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Field Errors

» unwanted multipoles
P excite resonances
» reduce dynamic aperture
» cause beam loss

» mitigation and correction

» compensation computable from accurate
model
» requires type, location and strength
> dedicated beam time necessary to find them
LOCO-algorithm, non-linear tune response
matrix

.

Defocusing quadrupole

— Triplet quadrupole

\ /* 1%t dipole

NV ON
=) 7\
= BPM \>
=

27 dipole

4/28
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Goal: Identify Field Errors

Goal
> identify field errors from measurements

P> support operation of accelerator

approach
1. compare measurements and predictions of accelerator model

2. quantify difference by loss £
3. minimize £ by varying multipole strengths of model

= obtain accurate representation of accelerator
= identify linear & non-linear field errors
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Loss

loss £
» quantify difference of trajectories

» measurements: observe motion of
beam centroid with BPMs

=2 > (5]

Niurns Nepm

& normalization factor o var(x), var(y)

1.0

0.5

0.0

-0.5

Trajectory offset y [mm]

measurement

—1.01

J\

accelerato

- training |

VY

0

1
o

;

2
sector along accelerator (#BPM)

X

|

model>

2

(1)

8/28



Accelerator Model

self-implemented tracking code with automatic differentiation

» based on drift-kick approximation, 6D tracking
> concatenation of differentiable maps

» enable differentiation of whole tracking model w.r.t. multipole strengths

» compute % with k; ; i-th multipole of j-th magnet
1)
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Accelerator Model

self-implemented tracking code with automatic differentiation

» based on drift-kick approximation, 6D tracking
> concatenation of differentiable maps

» enable differentiation of whole tracking model w.r.t. multipole strengths
» compute % with k; ; i-th multipole of j-th magnet
1)

P single particle tracking
> features

P> exact drifts, no truncation
» transversal magnetic fields up to arbitrary order
» linearized dipole edges

» benchmarked against MAD-X, SixTrackLib
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Analogy to Artificial Neural Networks (ANNs)

similarities to artificial neural networks
» concatenation of simple, non-linear maps
optimization of some scalar loss over training set

>

» large amount of tunable parameters

> well suited for automatic differentiation
» stochastic gradient descent

= use gradient based algorithms designed to train ANNs

= identify linear & non-linear field errors
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Application to SIS18 in Simulations

Presentation of Problem

goal: locate order & strength of field error

» hide field errors in accelerator
» quadrupoles
» sextupoles
» octupoles
» training robust against additional
deviations?
> finite integration order of magnets
» hide multipoles in accelerator not
captured by training
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Application to SIS18 in Simulations

Presentation of Problem

goal: locate order & strength of field error

» hide field errors in accelerator

» quadrupoles P learning parameters
> sextupoles > ki, ko, k3
P> octupoles » at two locations per cell
» training robust against additional = 72 free parameters
deviations? P training data set
> finite integration order of magnets > 18 trajectories for different initial
» hide multipoles in accelerator not conditions

captured by training
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Application to SIS18 in Simulations

Results
exemplary training run
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= no overfitting

= resolution: quadrupole errors oc10~" m~2

, sextupoles <1070 m~3
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Application to SIS18 in Simulations

Overview

» successful identification of field errors
in simulations
» possible to identify

» quadrupoles
» sextupoles
» octupoles
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Steps Towards Application at Accelerators

steps towards training with measured data

model systematic deviations
1. resolution of multipoles?
2. effect of uncaptured non-linearities?

3. influence of working point?
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1) Possible Resolution of Field Errors

symplectic integrator of finite order

» tradeof between accuracy and speed
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= possible to resolve field errors with sufficiently fast model
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2) Effect of Additional Field Errors

training possible if additional unconsidered non-linearities present?
train ki, ko, hide unconsidered octupole error in SIS18
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= unconsidered octupole: resolution still feasible

(errors in SIS18: Aky o5 x 1073 m~2, Ak, x1072m~3)
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3) Influence Working Point on Training
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= no significant effect on quadrupole resolution
= sextupole resolution accecptable for application to SIS18

(errors in SIS18: Ak o5 x 1073 m~2, Ak, x1072m~3)
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Steps Towards Application at Accelerators

steps towards training with measured data

measurement systematic deviations

1.

how to obtain initial condition from
measurements?

. represent centroid motion by single

particle motion?

training possible with finite BPM
resolution?
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1) Recovery of Initial Condition

Hilbert Transform

model does particle tracking = require initial condition
get x, y from BPMs, how to get py, p,7
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1) Recovery of Initial Condition
Hilbert Transform

model does particle tracking = require initial condition
get x, y from BPMs, how to get py, p,7

Hilbert transform

>
>

applies =7 phase shift to signals

use to obtain transversal momenta in
normalized phase space coordinates

requires precise knowledge of twiss
parameters

normalized |Apx|/px
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1) Recovery of Initial Condition

Leverage Kickers

v

model does particle tracking = require initial condition
get x, y from BPMs, how to get py, p,?

alternative: kick beam
» beam at rest
[X7 Px, Y, Py] = [07 0,0, 0]
» kick beam — set momenta

P requires precise knowledge of kicker
field
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2) Effect of Decoherence on Training

How good can single-particle motion represent bunch motion?

» decoherence: particles oscillate with
different tunes v = beam debunches
» effect on training resolution?
» two mechanisms
> amplitude detuning: v, — v,(J,)
detuning o< €, €,

> chromatic detuning: v, — 1,(4)
detuning < o
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2) Effect of Decoherence on Training

How good can single-particle motion represent bunch motion?
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difference in bunch motion and single particle motion after kick
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2) Effect
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(errors in SIS18: Akj o5 x 1073 m=2, Ak, x1072m~3)
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3) Resolve Influence of Multipoles with BPMs

How much does centroid motion change over 3 turns?

kick beam and track centroid with / without field error

Aky=5-10"3 m™2 Dk;=1-10"2m™3
24
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g o I o
5| 3
—204
24
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resolution of BPMs ~10 pm
= resolve influence of gradient errors
= effect of sextupole errors close to BPM resolution
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Conclusion

successful identification of field errors in
simulations

» quadrupole, sextupole, octupole

» robust against

» uncaptured non-linearities
> chosen working point
> finite integration order of magnets

» convergence affirmed by multitude of
simulations

» no overfitting
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Conclusion

successful identification of field errors in
simulations

» quadrupole, sextupole, octupole

» robust against

» uncaptured non-linearities
> chosen working point
> finite integration order of magnets

» convergence affirmed by multitude of
simulations

» no overfitting

training on real measurement data

>
>

control initial conditions by kickers

require 18 shots of synchrotron to
create training data set
representation of bunch centroid by
single particle

» resolution of multipoles affected
finite resolution of BPMs

» identify gradient errors in SIS18
» sextupole errors close to resolution
limit
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End

Thank you for your attention!
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Training Set

kick beam

observe store
BPMs—> ) . >
centroid motion trajectory

train set

repeat several times

» ground truth to be fitted by model
» kick beam horizontally & vertically

> typical size of train set: 18 trajectories
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Detuning in presence of Exact Drifts
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(b) Linear lattice with linear drifts.
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