmics study using split tracks

- ➡ good performance overall
 - cosmics are mostly in the barrel (!)
 - done with the alignment at the time...
- ⇒ but: at higher p_T the data starts to diverge from MC
 - reflects limited calibration at the time
 - possible hint for weak mode effect in alignment

Excitement with first beams...

Commissioning with Collision Data

- LHC has done fantastic since !
- a long way from first collisions to physics
 - → commission full readout chain (detector, trigger, DAQ)
 - ➡ calibrate and align the detector
 - optimize the tracking performance, allow for changing levels of pileup

➡ ..

basis of commissioning the tracking is work done on the detector !

not be able here to do justice to all aspects of detector calibration...

110 115 120 125 130 135 140 145 150

M_u [GeV]

Detector Calibration

careful calibration of detectors

- → required to reach design performance
- ➡ online (thresholds,...) and offline
- ➡ monitoring of variations with time

• examples:

- ➡ TRT: R—t relation and high threshold probability
- ➡ calibration of time over threshold in Pixels
 - required to explore power of analog clustering
 - provide dE/dx for low pT particles as well

Detector Calibration

study detector efficiencies

- → identify dead channels, chips, modules
 - typically ≥97% of detectors are operational
 - after correction for known defects typical sensor efficiencies are >99% (!)
- → very low noise levels observed in Pixels/SCT

• measure Lorentz angle

- ➡ as usual study cluster sizes vs track incident angle
- ➡ input to tuning of cluster properties
 - adjusting digitization parameters to match data

Tracking Commissioning

detailed studies of properties of tracks in 900 GeV data

- → hit associations, fit quality, etc.
 - allow for known defects in simulation
- → leading towards first publications
 - as expected, tracking systematics driven by material uncertainties (!!)

Markus Elsing

Conversions

detailed tomography of material with γ conversions

- → able to map details in material distribution
 - measure difference in data/MC, e.g. PP0
- ultimately should result in a very precise estimate of material
 - need to control reconstruction efficiency
 - calibrate measurement,
 e.g. on "known" beam pipe
 - needs a large dataset to reach precision

Further Material Studies

- hadronic interactions for precise tomography of detector material
 - → good vtx resolution allows to study fine details
 - e.g., study levels of cooling liquid or shift in beam pipe position w.r.t. Pixel b-layer

material uncertainty in simulation

- ➡ constraint by sum of different techniques
 - conversions and hadronic interactions
 - study K⁰s and other mass signals
 - stopping tracks, SCT extension efficiency
 - study of multiple scattering resolution term
- estimated uncertainty
 - better than ~5% in central region
 - at the level of ~10% in most of the endcaps

Detector Alignment

• is an art...

➡ plenty of subtle effects to allow for

Pixel stave bowing

 probably mechanical stress from mounting

• TRT wire alignment

- ➡ twist between 4 plane wheels
- ➡ traced back to the wheel production
- → fix with alignment of each wire (!!)

detector movements

- ➡ traced back to
 - cooling failures
 - power cuts
 - magnet ramps

→ level-1 movements of $\sim 5\mu m$ (mostly)

Level 1 alignment detector movements funding Str End Cap A Str End Cap A Str End Cap C THT End Cap C THT

Pixel Module distorbions

survey points

21

survey told us Pixel modules are not flat

correct cluster positions for module shape

 $\Rightarrow \text{ significant improvement} improvement} \stackrel{\text{transform}}{=} improvement} improvement improvement} improvement improvement improvement improvement improvement} (a) = significant improvement impro$

Residuals and Impact Resolution

• driven by local misalignments

- ➡ quickly approaching design resolutions
- ➡ some small problems still visible
 - hence apply some error scaling in fit
- ➡ material dominates at low p_T

ATLAS Preliminary

Pixel barrel

s = 7 TeV

10

FWHM/2.35 [mm

×

residual

Local

0.024

0.022

0.02 0.018

0.016

0.014

0.012

0.0

0.008

0.006

-30

-20

-10

Autumn 2010 Alignment

Pythia Dijet Monte Carlo

track

Evidence for Weak Modes ?

• "weak modes" are global deformations

- \rightarrow leave fit- χ^2 nearly unchanged
- ➡ affect momentum scale, e.g. Z-mass resolution
- limiting performance in data
 - → saw modulation in Z mass vs $\phi(\mu^+)$ in endcaps
- external constraints to control weak modes
 - ➡ TRT to constrain Silicon alignment
 - ➡ currently: electron E/p using calorimeter
 - check: muon momentum in tracker vs muon spectrometer

Tracking in Jets

• double track resolution effects ?

 \rightarrow study tracks vs p_T of anti-k_T (0.6) jets

• several effects visible in jet core

- ➡ shared hits in Pixels
- → TRT association efficiency (quality cuts)

ATLAS Preliminary

JetProb

IP3D

IP3D+SV1

JotFitter

IP3D+JetFitter

simulation, \s=7 TeV

450

|η^{jet}|<2.5, ε,=60%

SV1

limits tracking performance

- \rightarrow especially for b-tagging !
- \rightarrow loss in rejection at high-p_T

 new clustering to improve → explore full analog information in Pixels

Merged Pixel Clusters

- typical merged cluster with naive clustering algorithm
 - ➡ old clustering was searching for all neighboring pixels that fired
 - ➡ analog information just used to estimate barycenter of cluster

many merged clusters can be resolved using full analog information

→ process pre-clusters Pixel information to split them if possible

New Pixel Clustering

- novel algorithm to split merge clusters
 - → neural network (NN) based technique
 - ➡ run 5 networks:
 - NN1: probability a cluster is 1/2/>2 tracks
 - NN2: best position for each (sub)cluster
 - NN3: error estimate for cluster
 - NN4+5: redo NN2+3 using track prediction
 - ➡ adapt pattern recognition
- new clustering been deployed in recent 2011 reprocessing
 - ➡ improved cluster resolution, especially in z
 - dramatic reduction in rate of shared b-layer hits due to unresolved merged clusters

Tracking with Electron Brem. Recovery

bremsstrahlung in material

- ➡ significant inefficiency in electron tracking
- ➡ especially at low p_T (< 15 GeV)

strategy for brem. recovery

- restrict recovery to regions pointing to electromagnetic clusters
- pattern: allow for large energy loss in combinatorial kalman filter
- global-χ² fitter allows for brem. point for final fit
- ⇒ adapt ambiguity processing (etc.) to ensure e.g. b-tagging is not affected
- use full fledged Gaussian-Sum Filter in electron identification code

to be deployed for 2012 data taking

Pileup

event with 20 reconstructed vertices

• event pileup is a reality

- → in 2011 we reached **50%** of design levels, but at **50** *nsec* bunch spacing
- ➡ may expect 2-3 times increase in 2012

occupancies and tracking performance as expected

- recent high pileup LHC runs very useful to study high pileup regime
- resolutions and reconstruction efficiencies are not affected
- → fake rate is naturally increasing with loose tracking cuts

Pileup and Resources

resource needs scale fast

➡ tracking is a resource driver

global optimization

- → requirements on tracking evolves with physics program
- ➡ different luminosity regimes lead to different working points

2009 / early 2010	commissioning Min.Bias	pt > 50 MeV open cuts, robust settings min. 5 clusters
2010 stable running < ~4 events pileup	low lumi physics program (soft QCD, b-physics,), b-tagging	pt > 100 MeV min. 7 clusters
2011 pp running ~11 events pileup	focus more on high-pt physics (top,W/Z, Higgs), b-tagging	pt > 400 MeV, harder cuts in seeding min. 7 clusters
Phase I upgrade including IBL 24-50 events pileup	high-pt physics, study new physics (I hope), b-tagging	pt > 900 MeV, harder tracking cuts, min. 9 clusters
SLHC up to 100-200 events pileup	replace Inner Detector to cover very high luminosity physics program	further evolve strategy R-o-I or z-vertex seeding, reco. per trigger type, GPUs

29

Heavy Ion Tracking

high multiplicity tracking

- adapt seed finding
 (z vertex constraint to save CPU)
- tighten hit requirement to control fakes in central events (similar to sLHC setup)

excellent tracking performance

- ➡ even in central events
- performance well described by MC
- good testing ground for high in-time pileup with data

Radiation Damage

- effects became visible in last year with increasing luminosity
 - ➡ b-layer designed for
 - $\phi = 2.43 \cdot 10^{12} \cdot (1 \text{ MeV neq})/\text{fb}^{-1}$
 - type inversion at ~10 fb⁻¹

monitor radiation effects on silicon

➡ leakage current and cross talk measurements

currents from HV power supplies

- ➡ compare measured leakage currents with:
 - lumi profile
 - expected fluence
 from PhoJet/Fluka
 - silicon volume
 - damage constant a from test beam
- ➡ good agreement for Pixels and SCT after
 - correction for annealing periods
 - cooling off, e.g. during technical stops

2010

Oct 01

2010

Jul 02

2011

Jan 01

2011

Apr 02

2011 2011

Aug 14

Jul 02

Primary Vertex Reconstruction

beam spot routinely determined

- → averaged over short periods of time (LB)
- input to primary vertex reconstruction as a constraint

primary vertex finding

- ATLAS (and CMS) use an iterative vertex finder and an adaptive fitter
- ⇒ some reduced efficiency for min.bias pileup vertices vs <µ>

Markus Elsing

b-Jet Tagging

- "early tagging" techniques
 - ⇒ soft lepton tagger
 - ➡ track counting of significant IP offsets
 - ⇒ jet probability
 - construct probability that IP significance of all tracks in jet is compatible with PV
 - → secondary vertex (SV) tagger
 - decay length significance

• more elaborate taggers

- → use multi-variant techniques to classify jets
- construct IP based likelihood using b/c/light templates (IP2D and IP3D)
- combined likelihood taggers using IP and secondary vertex information (IP3D+SV0)
- vertex decay chain tagger (JetFitter)
- ➡ in regular use since last summer

data driven performance studies !

JetFitter as a b-Jet Tagger

conventional vertex tagger

➡ fits all displaced tracks into a common geometrical vertex

JetFitter

- b-/c-hadron vertices and primary vertex approximately on the same line
- → fit of 1...N vertices along jet axis
- mathematical extension of conventional Kalman filter vertex fitter

up to 40% better light rejection

 IP3D+JetFitter is best b-jet tagger in use in ATLAS today

Tracker related upgrades

Upgrade: IBL Tracking

• performance studies in G4

- → smaller beam pipe ($R_{min} = 25 mm$)
- ➡ reconstruction: 4th Pixel layer
- → IBL material adjusted to 1.5% X₀
- → smaller z pitch (250 um)

installation next shutdown

- → ready for 14 TeV running
- ➡ peak luminosities of 2*10³⁴ cm⁻²s⁻¹
- ⇒ 25-50 pileup events

New FE-I4 Chip

• 4bit (FE-I4) calibration vs 8bit (FE-I3)

- ➡ different dynamic range
 - and FE-I4 allows for overflows
- → average cluster size in IBL bigger than in b-layer
 - broader spectrum of incident angles
- compare cluster resolutions IBL (FE-I4) and b-layer (FE-I3)

→ similar in X_{local}, pitch drives improvement in Z_{local}

Markus Elsing

Tracking Performance (no Pileup)

expected results

- ➡ smaller radius
- ➡ small z pitch
- less material between first and 2nd layer
- ➡ track length ~ same

improvements

- ➡ better d₀ resolution
- ➡ better z₀ resolution
- θ and φ improved at low-pT
- momentum resolution
 unchanged

• as expected !

b-Tagging with IBL

• pileup selection with IBL

- ⇒ \geq 10 IBL+Pixel+SCT hits, \leq 1 pixel hole
- ➡ benefit from additional layer
- leaves room for eventual inefficiencies in b-layer (tracking robustness)

state of the art b-tagging

- → "IP3D" $\sim d_0 \oplus z_0$ impact significance likelihood
- "IP3D+SV1" ~ adding secondary vertex information

good performance with IBL and pileup

as good or better as for current ATLAS without pileup

Detector Defects ?

- IBL helps to recover from detector defects
 - known bandwidth limitations of current
 FE-I3 chip leading to cluster inefficiencies
 - especially in b-layer (r=4cm)
 - → layers 1 and 2 limited by readout links
 - may replace service quarter panels
 - ➡ eventual additional (known) dead modules
- study effect of 10% cluster inefficiency in b-layer with IBL
 - IBL fully recovers tracking efficiency and impact resolution
 - with IBL only small effects on b-tagging performance
 - ➡ similar results for other failure scenarios

ATLAS Hardware Trigger Tracking (FTK)

- goal is to provide high quality tracks at input to High Level Trigger
 - ➡ FTK runs at nominal 100 kHz Level-1 trigger rate
- physics motivation
 - \rightarrow b and τ tagging, lepton isolation, improve Level-2 rejection at high lumi.

• requires hardware system with special readout links

FTK - Overview

• architecture follows CDF

- ➡ Data formatter
 - clustering, routing to η - ϕ towers
- ➡ Data organizer (DO)
 - stores hits, communicates between pattern recognition and track fitting
- ➡ Associative Memory (AM) board
 - Pattern recognition
- ➡ track Fitter (TF)
 - FPGA-based track fitting

associative memory

- ➡ millions of predefined hit patterns
- hits are evaluated against all patterns in parallel, leading to hugh timing gains !

FTK - Overview

fast track fitting

- ➡ divide detector in regions
- ➡ approximate track fit by a linear equation
- → determine constants using full resolution in those regions (from offline)

Track parameters

and χ^2 components

➡ implement in FPGA chips, track fit ~ 1 nsec (full ~ 1 msec)

performance

- → timing for H→bb with 75 pileup, full scan, $p_T > 1$ GeV
- ➡ tracking efficiency > 90% compared to offline
- ➡ approximated track fit limits resolution of fit
- ➡ example: b-tagging performance at 75 pileup

 $p_i = \sum c_{ij} \cdot x_j + q_i$

Hit coordinates

Constants

Tungle, Vertex 2011

simulated high Juminosity event

Outlook: GPU based Tracking

SLHC: 150 to 200 pileup interactions

- ➡ CPU for full event reconstruction increases dramatically
- ➡ Inner Detector tracking will dominate completely

obvious advantage of GPUs

- → benefit from rapid performance increase
- but: GPUs in GRID environment
 - ➡ only first prototype farms for software R&D
 - ➡ future integrated CPUs with GPU cores (?)
 - → High Level Trigger farms better to customize

prototype studies on GPU based tracking

- → implementation in CUDA (NVidia)
- more advanced compared to OpenCL (preferred long term solution)

Outlook: GPU based Tracking

- first tracking prototypes for Level-2 track trigger and offline tracking
 - concentrate on aspects of track reconstruction chain
 - z-vertex finder
 - track seed finder
 - Kalman filter
 - early phase, still significant approximations

very significant timing gains

- lots of software development needed to obtain precision tracking
- ➡ investigate mixed scenario ?
 - e.g. combinatorial seed finder on GPUs
 - CPUs for serial processing steps to do

ay, June 22, precision calculations

Reconstruction time comparison 40 ┌╴ CPU reconstruction time [arb. units] GPU 35⊢ 30E 25⊦ 20 10 15 10 150 300 200 250 100 Track multiplicity of ATLAS tracks within hl<0.5

Summary

stringent requirements on Inner Detector to cover ATLAS physics program

• excellent performance reached !

- ➡ years of preparation based on simulation and test beam
- ➡ commissioning with cosmics and early beam
- → detailed studies of detector, tracking, material, alignment, pileup...
- → Heavy lon running gave good insights into tracking at high occupancy

towards upgrade

- tracking studies with IBL demonstrate performance of the detector with a 4 layer Pixel system at Phase 1 luminosities
- ➡ FTK will provide fast tracking information for Level-2 trigger
- → towards SLHC: GPU based tracking studies

