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Field Errors

I unwanted multipoles
I excite resonances
I reduce dynamic aperture
I cause beam loss

I mitigation and correction
I compensation computable from accurate

model
I requires type, location and strength
I dedicated beam time necessary to find them

LOCO-algorithm, non-linear tune response
matrix
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Goal: Identify Field Errors

Goal

I identify field errors from measurements

I support operation of accelerator

approach

1. compare measurements and predictions of accelerator model

2. quantify difference by loss L
3. minimize L by varying multipole strengths of model

⇒ obtain accurate representation of accelerator
⇒ identify linear & non-linear field errors
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Loss

loss L
I quantify difference of trajectories

I measurements: observe motion of
beam centroid with BPMs
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Accelerator Model

self-implemented tracking code with automatic differentiation

I based on drift-kick approximation, 6D tracking
I concatenation of differentiable maps

I enable differentiation of whole tracking model w.r.t. multipole strengths
I compute ∂L

∂ki,j
with ki,j i-th multipole of j-th magnet

I single particle tracking
I features

I exact drifts, no truncation
I transversal magnetic fields up to arbitrary order
I linearized dipole edges

I benchmarked against MAD-X, SixTrackLib
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Analogy to Artificial Neural Networks (ANNs)

similarities to artificial neural networks

I concatenation of simple, non-linear maps

I optimization of some scalar loss over training set

I large amount of tunable parameters
I well suited for automatic differentiation

I stochastic gradient descent

⇒ use gradient based algorithms designed to train ANNs

⇒ identify linear & non-linear field errors
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Application to SIS18 in Simulations
Presentation of Problem

goal: locate order & strength of field error

I hide field errors in accelerator
I quadrupoles
I sextupoles
I octupoles

I training robust against additional
deviations?
I finite integration order of magnets
I hide multipoles in accelerator not

captured by training

I learning parameters
I k1, k2, k3
I at two locations per cell
⇒ 72 free parameters

I training data set
I 18 trajectories for different initial

conditions
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Application to SIS18 in Simulations
Results

exemplary training run
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⇒ no overfitting
⇒ resolution: quadrupole errors ∝10−7 m−2, sextupoles ∝10−6 m−3
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Application to SIS18 in Simulations
Overview

I successful identification of field errors
in simulations

I possible to identify
I quadrupoles
I sextupoles
I octupoles
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Steps Towards Application at Accelerators

steps towards training with measured data

model systematic deviations

1. resolution of multipoles?

2. effect of uncaptured non-linearities?

3. influence of working point?
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1) Possible Resolution of Field Errors

symplectic integrator of finite order

I tradeof between accuracy and speed
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⇒ possible to resolve field errors with sufficiently fast model
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2) Effect of Additional Field Errors

training possible if additional unconsidered non-linearities present?
train k1, k2, hide unconsidered octupole error in SIS18
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⇒ unconsidered octupole: resolution still feasible

(errors in SIS18: ∆k1 ∝5× 10−3 m−2, ∆k2 ∝10−2 m−3)
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3) Influence Working Point on Training
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⇒ no significant effect on quadrupole resolution
⇒ sextupole resolution accecptable for application to SIS18

(errors in SIS18: ∆k1 ∝5× 10−3 m−2, ∆k2 ∝10−2 m−3)
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Steps Towards Application at Accelerators

steps towards training with measured data

model systematic deviations

1. resolution of multipoles?

2. effect of uncaptured non-linearities?

3. influence of working point?

measurement systematic deviations

1. how to obtain initial condition from
measurements?

2. represent centroid motion by single
particle motion?

3. training possible with finite BPM
resolution?
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1) Recovery of Initial Condition
Hilbert Transform

model does particle tracking ⇒ require initial condition
get x , y from BPMs, how to get px , py?

Hilbert transform

I applies ±π
2 phase shift to signals

I use to obtain transversal momenta in
normalized phase space coordinates

I requires precise knowledge of twiss
parameters
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1) Recovery of Initial Condition
Leverage Kickers

model does particle tracking ⇒ require initial condition
get x , y from BPMs, how to get px , py?

Hilbert transform

I applies ±π
2 phase shift to signals

I use to obtain transversal momenta in
normalized phase space coordinates

I requires precise knowledge of twiss
parameters

alternative: kick beam

I beam at rest

[x , px , y , py ] = [0, 0, 0, 0]

I kick beam → set momenta

I requires precise knowledge of kicker
field
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2) Effect of Decoherence on Training

How good can single-particle motion represent bunch motion?

I decoherence: particles oscillate with
different tunes ν ⇒ beam debunches
I effect on training resolution?

I two mechanisms
I amplitude detuning: νz → νz(Jz)

detuning ∝ εx , εy
I chromatic detuning: νz → νz(δ)

detuning ∝ σE
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2) Effect of Decoherence on Training

How good can single-particle motion represent bunch motion?
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2) Effect of Decoherence on Training

Figure: Resolution vs. geometric emittance.

amplitude detuning

Figure: Resolution vs. rms energy spread.

chromatic detuning

(errors in SIS18: ∆k1 ∝5× 10−3 m−2, ∆k2 ∝10−2 m−3)
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3) Resolve Influence of Multipoles with BPMs

How much does centroid motion change over 3 turns?

kick beam and track centroid with / without field error
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resolution of BPMs ∼10 µm
⇒ resolve influence of gradient errors

⇒ effect of sextupole errors close to BPM resolution
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Conclusion

successful identification of field errors in
simulations

I quadrupole, sextupole, octupole
I robust against

I uncaptured non-linearities
I chosen working point
I finite integration order of magnets

I convergence affirmed by multitude of
simulations

I no overfitting

training on real measurement data

I control initial conditions by kickers

I require 18 shots of synchrotron to
create training data set

I representation of bunch centroid by
single particle
I resolution of multipoles affected

I finite resolution of BPMs
I identify gradient errors in SIS18
I sextupole errors close to resolution

limit
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End

Thank you for your attention!
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Training Set

kick beam observe 
centroid motion train setBPMs store 

trajectory

repeat several times

I ground truth to be fitted by model

I kick beam horizontally & vertically

I typical size of train set: 18 trajectories
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Detuning in presence of Exact Drifts

I study detuning
caused by exact
drifts

I compare motion of
beam centroid to
centroid particle

I beam parameters
I geo. emittance

εx = εy =34 µm
I monoenergetic

beam, σE = 0
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(a) Linear lattice with exact drifts.
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