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GW170817/AT2017gfo

e The kilonova
AT2017gfo was o
observed, coincident 4
with GW170817 from
the merging of binary
neutron stars
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2017 August 21
-

e A Dbright, blue optical
transient was observed
which quickly faded and
evolved to red colours

Swope & Magellan Telescopes

Drout et al. 2017
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Two component model

o A two component model has

squeezed dynamical
i ~ 0.2c-0.
been proposed to explain the V= 0260 8

blue to red colour evolution

o high velocity “blue” dynamical

tidal dynamical
v ~ 0.2¢-0.3c

ejecta Wy
disk wind
v < 0.1c

o low velocity “red” secular ejecta

Neutron Star + Neutron Star

Kasen et al. 2017
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Observations of AT2017gfo
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Merger simulations predict asymmetric ejecta

e Dynamical ejecta from binary
neutron star merger simulation

vzlc

e Need to connect merger

simulations to observations
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3D kilonova modelling pipeline

3 Neutron star merger simulation (GSI)
.
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Nucleosynthesis calculations Compare to observations
NS-NS merger . L "
<imulation provide energy released Radiative transfer Image: light curves of
credit: S, Blacker credit: EMMI, GSI/Different Arts calculation based on AT2017gfo (Villar et al. 2017)
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Merger simulation

e Merger simulated by a 3D general relativistic smoothed-particle hydrodynamics (SPH) code
o (Oechslin et al. 2002; Bauswein et al. 2013; carried out by V. Vijayan)

e Used ILEAS scheme for neutrino transport (Ardevol-Pulpillo et al. 2019)

e Equalmass1.35M -1.35M _BNS merger simulated

e We consider only material ejected on dynamical timescales (20s milliseconds after time when
both stars touched)
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Nuclear calculation
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ARTIS Monte Carlo radiative transfer
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el -
o ..

e We carry out 3D radiative transfer simulations to predict line-of-sight dependent light curves

e ARTISis atime-dependent, 3D, Monte Carlo radiative transfer code (Sim 2007, Kromer & Sim
2009, based on method of Lucy 2002, 2005)

e Radioactive energy is discretised into packets, which are followed until they leave the
simulation

e Monte Carlo energy packets are placed in the ejecta, according to the distribution of energy
released (obtained from nucleosynthesis)
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Mapping SPH particles to radiative transfer grid

e SPH particles were propagated for 0.5 seconds
according to their velocity at the end of the

simulation.
: o 3 : v g | It
e Particle densities mapped to a 128° cell grid 555
e Homologous expansion is an assumption made by 0a(p) [glem] 020 I
ARTIS (and most other radiative transfer codes) _— -
: .00
.1.49 0.10
N " 0.251 020 L
e Polardirections have much lower central densities === e
than disk oAC0 i s — I r——
; E ; ; ; ; ; ; 40
__222 040 030 0.20 OJ)EJ/C

e Total mass of dynamical ejecta mapped to the grid is
0.0051 M_
3D rendering of dynamical ejecta,
where isosurfaces indicate density
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Ye dependent grey opacities 3D rendering
Q80 of ejecta
e We assume a grey approximation Shtt indicates the
electron
e Use Ye dependent opacities (Ye mapped ém & fraction (Ye)
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Radioactive heating in ARTIS simulation

e We assume all heating in our simulation is from beta decays
o Neutrinos will not thermalise. We assume 35% is lost to
neutrinos

o Assume gamma-rays account for 45% of energy. We
include gamma-ray transport (for estimated gamma
energies)

o Assume beta-particles account for 20% of energy, and
that these thermalise instantaneously.

m (Based on Barnes+2016)

e Thetotal energyin acellis determined from the SPH particle
trajectories, but we assume a constant decay rate - the
average of all trajectories
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Angle-dependent bolometric light curves
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e Bolometric light curves do not rise to a peak, but 0.2
do show a ‘shoulder’ when the bulk ejecta become '
. . Ocos(e)
optically thin 02
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Angle-dependent bolometric light curves

e Dynamical ejecta modelis less massive than the
total mass inferred for AT2017gfo, and therefore
do not expect model to be as bright

erg/s

f AT2017gfo (Waxman 2018)
I
Time (days)

39
10751
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Angle-dependent bolometric light curves

e The total energy available for heating
the ejectais given.

e This excludesthe 35% lost to
neutrinos

e Remaining energy is y-rays and
B-particles
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Angle-dependent bolometric light curves

e Also marked is the heating rate by
B-particles (20% of total energy)

e We assume all beta particles
thermalise instantaneously

erg/s

Ocos()
e Latetimelight curve dependenton

energy deposition rate (in our model
entirely on beta-particle rate)
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Gamma light curve

e We assume 45% of the total energy to
be y-rays

e y-raysonly thermalise at very early
times (< 2 hours), since after this the
gamma light curve is the total y
energy

cos(06)

e Noviewing angle dependence

expected o
P 10 10-1 10° 101
Time (days)
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Mean temperature where radiation is escaping

e Ejecta temperatures cool

rapidly (due to the high SRR
expansion velocities) 17500¢
: 15000

e Compared to inferred >

temperatures from the E 125007

spectra of AT2017gfo by c 10000

Smartt et al. (2017) = 7500l
e Coolerthan AT2017gfo, but 5000

shows similar decline 2500

10°
Time (days)
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Approximate light curves from black body spectra

e Since we use a grey approximation we have no
frequency dependence

e However, we do have the radiation
temperature at the location packets were
emitted from

e We can estimate a frequency for the packet
from a black body at the radiation
temperature

e From this we obtain approximate spectra and
can generate band light curves
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-
Colour evolution e ———

e AT2017gfo showed a rapid colour evolution from
blue to red, shown by data points

e From the temperature evolution alone, we find a
similarly rapid blue to red colour evolution

e We onlyinclude dynamical ejecta S

e Suggests colour evolution could be driven by
temperature

Time (days)
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Secular ejecta
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Dynamical ejecta only Dynamical plus secular gjetca
e We now include secular ejecta by adding mass from the torus and wind components of a long term evolution simulation (O. Just, similar to models of Just el

al. 2015)
e We angle average the density profile and add this to the dynamical ejecta
e We keep the opacity from the dynamical ejecta model, and any empty cells are assumed to have Ye=0.5 (low opacity)
e The extra massis 0.019 M, giving a total ejecta mass of 0.024 M |
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Secular ejecta

1042 :

e [The additional mass at low
velocities increases the energy .
deposition in the center 1041}

o This energy leaves the ejecta after
~ 1 day

erg/s

. . 1040 -
o The early light curve brightness e dynamical ejecta

only increases slightly |~ dynamical + secular ejecta
{ AT2017gfo (Waxman 2018)

e This suggests that to account for 1039 . e
10+ 10° 101
AT2017gfo we would need more Time (days)
mass at higher velocities than is in
our model

Angle averaged light curves
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Angle-dependent bolometric light curves
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Conclusions

e Sinceradiation is throughout ejecta, including high-velocity outer ejecta we do not
find a rise to peak in bolometric light curves.

e Light curves viewing towards the poles are brighter by factor of ~2 compared to
equator.

e Due to the temperature evolution, we find a rapid colour evolution from blue to red,

similar to that observed in AT2017gfo. This suggests that the colour evolution could be
due to cooling, rather than the composition.

e More mass is required at high velocities to match the observed brightness of
AT2017gfo.
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