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I Introduction
NS merger was predicted to be

* Promising source for short-hard gamma-ray bursts
(e.g., Eichler et al. 1989)

* Site for r-process nucleosynthesis (rapid neutron capture
nucleosynthesis) (e.g., Schramm & Lattimer 1974)

* Source for Kilonovae (e.g., Li & Paczynskii 1998)

 Invaluable site for studying nuclear equation of state
through GW detection (e.g., Lai et al. 1993, Hinderler 2008,.....)

. GW170817 (1St NS NS) has shown all these aspects

Neutron Star
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Variety of NS-NS merger remnants based on NR

Likely minority but could occur Typical Cases (galactic binary pulsars):
(GW190425) m=2.5—2.8M,, (c.g., GW170817)

prompt BH <— m>M ‘0 m<M , — MNS formation
fOI‘mati(E/ Q> m< Mmax,spin
Merger RN
/\ hydrodynamics /
viscous evolution

hydrodynamics /
viscous evolution

- BH+disk BH+disk BH+disk SMNS+disk
+ tmy d1sk : : :
viscous evolution of disk ¢
! disk matter infall/outflow
/ ‘
No kilonova ‘ - o cool down
spin down
No nucleosynthesus Isolated BH > collapse

Higher total mass, m

A wide variety of possibilities exist; need widely exploring



Two fates of BH-NS binaries

neutron star plunges ‘D tidal disruption of neutron star
—
Merger ,
Isolated BH or BH + disk
BH + tine disk

viscous evolution of disk GRB ?
1\ disk matter infall/outflow
No kilonova ‘ - ,
No nucleosynthesus Isolated BH disk expands/mass ejection

—)

High BH mass Low BH mass
and/or or
Low BH spin High BH spin

= BH, no disk - BH + disk



II Status of NS merger theory based on
numerical relativity simulations

Animation by Fujibayashi & Kiuchi



Mass ejection scenario

Merger -> compact obj + disk IY-l‘ay burst (< 2s)
\ 7
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Dynamical ejection
by shock heating/tidal effect

(proceeds in < 10 ms)

<€ >
MHD/viscosity-driven post-merger ejection

(in MHD/viscous timescale of remnant disk ~ 1s)

» Weak interaction determines the property of ejecta:
Important for nucleosynthesis & kilonovae
» Electron fraction, Y,(=n,/(n,+n.)), is key for r-process



A Dynamical mass ejection from NS-NS
(ejection within ~ 10 ms after the merger)

* Many numerical-relativity simulations have been done
since 2013 (easy to do now) =2 Well understood

€ What we have learned are

¢ Mass:10'4~10'2 Msun (Hotokezaka, Sekiguchi, Foucart, Radice,
Dietrich, Bernuzzi. ..., now it is routine work): For low total mass
(MNS formation), it is <~10- M,

 Electron fraction=0.05~0.4

-> suitable for r-process nucleosynthesis of heavy
elements (Wanajo, Sekiguchi, Goriely, Foucart, Roberts, and others)

* Average velocity=0.15~0.25c¢, but could be up to
~0.9c (OI‘ IIlOI'G) (Hotokezaka+ ‘13, many follow-ups, Radice.....)



B Post-merger mass ejection: more complicated

* Neutron star is magnetized > Remnants are magnetized

* The magnetic field 1s amplified by MHD instabilities
(Kelvin-Helmholtz instability, MRI, convection, etc)

1. Turbulence & effective viscosity are excited
(Fernandez & Metzger+ ‘13, Just et al. ‘15, ‘21, Fujibayashi+ ‘18, 20)

11. Purely MHD effects (e.g., Christie+ ‘19, Just+ ‘21, Shibata+ ‘21)
-> Post-merger mass ejection from disk/torus
v Ejecta mass depends on the remnant (BH or NS)
-> Ejecta mass ~ 0.05-0.1 M, for long-lived NS formed,
while 1t 1s lower, ~0.01 M, for BH formation
* Weak interaction physics (e.g., neutrino reaction) is key

for determining electron fraction (Y,) (Metzger & Fernandez
‘14, Just+ “15, ‘21, Siegel-Metzger ‘18, Fujibayashi+ ‘18, °20, Miller ‘19)




Basic evolution process of disks by neutrino
cooling and (effective) viscous effects

\\ ' BH/NS : // p \ j ¢ /
- ® - ) = ® =
N / ~

Ty > ~3MeV = L, = E ;. T, 0 < ~3MeV - L, < E ;s
No viscous mass ejection; Viscous heating is fully used

Viscous angular momentum for matter expansion =

transport = Disk expansion Onset of viscous mass ejection

(but no mass ejection)

Viscous angular momentum transport timescale: long
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Viscous hydro simulation 1n full GR:
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How Y, of disks/ejecta is determined?

* [B-equilibrium (reaction timescale < disk evolution one)
p+v,—on+et & n+v, op+e”
— Y, 1s determined by p, + te = Uy +)>1Q<
* In typical situations, neutrino captures decouple first,
but still electron & positron capture processes
proceed because of high temperature > MeV
p+e -on+v, & n+et ->p+,
* For T,,,,.<~3MeV, the weak interaction decouples and
Y. 1s determined (Fujibayashi+ <20, Just+ ‘21)
v Electron degeneracy is weakened for decreased density,

1.e., 1, decreases with time
—> At mass ¢jection, moderately neutron rich, Y ,~0.3

-> Heavy r-elements production is suppressed




Y, distribution: Two components

Results

from 3D merger + 2D post merger simulation

Low Y, (neutron-rich) ejecta by dynamical ejection

Lifetime > 1 s
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Long-lived MNS case

Short-lived MNS = BH case

Numerical relativity results by Fujibayashi et al. (2022)

Mass ratios by dynamical and post-merger ejecta
depend significantly on the lifetime of remnant NS



The goal of NS merger simulations

* Important timescales:

» Dynamical mass ejection timescale ~ 10 ms
» Post-merger mass ejection timescale ~ O(1) s
» Short gamma-ray bursts: up to ~2 s

—> Until quite recently, the merger and post-merger
simulations are performed separately

v’ For self-consistent studies, a simulation of inspiral,
merger & post-merger with > 1 s is required

* MHD effects are likely to be the key
* Weak processes are the key for nucleosynthesis

-> Seconds-long GR+rad+MHD simulation with
weak physics input (e.g., neutrino transfer) is needed



Second-long self-consistent simulations
for BH-NS & NS-NS mergers
are now feasible!

K. Hayashi et al. PRD 106, 023008, 2022
K. Kiuchi et al. in preparation

2 steps mass ejection scenario is reconfirmed



BH-NS merger for 2 seconds: GR + v—rad + MHD

NS with strong dipole field initially K. Hayashi et al. PRD106 (2022)
t = 0.01 ms density Magnetic—fiéld strelngth
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y=0 plane 1s displayed: [-2000,2000] km
Ax=400 m; Fix mesh refinement with ~400*400*200 grid * 9 levels



Butterfly diagram at fixed r: toroidal field
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Electromagnetic energy, mass ejection, neutrinos

Electromagnetic energy
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Electron fraction, Y,: two components
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Consistent with the merger + post-merger studies



Formation of collimated Poynting flux

Time
fime: 00Tms £ lactron fraction Rest-mass density
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y=0 plane 1s displayed: [-2000,2000]km
Ax=400m; Fix mesh refinement with ~400*400*200 grid * 9 levels




1.2-1.5 solar mass NS-NS merger to a BH + disk: New
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III Remaining issues

* What happens for long-lived neutron star formation’!

v’ Differential rotation is present both in NS and disk
—> A strong magnetic field is likely to be developed

 Magnetic-field amplification by dynamo proceeds
not only in disk but also in NS??
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Magnetic -field amplification in MNS?
Tayler-Spruit dynamo loop

Differential rotation Tayler instability
shears B, into B, generates 0B
Q Q . .
Differential
Rotation
T+
Tayler-Spruit
Dynamo
P. Barrere et al. Formation of
arXiv:2206.01269 gl obal

magnetic field

E, generates B,



A very phenomenological approach as an experiment

* a—Q Dynamo 1s likely to play a crucial role in
magnetic-field (B-field) amplification not only for the
disk but also for remnant NS

—> Need 3D high-resolution MHD with microphysics for
remnant neutron star

* However, it 1s not an easy task; Simple modeling?

* A phenomenological approach that explores possible

effects by amplified B-field in the remnant NS:
Shibata, Fujibayashi, Sekiguchi PRD 104, 063026 (2021)

* This can perhaps give the most extreme possibility



Basic equations for resistive MHD + dynamo
*» FW =ntEY —nVEH 4+ ngefvep,
o+ EF = [yEH, B* = \JyB¥
0" = =0y (B'EF — BXEL + ae®'B;) — 4n)
0;B' = —0x(B'B* — B¥B' — ae*V¢E;)
where J! = Qv' + aac[autAijé‘j + eijkuj‘Bk —
ag(—autA B/ + eUkuE, )]
and AY= 6 — y*uu;/(aut)? I
* The term associated with o 1s related to dynamo
for hypothetical amplification of fields.

* The term associated with (a finite value of) o,
1s related to resistive dissipation present in dynamo.



An 1sotropic turbulent theory tells

(e.g., Brandenburg and Subramanian, Phys. Rep. ‘05)
1 va

© @y = = Teor(Uy s VXU )~ 70 ~0(107%)
c? 1 N
*n= py — grcor<ui . ul>~?ATcor

5 6,~107 — 108 s~
where we assume T,,,,~Q~1 (Q:angular vel.)

* Fastest growing rate of dynamo mode:

1/3

3 na?lacS _
Wmax = Z 4 —

46571 (1|(())(C‘l‘|*a):/3 (3><1g; s‘1)1/3 (103 I:gad/s)Z/3

dlnw

-=> Growth time ~ 10/ Wy q, ~ O(100) ms

where S =



Check & setup for simulation

* Does this treatment qualitatively reproduce the results
of viscous hydrodynamics for disks around BH?

v Yes.
* Does this treatment gualitatively reproduce MRI
dynamo in disks around BH?

v Yes.
see, Shibata, Fujibayashi, Sekiguchi PRD 104, 063026 (2021)

 All the following simulations were done 1n axial and
z-plane symmetries with a small toroidal magnetic
field as an initial seed



Poloidal lines and toroidal strength (color)

Polarity of magnetlc ﬁeld changes w1th time
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Evolution of remnant NS + disk

* Remnant of 1.35-1.35 solar mass merger model 1s
used as an 1nitial condition

e Same simulation was performed in viscous
hydrodynamics (Fujibayashi+ ApJ 901, ‘21)



Remnant NS + disk

Act1v1ty of global magnetic field lines
enhances the mass ejection
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Effect of magnetic fields developed by dynamo

* By dynamo action, magnetic fields are amplified

* Some of field loops are ejected from the NS &
global fields with high field strength are developed
> Some of field lines have an anchor at the NS

* Angular velocity of NS is larger than of disk/ejecta

* Magnetocentrifugal force associated with NS plays
an significant role for surrounding matter and ejecta
if dissipation timescale of B-fields in NS is not short

* Mass ejection and ejecta Kinetic energy are
enhanced significantly

Maybe, the most extreme possibility
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Flux density at 3 GHz (M]y)

Radio light curve model (Kawaguchi et al. ApJ, 933, ‘22)

Model with short dissipation time <~100 ms
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Synchrotron radiation models with
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Could be very bright for >~ 10 days if strong global
B-fields are present for > 100—200 ms after merger



Electron fraction

" Weakly depends of the aynamo parameicrs
L and results are si




Nucleosynthesis result by Wanajo
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IV Conclusion

Long-term numerical-relativity simulation from late
inspiral to merger & post-merger 1s feasible now
—> “Standard scenarios for merger & post merger”

Properties of dynamical and post-merger ejecta can
be studied 1n a self-consistent way by GRRME
if the merger remnant is a black hole

Remaining task 1: In the presence of a remnant NS,
we still do not understand the details, but something
violent may happen

Remaining task 2: Sophisticated radiation transfer
code 1s necessary to better quantify the post-merger
ejecta property




Thank you very much!



