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The Basics: What is a Kilonova
● A kilonova (KN) is a 

radioactively powered 
electromagnetic (EM) 
transient

● Produced from binary 
neutron star (NS), or 
neutron star and black hole 
(BH) mergers

● Evolves rapidly on a 
timescale of days to weeks

Artist Impression, NASA 
2017
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The Kilonova: Early Phase
● Initially, the ejecta are 

extremely hot and dense
– Ejecta are in local 

thermodynamic equilibrium 
(LTE) conditions

● Emission is thermal, and 
optical depth is high
– Photons diffuse out of ejecta
– Only outer ejecta layer 

probed

Source: Waxman et al. 2018
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The Kilonova: Nebular Phase
● As the ejecta expand, dropping 

densities lead to several effects:
– Ejecta transition to non-local 

thermodynamic equilibrium 
(NLTE) conditions

– Optical depth drops -> observed 
emission probes entire ejecta and 
morphology

– Spectra are expected to be 
dominated by emission lines

Source: Villar et al. 2017

LTE NLTE: Nebular Phase
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Thermodynamics in NLTE
● Temperature determined by balance of cooling 

(line cooling) and heating (radioactivity)
● Ionisation and excitation by solving rate equations

– Many processes included: collisional (thermal and 
non-thermal), radiative processes etc. 

● Radiation field coupled to thermodynamic 
quantities
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KN Modelling with SUMO 
(SUpernova MOnte Carlo Code)
● 1D NLTE Monte Carlo spectral synthesis code
● Theoretical r-process atomic data (levels and lines) 

for all r-process elements (Cu - U) up to triply 
ionised (Jon Grumer, Uppsala University) 

● Line by line radiative transfer
● Want to produce high quality spectra in the NLTE 

regime, ~ 5 days onwards (e.g. Pognan et al. 2022b)

Jerkstrand 2011, 
Jerkstrand et al. 2012
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Ejecta Models
● Density profile ~ r-3

– 1D -> spherically symmetric

● Total ejecta mass: 0.05 Msol

● Ejecta velocity: 0.05 - 0.3 c
● Homologously expanding, 

from 5 to 20 days after 
merger
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Compositions: Y
e
 ~ 0.35
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● Black: solar r-process 
residuals

● Red: Outputs from 
nuclear network

● Blue: selected elements 
modelled in SUMO
– Max 30 elements
– Minimum mass fraction  
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Compositions: Y
e
 ~ 0.25
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● Black: solar r-process 
residuals

● Red: Outputs from 
nuclear network

● Blue: selected elements 
modelled in SUMO
– Max 30 elements
– Minimum mass fraction  
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Compositions: Y
e
 ~ 0.15
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● Red: Outputs from 
nuclear network

● Blue: selected elements 
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Energy Deposition
● Raw power from Wanajo et al. 2014 models

– Power consistent with composition for each model
● Analytical thermalisation fits from Barnes et al. 2016 

and Kasen & Barnes 2019
● Inbuilt Spencer-Fano routine splits deposited energy 

into heating and ionisation channels
– r-process non-thermal excitation cross sections unknown, 

but expected to be negligible compared to heating
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Energy Deposition: Visualised
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Preliminary Results: 20 days
● Lanthanide rich 

composition significantly 
redder
– Also slightly brighter due 

to enhanced energy from 
fission/alpha decay

● Lanthanide free model 
has almost no IR 
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Closer Look: Y
e
 ~ 0.35

● High Ye model emission 
dominated by 4 elements at 
20 days
– Groups 1 – 4 elements around 

1st r-process peak
● These have few valence 

electrons, and low lying 
energy levels -> strong 
transitions (e.g. Domoto et al. 
2022) 0 10000 20000 30000 40000 50000

Wavelength [A]

0.0

0.5

1.0

1.5

2.0

F
 [e

rg
s

1 c
m

2 A
1 ]

1e 17
Ye ~ 0.35
Sum Ti - Zr
Y,Zr
Rb,Sr
Ti - Kr



   16

Closer Look: Y
e
 ~ 0.25

● Lanthanides emit 
strongly in the IR
– Even at small mass 

fractions in model        
Xlanth ~ 0.015

● 1st and 2nd peak 
elements still have 
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Closer Look: Y
e
 ~ 0.15

● Domination by 
lanthanides
– Model is extremely 

lanthanide rich        
Xlanth ~ 0.25

● Some contribution 
from actinides and 2nd 
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Time-Dependent Effects
● Preliminary results at 20 days are currently in “steady-

state” mode
– Temperature and ionisation equations solved assuming fast 

cooling/recombination times
● This is not true for the outermost ejecta layers

– From ~ 10 days onwards, models will be run in time-dependent 
mode

– Expect more neutral ionisation structure and cooler temperature
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Time-Dependent Effects: Visualised
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Different ionisation structures and temperature solutions will affect the emergent spectrum
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Ongoing/Future Work
● Run models 5 – 20 days after merger:

– Can a 1D model reproduce AT2017gfo’s general evolution?
– Can we constrain lanthanide masses?
– Support (or go against?) the Sr II claim for AT2017gfo?

● Include time-dependent effects for T and xe from 10 days 
onwards:
– Changing thermodynamical quantities will affect emergent spectrum

● Make non-homogenous composition model for more “realistic” 
distribution of elements?



  

Thank you for listening!
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