

Ceph Storage at CERN

Pablo Llopis Sanmillan, Dan van der Ster
CERN IT Department

23 March 2022, GSI Storage Seminar

Outline

I. What is Ceph and how does it work?

II. Ceph Use-Cases at CERN

III. CephFS for HPC

3

I. What is Ceph?

4

Slides credit: Sage Weil

5

The buzzwords

● “Software defined storage”
● “Unified storage system”
● “Scalable distributed storage”
● “The future of storage”
● “The Linux of storage”

WHAT IS CEPH?

The substance

● Ceph is open source software
● Runs on commodity hardware

○ Commodity servers
○ IP networks
○ HDDs, SSDs, NVMe, NV-DIMMs, ...

● A single cluster can serve object,
block, and file workloads

6

● Reliable storage service out of unreliable components
○ No single point of failure
○ Data durability via replication or erasure coding
○ No interruption of service from rolling upgrades, online expansion, etc.

● Favor consistency and correctness over performance

CEPH IS RELIABLE

7

● Ceph is elastic storage infrastructure
○ Storage cluster may grow or shrink
○ Add or remove hardware while system is

online and under load

● Scale up with bigger, faster hardware
● Scale out within a single cluster for

capacity and performance
● Federate multiple clusters across

sites with asynchronous replication
and disaster recovery capabilities

CEPH IS SCALABLE

8

CEPH IS A UNIFIED STORAGE SYSTEM

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE

9

THE CEPH FOUNDATION

10

RADOS

11

RADOS

● Reliable Autonomic Distributed Object Storage
○ Common storage layer underpinning object, block, and file services

● Provides low-level data object storage service
○ Reliable and highly available
○ Scalable (on day 1 and day 1000)
○ Manages all replication and/or erasure coding, data placement, rebalancing, repair, etc.

● Strong consistency
○ CP, not AP

● Simplifies design and implementation of higher layers (file, block, object)

12

RADOS SOFTWARE COMPONENTS

Monitor
● Central authority for authentication, data placement, policy
● Coordination point for all other cluster components
● Protect critical cluster state with Paxos
● 3-7 per cluster

Manager
● Aggregates real-time metrics (throughput, disk usage, etc.)
● Host for pluggable management functions
● 1 active, 1+ standby per cluster

OSD (Object Storage Daemon)
● Stores data on an HDD or SSD
● Services client IO requests
● Cooperatively peers, replicates, rebalances data
● 10s-1000s per cluster

ceph-mgr

ceph-osd

M

ceph-mon

13

SERVER

LEGACY CLIENT/SERVER ARCHITECTURE

VIP

BACKUP

BACKEND BACKEND BACKEND

● Virtual IPs
● Failover pairs
● Gateway nodes

APPLICATION

14

CLIENT/CLUSTER ARCHITECTURE

APPLICATION

RADOS CLUSTER

LIBRADOS

M

M M

● Smart request routing
● Flexible network addressing
● Same simple application API

15

DATA PLACEMENT

APPLICATION
LIBRADOS DATA OBJECT

??
M

M

M

16

LOOKUP VIA A METADATA SERVER?

APPLICATION
LIBRADOS

2

1

DATA OBJECT

???

● Lookup step is slow
● Hard to scale to trillions of objects

M

M

M

17

CALCULATED PLACEMENT

APPLICATION
LIBRADOS

2

0

DATA OBJECT

● Get map of cluster layout (num OSDs etc) on startup
● Calculate correct object location based on its name
● Read from or write to appropriate OSD

1

M

M

M

18

M

M

M

MAP UPDATES WHEN TOPOLOGY CHANGES

APPLICATION
LIBRADOS

5

3

DATA OBJECT

● Get updated map when topology changes
○ e.g., failed device; added node

● (Re)calculate correct object location
● Read from or write to appropriate OSD

4

19

RADOS DATA OBJECTS

● Name
○ 10s of characters
○ e.g., “rbd_header.10171e72d03d”

● Attributes
○ 0 to 10s of attributes
○ 0 to 100s of bytes each
○ e.g., “version=12”

● Byte data
○ 0 to 10s of megabytes

● Key/value data (“omap”)
○ 0 to 10,000s of items
○ 0 to 10,000s of bytes each

● Objects live in named “pools”

A: XYZ
B: 1234
FOO: BAR
M: QWERTY
ZZ: FIN

78 20 61 32
74 72 69 63
68 65 20 34
2e 31 35 2e
30 2d 35 30
2d 67 65 6e

POOL

20

? → OBJECTS → POOLS → PGs → OSDs
??? OBJECTS

foo.mpg 1532.000
1532.001
1532.002
1532.003
1532.004
1532.005
...

POOL

POOL 1

bazillions of objects
PiB of data

OSDS

N replicas of each PG
10s of PGs per OSD

PLACEMENT GROUPS

pgid = hash(obj_name) % pg_num
many GiB of data per PG

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.fff

...

21

WHY PLACEMENT GROUPS?

REPLICATE DISKS REPLICATE PGS REPLICATE OBJECTS

A A A

B B

C C C

B

D D D

● Each device is mirrored
● Device sizes must match

● Each PG is mirrored
● PG placement is random

● Each object is mirrored
● Object placement is

random

22

WHY PLACEMENT GROUPS?

REPLICATE DISKS

A A A

B B

C C C

B

D D D

B

● Need an empty spare
device to recover

● Recovery bottlenecked
by single disk throughput

REPLICATE PGS

● New PG replicas placed
on surviving devices

● Recovery proceeds in
parallel, leverages many
devices, and completes
sooner

REPLICATE OBJECTS

● Every device participates
in recovery

23

WHY PLACEMENT GROUPS?

REPLICATE DISKS

A A A

B B

C C C

B

D D D

● Very few triple failures
cause data loss (of an
entire disk)

REPLICATE OBJECTS

● Every triple failure
causes data loss (of some
objects)

REPLICATE PGS

● Some triple failures
cause data loss (of an
entire PG)

PGs balance competing extremes

24

“Declustered replica placement”

● More clusters
○ Faster recovery
○ More even data distribution

● Fewer clusters
○ Lower risk of concurrent failures affecting

all replicas
● Placement groups a happy medium

○ No need for spare devices
○ Adjustable balance between durability (in

the face of concurrent failures) and
recovery time

Avoiding concurrent failures

● Separate replicas across failure domains
○ Host, rack, row, datacenter

● Create a hierarchy of storage devices
○ Align hierarchy to physical infrastructure

● Express placement policy in terms
hierarchy

KEEPING DATA SAFE

ROOT
DATA CENTER

ROW
RACK

HOST
OSD

25

● Pseudo-random placement algorithm
○ Repeatable, deterministic, calculation
○ Similar to “consistent hashing”

● Inputs:
○ Cluster topology (i.e., the OSD hierarchy)
○ Pool parameters (e.g., replication factor)
○ PG id

● Output: ordered list of OSDs
● Rule-based policy

○ “3 replicas, different racks, only SSDs”
○ “6+2 erasure code shards, 2 per rack,

different hosts, only HDDs”
● Stable mapping

○ Limited data migration on change
● Support for varying device sizes

○ OSDs get PGs proportional to their weight

PLACING PGs WITH CRUSH
PLACEMENT GROUPS OSDS

pgid = hash(obj_name) % pg_num
many GiB of data per PG

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.fff

N replicas of each PG
10s of PGs per OSD

+
PG ID

...

26

● Each RADOS pool must be durable
● Each PG must be durable
● Replication

○ Identical copies of each PG
○ Usually 3x (200% overhead)
○ Fast recovery--read any surviving copy
○ Can vary replication factor at any time

● Erasure coding
○ Each PG “shard” has different slice of data
○ Stripe object across k PG shards
○ Keep addition m shards with per-object

parity/redundancy
○ Usually more like 1.5x (50% overhead)
○ Erasure code algorithm and k+m

parameters set when pool is created
○ Better for large objects that rarely change

REPLICATION AND ERASURE CODING

D

A

T

A

D A T A

D A T A

D A T A

1

2

M Y O B J E C T

M Y O B J E C T

M Y O B J E C T

M

Y

O

B

J

E

C

T

1

2

3

4

REPLICATION ERASURE CODING

Two objects

1.5

1.5

1.5

1.5s0

1.5s1

1.5s2

1.5s3

1.5s4

1.5s5

27

SPECIALIZED POOLS

● Pools usually share devices
○ Unless a pool’s CRUSH placement policy specifies a specific class of device

● Elastic, scalable provisioning
○ Deploy hardware to keep up with demand

● Uniform management of devices
○ Common “day 2” workflows to add, remove, replace devices
○ Common management of storage hardware resources

RADOS CLUSTER

3x SSD POOL EC 8+3 HDD POOL 3x HDD POOL

28

RADOS VIRTUALIZES STORAGE

RADOS CLUSTER

3x SSD POOL EC 8+3 HDD POOL 3x HDD POOL

M

M M

“MAGIC”

29

PLATFORM FOR HIGH-LEVEL SERVICES

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE

30

RGW: OBJECT STORAGE

31

● S3 and Swift-compatible object storage
○ HTTPS/REST-based API
○ Often combined with load balancer to

provide storage service to public internet
● Users, buckets, objects

○ Data and permissions model is based on a
superset of S3 and Swift APIs

○ ACL-based permissions, enforced by RGW
● RGW objects not same as RADOS objects

○ S3 objects can be very big: GB to TB
○ RGW stripes data across RADOS objects

RGW: RADOS GATEWAY

RGW
LIBRADOS

RGW
LIBRADOS

S3
HTTPS

RADOS CLUSTER

32

RGW STORES ITS DATA IN RADOS

RGW
LIBRADOS

S3 PUT

USER + BUCKET INFO POOL

DATA POOL 1

BUCKET INDEX POOL

1

2,5

3

4

33

RGW ZONE

RGW ZONE: POOLS + RGW DAEMONS

RGW
LIBRADOS

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

DATA POOL (8+3 EC POOL)

34

RGW FEDERATION AND GEO-REP

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

● Zones may be different clusters and/or sites
● Global view of users and buckets

 ZONE A1 ZONE B1

ZONEGROUP A ZONEGROUP B ZONEGROUP C

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

RGW
LIBRADOS

USER + BUCKET INFO POOL

BUCKET INDEX POOL

DATA POOL (3x)

● Each bucket placed in a ZoneGroup
● Data replicated between all Zones in a ZoneGroup

 ZONE C1 ZONE C2

SSL/TLS INTER-ZONE TRAFFIC

35

● Very strong S3 API compatibility
○ https://github.com/ceph/s3-tests

functional test suite
● STS: Security Token Service

○ Framework for interoperating with other
authentication/authorization systems

● Encryption (various flavors of API)
● Compression
● CORS and static website hosting
● Metadata search with ElasticSearch
● Pub/sub event stream

○ Integration with knative serverless
○ Kafka

● Multiple storage classes
○ Map classes to RADOS pools
○ Choose storage for individual objects or

set a bucket policy
● Lifecycle management

○ Bucket policy to automatically move
objects between storage tiers and/or
expire

○ Time-based
● Archive zone

○ Archive and preserve full storage history

OTHER RGW FEATURES

36

RBD: BLOCK STORAGE

37

KVM/QEMU

RBD: RADOS BLOCK DEVICE

● Virtual block device
○ Store disk images in RADOS
○ Stripe data across many objects in a pool

● Storage decoupled from host, hypervisor
○ Analogous to AWS’s EBS

● Client implemented in KVM and Linux
● Integrated with

○ Libvirt
○ OpenStack (Cinder, Nova, Glace)
○ Kubernetes
○ Proxmox, CloudStack, Nebula, …

RADOS CLUSTER

LIBRADOS
LIBRBD

VM

LINUX HOST

KRBD

XFS, EXT4, ...

RBD POOL

VIRTIO-BLK

38

SNAPSHOTS AND CLONES

● Snapshots
○ Read-only
○ Associated with individual RBD image
○ Point-in-time consistency

BASE OS

VM A

VM B

VM C

● Clones
○ New, first-class image
○ Writeable overlay over an existing snapshot
○ Can be snapshotted, resized, renamed, etc.

● Efficient
○ O(1) creation time
○ Leverage copy-on-write support in RADOS
○ Only consume space when data is changed

39

RBD: DATA LAYOUT

. . .

● Image name
● Image size
● Striping parameters
● Snapshot metadata (names etc.)
● Options
● Lock owner
● ...

● Chunk of block device content
● 4 MB by default, but striping is configurable
● Sparse: objects only created if/when data is written
● Replicated or erasure coded, depending on the pool

HEADER DATA OBJECTS

40

LIBRADOS
LIBRBD

.

RBD: JOURNALING MODE

. . .

● Recent writes
● Metadata changes

1 2

HEADER DATA OBJECTSWRITE JOURNAL

41

RBD MIRRORING

CLUSTER BCLUSTER A
DATA POOL (SSD/HDD) DATA POOL

JOURNAL POOL (SSD)

.

LIBRADOS
LIBRBD

RBD-MIRROR

LIBRADOS
LIBRBD

LIBRADOS
LIBRBD

● Asynchronous replication by
mirroring journal

● Point-in-time/crash consistent
copy of image in remote cluster

● Mirrors live data and snapshots
● Full lifecycle (fail-over, fail-back,

re-sync, etc.)
● Configurable per-image
● Scale-out, HA for rbd-mirror

42

OTHER RBD FEATURES

● ‘rbd top’
○ Real-time view of IO activity

● Quotas
○ Enforced at provisioning time

● Namespace isolation
○ Restrict access to a private namespace of

RBD images
● Import and export

○ Full image import/export
○ Incremental diff (between snapshots)

● Trash
○ Keep deleted images around for a bit

before purging

● Linux kernel client
○ ‘rbd map myimage’ → /dev/rbd*

● NBD
○ ‘rbd map -t nbd myimage’ → /dev/nbd*
○ Run latest userspace library

● iSCSI gateway
○ LIO stack + userspace tools to manage

gateway configuration
● librbd

○ Dynamically link with application

43

CEPHFS: FILE STORAGE

44

CEPHFS: CEPH FILE SYSTEM

● Distributed network file system
○ Files, directories, rename, hard links, etc.
○ Concurrent shared access from many

clients
● Strong consistency and coherent caching

○ Updates from one node visible elsewhere,
immediately

● Scale metadata and data independently
○ Storage capacity and IO throughput scale

with the number of OSDs
○ Namespace (e.g., number of files) scales

with the number of MDS daemons

RADOS CLUSTER

M

M

M

CLIENT HOST

KCEPHFS

01 10
11 00
10 01
00 11

METADATA DATA

45

CEPH-MDS: METADATA SERVER

MDS (Metadata Server)
● Manage file system namespace
● Store file system metadata in RADOS objects

○ File and directory metadata (names, inodes)
● Coordinate file access between clients
● Manage client cache consistency, locks, leases
● Not part of the data path
● 1s - 10s active, plus standbys

ceph-mds

ceph-mgr ceph-osd

M

ceph-mon

46

METADATA IS STORED IN RADOS

RADOS CLUSTER
METADATA POOL DATA POOL

CLIENT HOST

KCEPHFS

01 10
11 00
10 01
00 11

METADATA

DATA

DIRECTORIES
METADATA JOURNAL

47

SCALABLE NAMESPACE

● Partition hierarchy across MDSs based on
workload

● Fragment huge directories across MDSs
● Clients learn overall partition as they navigate

the namespace

● Subtree partition maintains directory locality
● Arbitrarily scalable by adding more MDSs

mds.a mds.b mds.c mds.d mds.e

48

CEPHFS SNAPSHOTS

● Snapshot any directory
○ Applies to all nested files and directories
○ Granular: avoid “volume” and “subvolume”

restrictions in other file systems
● Point-in-time consistent

○ from perspective of POSIX API at client
○ not client/server boundary

● Easy user interface via file system
● Efficient

○ Fast creation/deletion
○ Snapshots only consume space when

changes are made

$ cd any/cephfs/directory
$ ls
foo bar baz/
$ ls .snap
$ mkdir .snap/my_snapshot
$ ls .snap/
my_snapshot/
$ rm foo
$ ls
bar baz/
$ ls .snap/my_snapshot
foo bar baz/
$ rmdir .snap/my_snapshot
$ ls .snap
$

49

● MDS maintains recursive stats across the
file hierarchy

○ File and directory counts
○ File size (summation)
○ Latest ctime

● Visible via virtual xattrs
● Recursive bytes as directory size

○ If mounted with ‘rbytes’ option
○ Unfortunately this confuses rsync; off by

default
○ Similar to ‘du’, but free

CEPHFS RECURSIVE ACCOUNTING

$ sudo mount -t ceph 10.1.2.10:/ /mnt/ceph \
-o name=admin,secretfile=secret,rbytes
$ cd /mnt/ceph/some/random/dir
$ getfattr -d -m - .
file: .
ceph.dir.entries="3"
ceph.dir.files="2"
ceph.dir.subdirs="1"
ceph.dir.rbytes="512000"
ceph.dir.rctime="1474909482.0924860388"
ceph.dir.rentries="17"
ceph.dir.rfiles="16"
ceph.dir.rsubdirs="1"
$ ls -alh
total 12
drwxr-xr-x 3 sage sage 4.5M Jun 25 11:38 ./
drwxr-xr-x 47 sage sage 12G Jun 25 11:38 ../
-rw-r--r-- 1 sage sage 2M Jun 25 11:38 bar
drwxr-xr-x 2 sage sage 500K Jun 25 11:38 baz/
-rw-r--r-- 1 sage sage 2M Jun 25 11:38 foo

50

● Multiple file systems (volumes) per cluster
○ Separate ceph-mds daemons

● xattrs
● File locking (flock and fcntl)
● Quotas

○ On any directory
● Subdirectory mounts + access restrictions
● Multiple storage tiers

○ Directory subtree-based policy
○ Place files in different RADOS pools
○ Adjust file striping strategy

● Lazy IO
○ Optionally relax CephFS-enforced

consistency on per-file basis for HPC
applications

● Linux kernel client
○ e.g., mount -t ceph $monip:/ /ceph

● ceph-fuse
○ For use on non-Linux hosts (e.g., OS X) or

when kernel is out of date
● NFS

○ CephFS plugin for nfs-ganesha FSAL
● CIFS

○ CephFS plugin for Samba VFS
● libcephfs

○ Dynamically link with your application

OTHER CEPHFS FEATURES

51

COMPLETE STORAGE PLATFORM

RGW

S3 and Swift
object storage

LIBRADOS
Low-level storage API

RADOS
Reliable, elastic, distributed storage layer with

replication and erasure coding

RBD

Virtual block device

CEPHFS

Distributed network
file system

OBJECT BLOCK FILE

II. Ceph Use-Cases at CERN

52

CERN Computing Infrastructure
● High throughput scientific computing platform:

○ HTCondor batch system: ~250k CPU cores
○ EOS storage system: ~500 petabytes of raw storage
○ CTA tape system for long term archival: ~500 petabytes of tape

● IT infrastructure brings several storage needs:
○ Block Storage and NAS Filers for VMs and Databases
○ Object Storage for web or cloud native applications
○ HPC Scratch areas for MPI clusters
○ “Open Infrastructure"

53

CERN IT Open Infrastructure

54

Our Ceph History

• March 2013: 300TB proof of concept
• Dec 2013: 3 petabytes for OpenStack
• 2014-15: Erasure coding and striping
• 2016: Upgraded from 3PB to 6PB
• 2017: 8 production clusters
• 2018-19: CephFS and S3
• 2020+: scale out...

55

Current Clusters in Prod (I)
● Block Storage for OpenStack

○ Three hdd (w/ssd rocksdb) clusters: 24 petabytes raw (3x replication)
○ Three all-flash clusters: 1.2 petabytes raw (2+2 erasure coding)
○ Integrated to OpenStack as multiple QoS types (IOPS throttles) and availability zones

● S3 Object Storage
○ Two clusters in different data centres: 12.5 petabytes raw
○ Data stored in 4+2 erasure coding on HDDs, bucket indices on SSDs
○ Currently independent realms; Working on zonegroup replication now.

56

Current Clusters in Prod (II)
● CephFS

○ Two general purpose hdd (w/ ssd rocksdb) clusters: 6.3 petabytes raw (3x replication)
○ One general purpose all-flash cluster: 500TB raw (3x replication)
○ Several targeted all-flash clusters: hyperconverged DB tests, groupware, HPC, …

● General experience is that Ceph is robust and performant
○ Data remains consistent after infrastructure outages; failure recovery is basically transparent
○ Hardware replacement and flexibility demonstrated across three procurement cycles

57

CERN IT OpenStack Cloud
● Since 2013, hosting 90% of CERN’s computing resources for scientific and IT

needs

58

EOS on CephFS
● EOS storage developed at CERN for physics and regular users: 350PB

● Is it feasible / useful to layer EOS on top of a Ceph backend?
○ Best of both worlds: feature-rich EOS for scientific users + flexible object storage on Ceph

● EOS is clustered storage built upon Xrootd:
○ Files can be replicated or erasure-coded; metadata in “QuarkDB”
○ FST (analogous to the Ceph OSD) normally stores files in a local XFS

■ Files stored using a simple inode hash naming convention

● It’s therefore straightforward to use CephFS in the FST
○ Durability is delegated to CephFS
○ EOS configured to store data with a single replica

FST

CLI

MGM

/cephfs

59Peters, A.J., van der Ster, D.C. Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers.
Comput Softw Big Sci 5, 25 (2021). https://doi.org/10.1007/s41781-021-00071-1

https://doi.org/10.1007/s41781-021-00071-1

PoC: CephFS Scalability Measurements

Streaming WRITE

Linear range Linear range

Streaming READ

60

CephFS+EOS Write Performance Impact?

CEPHFS + EOSDue to XRootD
unfair scheduling

Optimal client side
BW throttling

Suboptimal client
side BW throttling

Adding EOS frontend Client side rate limiting 26 GB/s Client side rate limiting 28 GB/s

Baseline

61

III. CephFS for HPC

62

Why use CephFS for HPC?

● At CERN we’re already running many network filesystems
○ No desire to introduce yet another (e.g. Lustre)

EOS CVMFS AFS CephFS

63

Why use CephFS for HPC?
● HPC cluster procurement process optimization

○ We aren’t ordering an HPC cluster from a vendor, it’s 100% DIY HPC + Open Source tech.
○ HW procured as a large order (meant for HTC, HPC, Storage..)
○ Low-latency interconnect added on top

64

Why use CephFS for HPC?
● Desire to evaluate CephFS as a multi-purpose filesystem

○ Today: ~ 4 years of experience running CephFS on production for CERN IT’s HPC service

65

HPC
Workernodes

CephFS
Storage

● 3x replication
● Per-host replication
● Shared file POSIX

consistency model
● 3x MON, 3x MDS live in

cloud

66

Evolution of CephFS as HPC scratch space

● Shared CephFS cluster for IT services

67

○ Contention. I/O-intensive applications
affecting other IT services and vice-versa

○ CephFS cluster “far” in the network
■ Less resilient to network issues
■ Greater I/O latency

BUT…

○ Ceph-fuse not very performant
○ Ceph-fuse issues with stuck mounts and

stale data after/during network issues

ceph-fuse mounts
BUT…

Evolution of CephFS as HPC scratch space

● Shared CephFS cluster for IT services

68

○ I/O-intensive applications affecting other
IT services and vice-versa

○ CephFS cluster “far” in the network
■ Less resilient to network issues
■ Greater I/O latency

BUT…

○ Ceph-fuse not very performant
○ Ceph-fuse issues with stuck mounts and

stale data after/during network issues

ceph-fuse mounts
BUT…

Transitioned to dedicated CephFS
cluster for increased network failure
resiliency and performance

Transitioned to kernel mounts for greater
performance, greater stability, and much
improved resiliency to network issues.

Hyperconverged
architecture

RDM
A

RDM
A

69

Ceph-osd
daemons
run on HPC
compute nodes

CephFS performance tuning

Network-locality: Client/MDS/Disk locality has more than 10x impact on performance

Replication factor: Tuning replica count had an impact on write latency.

Automatic MDS balancing: Works, but manual pinning can do better if you know the

workload

Lazy I/O: Much improved performance for single-shared-file collective I/O

70

CephFS performance tuning: Lazy I/O
● Lazy I/O refers to a mode in which POSIX semantics are relaxed
● For shared file collective I/O, coherency is delegated to the application
● Allows lock-free parallel writes
● CephFS mode with lazy I/O support added to IOR [https://github.com/hpc/ior]

71

MPI Rank 0 MPI Rank 1 MPI Rank N…..

write()
writev()

Shared file

https://docs.ceph.com/en/latest/cephfs/lazyio/
http://www.pdl.cmu.edu/posix/docs/posix_lazy_io.pdf
https://github.com/hpc/ior

Limitations and future plans
● Impact of the Hyperconverged architecture on MPI collectives

○ openQCD is a very tightly coupled HPC application with excellent scalability.
○ Very sensitive to OS noise
○ 20% performance impact from system noise (e.g. Hyperconverged)

● Burst Buffers
○ To significantly reduce or remove the impact of independent workloads on each other.

● How does a Hyperconverged solution affect day-to-day IT operations?

72

https://luscher.web.cern.ch/luscher/openQCD/

Impact on automation and IT operations
Hyperconverged increases complexity for transparent operations

Batch System Distributed Storage System

Drain & shutdown
nodes
independently

Shutdown nodes
according to data
replication strategy

(e.g. kernel reboot campaigns)

+

s1 r1

r2

r1

r2

s2

s3

s4

s1

s2

s3

s4

Impact on automation and IT operations

Darn it,
gotta wait..

Datacentre Row: SW Datacentre Row: SX

● Brainslug is an automation tool written at CERN
● Lightweight daemon running on every node

○ Machine state manager (Slurm & HTCondor)
○ Deployed on HPC & HTC clusters (250K cores)

● Capable of managing concurrency strategies

Two at most

Impact on automation and IT operations

Two at most

Darn it,
gotta wait..

Datacentre Row: SW Datacentre Row: SX

● Brainslug is capable of orchestration based on user-defined concurrency
strategies

○ Limit number of nodes draining/offline at a time
(e.g. drain+reboot 10% at a time)

○ Reboot machines by network topology
(e.g. only machines from the same row may go offline at a time)

76

IIII. Final Words

78

Thank you!
Any Questions?

Feel free to get in touch:
daniel.vanderster@cern.ch

pablo.llopis@{gmail.com,cern.ch}

https://ceph.io

mailto:daniel.vanderster@cern.ch
mailto:pablo.llopis@cern.ch
mailto:pablo.llopis@gmail.com
mailto:pablo.llopis@cern.ch
https://ceph.io

79

Extra Slides

Structure

Roger update
Provider
(Roger)

Flavour
(Slurm/Condor)

State
Manager

Read

Write

Ensure Drain

Reboot
Ready for production?
Can power off?

Shutdown

Ensure Production

Slurm / Condor

CephFS Performance
● In previous years we invested in profiling and tuning CephFS for HPC

○ Automatic MDS balancing: works, but manual pinning can do better if you know
the workload

○ Keep things local: Client/MDS/Disk locality has more than 10x impact on
performance

○ LazyIO for parallel IO: relaxed consistency hints managed by the application

● Tuning for the IO-500 benchmark as published at SuperComputing
○ ior: throughput tests for single or multi-file parallel IO
○ mdtest/find: metadata performance tests

81

CephFS Scale-Out MDS in Practice

From 3 to 10 active MDS's 82

CephFS and IO-500

83

…

