Possible observational properties of r-process nucleosynthesis in jet-driven core-collapse supernovae

> Nobuya Nishimura ABBL, CPR, RIKEN & RIKEN Nishina Center

<u>Collaborators:</u>

- J. Matsumoto (Keio U), H. Sawai (RIST), T. Takiwaki (NAOJ),
- T. Hasegawa, M. Tanaka, N. Domoto (Tohoku U), K. Kawaguchi (ICRR, U Tokyo)

Remnants of neutron star mergers core-collapse SNe with the r-process?

Talk plan

- <u>r-process in Jet-driven cc-SNe</u>
 - central engine and ejection of r-process elements
 - shock propagation and r-nuclei ejection
 - Signatures in SN light-curves?
- Nuclear physics uncertainty
- <u>Summary</u>

<u>References</u>

- Winteler+NN+(2012) ApJL 750:L22
- NN, Takiwaki, Thielemann (2015) ApJ 810:109
- Tsujimoto & NN (2015) ApJL 810:L10
- NN, Sawai, Takiwaki+(2017) ApJL 836:L21
- Tsujimoto & NN (2018) ApJL 863:L27
- NN, Matsumoto+, in prep.
- Hasegawa+NN+, in prep.

Astrophysical r-process sites

Magneto-rotational SN scenario

hypernova/jet-like SN

• <u>Magnetars</u>

- strong magnetic field $\sim 10^{15} \text{ G}$
- (\sim 1 % of all neutron stars)
- Magneto-driven Supernovae?
 - •GRB central engine
 - •Hypernovae?
 - (magnetar driven) Super luminous SNe?

r-process

- \cdot variety of r-process pattern in metal-poor stars
- can be rare 1%
- \cdot Galactic chemical evolution
 - large DTD problem of NS mergers?
- needs external sources?
 - MR-SNe, hypernovae, "collapsars"?? (see, Wehmeyer+2015, Tsujimoto&NN 2015, Cescutti+2017, Siegel+2019, Kobayashi+2020 etc.)

r-Process-rich stars and GCE

Galactic chemical evolution

- \cdot NS-NS mergers can be the main source
 - (many papers, e.g., Wanajo+2021)
- but, it needs alternative source? (e.g, Cote+2019)
 - \rightarrow Rare cc-SNe events? (collapsars??)
 - GCE of dSph by Tsujimoto & NN (2015, 2018)
 - frequency: 0.5 % of CC-SNe; large mass: ~10⁻₅ M_{sun}

Magnetic-field amplification process?

axisymmetric (2D); long-term, high-resolution

<u>Magneto-driven but with ν -heating?</u>

axi-symmetric (2D) w/ detailed ν -transport

Brief summary: MR-SNe

- MR-SNe are (still) possible r-process sites
- However, strong magnetic jet explosions are required to produce heavy r-process elements?
 - difficult for "canonical" progenitors and MHD conditions
 \rightarrow initial rapid rotation and strong magnetic fields?

We want to discuss possible "observational" properties of such events (if happened): r-process-jet supernovae.

long-term evolution of r-process ejection (propagation of r-process-rich ejecta in the progenitor)

From the central engine to the SN remnant phase

NN, Matsumoto+, in prep.

Jet-induced SN with the r-process

Hydrodynamics vs r-process

Hydrodynamics vs r-process

weak r

Elemental distribution in ejecta

based on the nucleosynthesis condition of NN+2017: strong jet with very n-rich (strong r) weaker jet with medium n-rich ("intermediate r")

weaker magnetic jet

stronger magnetic jet

Toward optical SN light curves

 \cdot <u>direct observation</u> of r-process elements

- \cdot only one kilonova with the NS-NS merger (GW170817)
 - Sr in the remnant (Watson+2019)
- \cdot identified by GW waves
- \cdot <u>No direct r-process observation</u> in cc-SNe
 - \cdot but, a lot of cc-SNe are observed
 - \cdot including peculiar SNe associated with GRB, SLSNe, \cdots
 - \cdot Can we find any traces of r-process nucleosynthesis?

Hasegawa+NN+, in prep.

Another approach: search by optical observation

- 1D Radiative Transfer simulation (Tanaka & Hotokezaka 2013)
 - Calculate the absorption coefficients

of the b-b transition of all the elements

- Assume LTE
- Mass of r-process elements
- : Mr = 0, 0.1, 0.3, 0.6, 0.9, 1.2 Msun

GRB associated SN: r-process contamination

Hasegawa+NN+ 2022

Nuclear-physics uncertainty

Theoretical Prediction

r-process path is beyond experimental accessible region

Beta-decay: BRIKEN Experiments

<u>n-emission:</u>

New results of BRIKEN (Pn 20 isotopes) Pong, S.Nishimura+NN+(2022), PRL (in press)

impacts on Cs, Xe, Ba robust impacts on the abundances from solarsystem to metal-poor stars (early universe)

Monte-Carlo network code

- Monte-Carlo framework
 - PizBuin MC-driver
 (developed by Rauscher & NN)
 - a simple "Brute-force" approach
 - parallelized by OpenMP for shared memory architectures
 (paralleled easily, but harder debugging. . .)

Piz Buin (mountain)

Nuclear Reaction network

- Network solver:
 - WinNet: the latest Basel network, Winteler+, 2012
- Reaction rates:
 - Reaclib: (Rauscher & Thielemann 2000)
 - T-dependent beta-decay (Takahashi & Yokoi 1987, Goriely 1999)
- T-dependent uncertainty:
 - Provided by Reaclib format, based on Rauscher 2012

Comprehensive uncertainty studies

- <u>s-process</u>
 - \cdot (n,g) and β -decay along the stable line
 - weak s: massive stars (NN+2017)
 - main s: AGB stars (Cescutti, Hirsch, NN+2018)
- · p-process (gamma process)
 - $\cdot\,several\,\,reactions\,\,on\,\,n-deficient\,\,nuclei$
 - (+photodissociation)
 - · CC-SNe (Rauscher, NN+2016)
 - Type Ia SNe (NN+2018)
- $\cdot \nu p$ -process
 - · ν -driven winds with CC-SNe (NN+2019)

uncertainty \cdot rp-process \rightarrow NN, Dohi+, in prep.

• <u>r-process</u> \rightarrow presented results

- <u>– Rauscher, NN+2016, MNRAS 463</u> NN+2017, MNRAS 469
 - NN+2018, MNRAS 474
 - NN+2019, MNRAS 489

larger

- Cescutti, Hirschi, NN+2018, MNRAS 478

Collective uncertainties on the r-process

Evaluate "key" reactions

*the case of s-process

 \rightarrow more realistically, multi-zone (trajectories) uncertainty (e.g., NN+2018)

130

<u>Summary</u>

- \cdot MR-SNe are still possible sites for the r-process
- However, strong-magnetic jets are needed to produce heavier r-nuclei: unavailable so far in "realistic" progenitor/MHD set-up

possible "observational" properties?

- Hydrodynamical simulation of jet-SNe (w/ r-nuclei)
 - propagation of n-rich matter in outer layer with abundance evolution of r-process
 - Spacial abundance distribution can characterize explosion feature of central engine of MR-SNe
 - r-process contents may affect SN light-curve properties (if significantly produced compared)