EMMI + IReNA workshop 2022, GSI

Opacity of the highly ionized heavy elements and the effect on the early kilonova

Smaranika Banerjee

In collaboration with Masaomi Tanaka (Tohoku U.), Kyohei Kawaguchi (ICRR), Daiji Kato (NIFS), Gediminas Gaigalas (Vilnius U.)

Banerjee, Tanaka, Kawaguchi, et al. 2020, ApJ, 901, 29 Banerjee, Tanaka, Kato, et al. 2022, ApJ, 934, 117

Early kilonova

2017; Abbott et al 2017d; Utsumi et al 2017; Covino et al 2017

What do we need?

Realisticalistic digive on order matched rly time <= Detail@etail

Challenges in atomic calculation

Atomic energy levels and transition rates

NIST Atomic Spectra Database Levels Data

Challenges in atomic calculation

Atomic energy levels and transition rates

NIST Atomic Spectra Database Levels Data

Eu VI 2 Levels Found

Z = 63, Ce isoelectronic sequence

Primary data source		Query NIST Bibliographic Database for Eu VI (new window)		
		Literature on Eu VI Energy Levels		

Configuration	Term	J	Level (cm ⁻¹)	Uncertainty (cm ⁻¹)	Reference
4, ⁵ 5s ² 5p ⁵			0	10	L582
Eu VII (4 <i>f</i> ⁵ 5 <i>s</i> ² 5 <i>p</i> ⁴ °)	Limit		(714 000)	36 000	L582

Also problem for t > 1 day

Kasen et al. 2013; Tanaka & Hotokezaka 2013; Fontes et al. 2017, 2020; Wollaeger et al. 2017; Tanaka et al. 2018, 2020

However,

Challenges in atomic calculation

Energy level

Code: HULLAC (Hebrew University Lawrence Livermore Atomic Code)

Transitions

All r-process elements including Lanthanides (Z = 20 - 88), maximum ionization = XI (10th)

Early opacity

• Constant density $10^{-10} \,\mathrm{g \, cm^{-3}}$

Early opacity

Uncertainties

Calculations between different atomic calculations matches well

Model

Lanthanide-free kilonova

Application to GW170817

- Light r-process element abundance
- Mass ~0.05Msun
- v ~ 0.05c 0.2c

Radioactive model can reproduce early light curve for kilonova with GW170817

Model

Lanthanide-rich kilonova

Lanthanide-rich kilonova

Future prospects

Multiple upcoming UV missions: ULTRASAT, Dorado, UVEX Our model predicts detectable early bright UV emission

Summary

First systematic atomic opacity suitable for early time

- For all r-process elements including lanthanides (Z = 20 88) for ionization up to 10^{th}
- Lanthanide opacity is order of magnitude high

First radiative transfer simulation with detailed opacity

(1) light r-process abundance => equivalent to polar kilonova

• Explains kilonova observation of GW170817

(2) lanthanide abundance => equivalent to equatorial kilonova

• Strong suppression of luminosity in early time

Predicts bright UV emission detectable by future UV satellites

This work provides the foundation to assess early kilonova from future observations