Modelling Kilonovae in the Nebular Phase

Quentin Pognan EMMI + IReNA Workshop 20/10/2022

The Basics: What is a Kilonova

- A kilonova (KN) is a radioactively powered electromagnetic (EM) transient
- Produced from binary neutron star (NS), or neutron star and black hole (BH) mergers
- Evolves rapidly on a timescale of days to weeks

The Kilonova: Early Phase

- Initially, the ejecta are extremely hot and dense
 - Ejecta are in local thermodynamic equilibrium (LTE) conditions
- Emission is thermal, and optical depth is high
 - Photons diffuse out of ejecta
 - Only outer ejecta layer probed

Source: Waxman et al. 2018

The Kilonova: Nebular Phase

- As the ejecta expand, dropping densities lead to several effects:
 - Ejecta transition to non-local thermodynamic equilibrium (NLTE) conditions
 - Optical depth drops -> observed emission probes entire ejecta and morphology
 - Spectra are expected to be dominated by emission lines

Thermodynamics in NLTE

- Temperature determined by balance of cooling (line cooling) and heating (radioactivity)
- Ionisation and excitation by solving rate equations
 - Many processes included: collisional (thermal and non-thermal), radiative processes etc.
- Radiation field coupled to thermodynamic quantities

KN Modelling with SUMO Jerkstrand 2011, Jerkstrand et al. 2012 (SUpernova MOnte Carlo Code)

- 1D NLTE Monte Carlo spectral synthesis code
- Theoretical r-process atomic data (levels and lines) for all r-process elements (Cu - U) up to triply ionised (Jon Grumer, Uppsala University)
- Line by line radiative transfer
- Want to produce high quality spectra in the NLTE regime, ~ 5 days onwards (e.g. Pognan et al. 2022b)

Ejecta Models

- Density profile $\sim r^{-3}$
 - 1D -> spherically symmetric
- Total ejecta mass: 0.05 M_{sol}
- Ejecta velocity: 0.05 0.3 c
- Homologously expanding, from 5 to 20 days after merger

Compositions: $Y_e \sim 0.35$

- Black: solar r-process residuals
- Red: Outputs from nuclear network
- Blue: selected elements modelled in SUMO
 - Max 30 elements
 - Minimum mass fraction 10-4

Compositions: $Y_e \sim 0.25$

- Black: solar r-process residuals
- Red: Outputs from nuclear network
- Blue: selected elements
 modelled in SUMO
 - Max 30 elements
 - Minimum mass fraction 10-4

Compositions: $Y_e \sim 0.15$

- Black: solar r-process residuals
- Red: Outputs from nuclear network
- Blue: selected elements
 modelled in SUMO
 - Max 30 elements
 - Minimum mass fraction 10-4

Energy Deposition

- Raw power from Wanajo et al. 2014 models
 - Power consistent with composition for each model
- Analytical thermalisation fits from Barnes et al. 2016
 and Kasen & Barnes 2019
- Inbuilt Spencer-Fano routine splits deposited energy into heating and ionisation channels
 - r-process non-thermal excitation cross sections unknown, but expected to be negligible compared to heating

Energy Deposition: Visualised

Preliminary Results: 20 days

- Lanthanide rich composition significantly redder
 - Also slightly brighter due to enhanced energy from fission/alpha decay
- Lanthanide free model has almost no IR emission

Closer Look: $Y_e \sim 0.35$

- High Y_e model emission dominated by 4 elements at 20 days
 - Groups 1 4 elements around 1st r-process peak
- These have few valence electrons, and low lying energy levels -> strong transitions (e.g. Domoto et al. 2022)

Closer Look: $Y_e \sim 0.25$

- Lanthanides emit strongly in the IR
 - Even at small mass fractions in model $X_{lanth} \sim 0.015$
- 1st and 2nd peak elements still have important contributions

Closer Look: Y_e ~ 0.15

- Domination by lanthanides
 - Model is extremely lanthanide rich X_{lanth} ~ 0.25
- Some contribution from actinides and 2nd peak elements

Time-Dependent Effects

- Preliminary results at 20 days are currently in "steadystate" mode
 - Temperature and ionisation equations solved assuming fast cooling/recombination times
- This is not true for the outermost ejecta layers
 - From ~ 10 days onwards, models will be run in time-dependent mode
 - Expect more neutral ionisation structure and cooler temperature

Time-Dependent Effects: Visualised

Different ionisation structures and temperature solutions will affect the emergent spectrum

Source: Pognan et al. 22a

19

Ongoing/Future Work

- Run models 5 20 days after merger:
 - Can a 1D model reproduce AT2017gfo's general evolution?
 - Can we constrain lanthanide masses?
 - Support (or go against?) the Sr II claim for AT2017gfo?
- Include time-dependent effects for T and $x_{\rm e}$ from 10 days onwards:
 - Changing thermodynamical quantities will affect emergent spectrum
- Make non-homogenous composition model for more "realistic" distribution of elements?

Thank you for listening!