Collisional neutrino flavor instabilities in spherically symmetric supernova models

ZX, M.-R. Wu, G. Martínez-Pinedo, T. Fischer, M. George, C.-Y. Lin, L. Johns, arXiv: 2210.08254

Zewei Xiong GSI Helmholtzzentrum für Schwerionenforschung GmbH

EMMI+IReNA Workshop "Remnants of neutron-star mergers – Connecting hydrodynamics models to nuclear, neutrino, and kilonova physics" Oct. 19, 2022

Neutrinos in core-collapse supernovae

- Profuse source of neutrinos: $\nu_e, \nu_\mu, \nu_\tau, \bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau$
- Dynamics: revive the stalled shock, neutrino-driven wind
- Nucleosynthesis: weak interactions change electron fraction Y_e

Neutrino oscillations

• Equation for neutrino flavor evolution:

$$\frac{\mathrm{d}\varrho}{\mathrm{d}t} = -i[\mathbf{H}_{\mathrm{vac}} + \mathbf{H}_{\mathrm{mat}} + \mathbf{H}_{\nu\nu}, \varrho]$$
vacuum mixing coherent forward scatterings

with neutrino flavor density matrix: $\varrho = \begin{pmatrix}
n_{\nu_e} & \varrho_{e\mu} & \varrho_{e\tau} \\
\varrho_{e\mu}^* & n_{\nu_{\mu}} & \varrho_{\mu\tau} \\
\varrho_{e\tau}^* & \varrho_{\mu\tau}^* & n_{\nu_{\tau}}
\end{pmatrix}$

- Neutrino oscillations:
 - Vacuum mixing
 - Mikheyev-Smirnov-Wolfenstein (MSW) matter effect
 - Collective neutrino oscillations and flavor instabilities:

$$\mathbf{H}_{\nu\nu} = \sqrt{2}G_F \int d\mathbf{p}' (1 - \hat{\mathbf{p}} \cdot \hat{\mathbf{p}}') [\varrho(\mathbf{p}') - \bar{\varrho}^*(\mathbf{p}')]$$

Neutrino flavor instability

- Different types of flavor instabilities depending on how those oscillation terms interplay:
 - Slow flavor instability: different vacuum oscillation frequencies for different energies
 - Fast flavor instability: angular spectral crossing

Neutrino collisional processes

• Equation for neutrino flavor evolution with incoherent collisions:

$\frac{\mathrm{d}\varrho}{\mathrm{d}t} = -i[\mathbf{H}_{\mathrm{vac}} + \mathbf{H}_{\mathrm{mat}} + \mathbf{H}_{\nu\nu}, \varrho] + \mathbf{C}(\varrho)$		
EA	Emission and absorption	$\nu_e + n \leftrightarrows p + e^-$
		$\bar{\nu}_e + p \leftrightarrows n + e^+$
		$\bar{\nu}_e + p + e^- \leftrightarrows n$
NNS	Neutrino-nucleon scattering	$\nu + N \leftrightarrows \nu + N$
		$\bar{\nu} + N \leftrightarrows \bar{\nu} + N$
NES	Neutrino-electron scattering	$\nu + e^{\pm} \leftrightarrows \nu + e^{\pm}$
NPR	Neutrino pair reactions	$\nu + \bar{\nu} \leftrightarrows e^- + e^+$
		$\nu + \bar{\nu} + N + N \leftrightarrows \nu + \bar{\nu}$

- EA in classical neutrino transport: $df_{\nu_e}/dt = j_e(1 f_{\nu_e}) \chi_e f_{\nu_e}$ with emissivity j_e and opacity χ_e .
- EA taking the account of coherent flavor mixing in quantum kinetic equation (QKE) [A. Vlasenko, G. Fuller, V. Cirigliano, 2014; D.N. Blaschke, V. Cirigliano, 2016;]: $C_{EA} \sim \begin{pmatrix} j_e(1 - \varrho_{ee}) - \chi_e \varrho_{ee} & -(j_e + \chi_e) \varrho_{e\mu}/2 \\ -(j_e + \chi_e) \varrho_{e\mu}^*/2 & 0 \end{pmatrix}$

Collisional flavor instability in homogeneous model

incoherent collisions

coherent forward scatterings

Collisional flavor instability in homogeneous model

- Collisional flavor instability needs asymmetric collisional rates
 - Growth rate [L. Johns, 2021]: $\operatorname{Re}(\kappa) \approx (|C + \overline{C}|/2) \left(\alpha_C / \alpha_n - 1 \right)$ independent of the strength of $H_{\nu\nu}$ when $H_{\nu\nu} \gg C$ with $C = (j_e + \chi_e)/2$, $\overline{C} = (\overline{j}_e + \overline{\chi}_e)/2$, and asymmetry factors $\alpha_n = \left| \frac{n_{\nu_e} - n_{\nu_\mu} - n_{\overline{\nu}_e} + n_{\overline{\nu}_\mu}}{n_{\nu_e} - n_{\overline{\nu}_\mu} + n_{\overline{\nu}_e} - n_{\overline{\nu}_\mu}} \right|, \ \alpha_C = \left| \frac{C - \overline{C}}{C + \overline{C}} \right|.$
- Collisional flavor instability develops when $\alpha_n \lesssim \alpha_C$.
- Provide a different condition from fast flavor instability:
 - Y_e is small near PNS

 ${\color{black}\bullet}$

- Heavy-lepton neutrinos are decoupling and number densities are diluted

Models with advection

$$(\partial_t + v_r \partial_r + \frac{1 - v_r^2}{r} \partial_{v_r}) \varrho = -i[a_{\nu\nu} \mathbf{H}_{\nu\nu}, \varrho] + \mathbf{C}(\varrho)$$

- Advection in spherical symmetric geometry with multiple energies and angles
- Iso-energetic NNS:

$$\mathbf{C}_{\mathrm{NNS}} = \int dv_r' \, R_{\mathrm{NNS}}(E, v_r, v_r') [\varrho(E, v_r') - \varrho(E, v_r)]$$

with the opacity

$$\chi_{\rm NNS}(E) = \int dv'_r R_{\rm NNS}(E, v_r, v'_r).$$

- Trilemma among
 - 1. self-consistency
 - 2. advection
 - 3. exact rates
- Strategical attenuation with the factor:

$$a_{\nu\nu}(r) = \frac{a_1}{1 + e^{(a_2 - r)/a_3}}$$

Models with advection

- Use background matter profiles from spherically symmetric CCSN simulations (AGILE BOLTZTRAN) with an $18M_{\odot}$ progenitor at four post-bouncing time points: $t_{\rm pb} \approx 150$ ms, 250ms, 500ms, 1000ms
- solve the neutrino flavor evolution equation

$$(\partial_t + v_r \partial_r + \frac{1 - v_r^2}{r} \partial_{v_r}) \varrho(E, v_r) = -i[a_{\nu\nu} \mathbf{H}_{\nu\nu}, \varrho(E, v_r)] + \mathbf{C}_{\text{EA}} + \mathbf{C}_{\text{NNS}}$$

- in COSEu for two flavors u_e and u_μ up to ~1 ms

- in the absence of fast flavor instability
- Resolutions: $N_r = 25000$, $N_{v_r} = 50$, $N_E = 20$
- NES, NPR is more computationally expensive because of $R_{\text{NES/NPR}}(E, E', v_r, v_r')$
- Boundary conditions:
 - Inner boundary: neutrinos in thermal equilibrium with matter between 10 and 16 km to mimic NPR
 - Outer boundary: freely stream out at 85 km
- Initial perturbation (flavor mixing seed): radial-dependent perturbation in Gaussian function

Evolution of collisional flavor instability

Definitions for analysis: $\langle \varrho \rangle_E(v_r) = \int dE \, \varrho(E, v_r), \ \langle \varrho \rangle_A(E) = \int dv_r \, \varrho(E, v_r), \ s_{e\mu} = \frac{|\langle \varrho_{e\mu} \rangle_E|}{|\langle \varrho_{ee} \rangle_E - \langle \varrho_{\mu\mu} \rangle_E|}$

r [km]

Evolution of collisional flavor instability

- distributions of ν_e and $\bar{\nu}_e$ are affected at the onset of the flavor conversion, but quickly restored by large EA rates
- In contrast to the homogeneous model, spectrum of heavy-lepton (anti)neutrinos does not converge to that of electron flavor
- leave imprints in the spectra of heavy-lepton (anti)neutrinos at the free-streaming regime

Conditions at different supernova snapshots

- α_C increases due to the deleptonization
- α_n decreases after the neutrino burst.

Evolution of collisional flavor instability

 $\log_{10}(s_{e\mu})$

Summary and outlook

- We implement:
 - a multi-energy and multi-angle collective neutrino oscillation simulator
 - to study collisional flavor instability in a spherically symmetric geometry
 - including advection on a global scale and realistic collisional rates
- We find:
 - collisional instability leads to conversions near decoupling region
 - the strength of the instability increases with respect to the post-bouncing time
 - more likely to manifest in the CCSN dynamics and the emitted neutrino signals
 - may moderately affect neutrino (induced) nucleosynthetic processes that are sensitive to the spectra of heavy-lepton neutrino flavors
- Outlook:
 - include NES
 - artificial attenuation?
 - dynamic evolution and matter feedback?
 - fast flavor conversion?