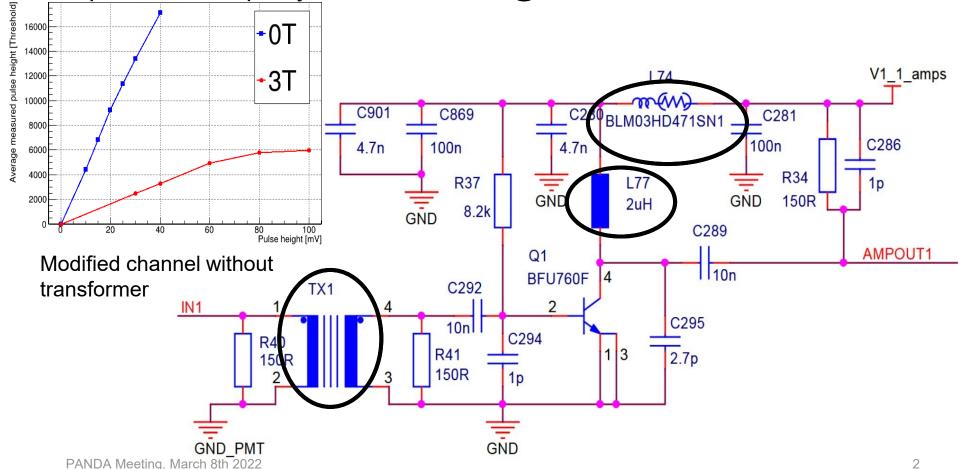

Update on B-field evaluations of DiRICH & MCP-PMTs

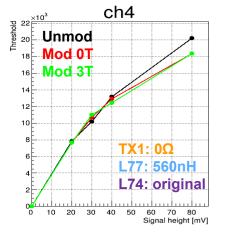
ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Steffen Krauss, M. Böhm, K. Gumbert, A. Lehmann, D. Miehling

Online Meeting, 08.03.2022


FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Signal damping concerns with DiRICH in B-Field



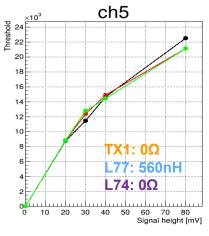
- Last time shown by Merlin Böhm
- Picture below shows input stage of one DiRICH input channel
- Ferrites of the coils (TX1, L77, L74) saturate at above 0.3 0.7T
- Amplification drops by factor of ~ 5 − 6 @ 3 Tesla

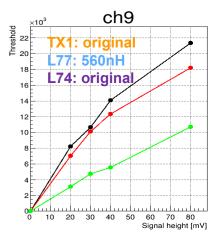
Signal damping concerns with DiRICH in B-Field

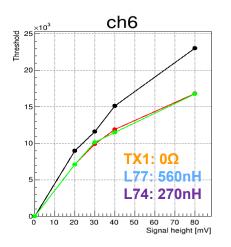
ch8

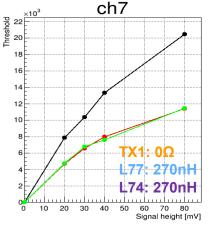
50

60 70 80

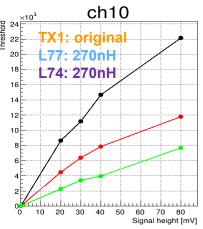

Signal height [mV]

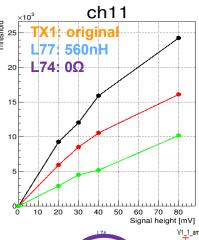

L77: 270nH

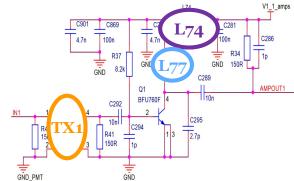

L74: original


20 30 40

 $\times 10^3$

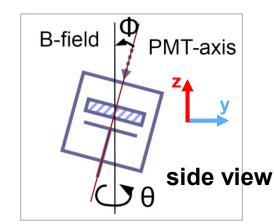


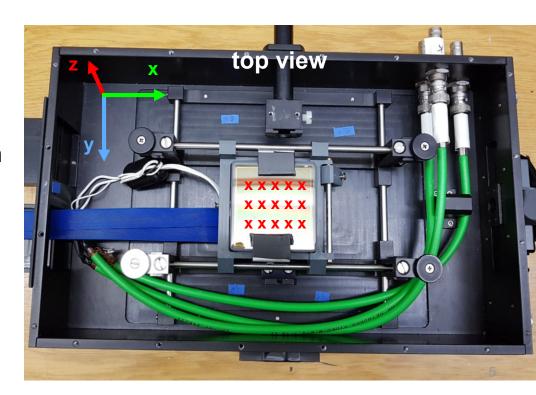




ERLANGEN CENTRE

Signal damping concerns with DiRICH in B-Field

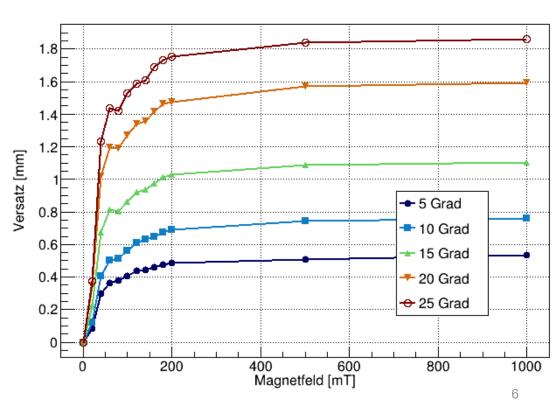

channel	modified/ original	mod 3T / mod 0T	total loss (mod 3T/ original)	L77 [nH]	L74 [nH] odification	TX1 IS
4	0.98	0.91	0.89	560	original	0Ω bridge
5	1.03	0.92	0.95	560	0Ω bridge	0Ω bridge
6	0.79	0.92	0.72	560	270	0Ω bridge
7	0.60	0.87	0.52	270	270	0Ω bridge
8	0.75	0.88	0.65	270	original	0Ω bridge
9	0.91	0.46	0.42	560	original	original
10	0.57	0.49	0.28	270	270	original
11	0.70	0.49	0.34	270	0Ω bridge	original


- ➤ Recommended configuration: channel 4 with total loss of only 11%
- ➤ New idea by Carsten: exchange TX1 with 2 x 10 nF condensators
- not tested yet

shifts of charge cloud centroid in B-field

Panda ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

- Measurement:
 - tilting of the tube in yz plane around x axis, scanning in y direction, B-field in z direction, E-Field along yz plane
- Expectations:
 - geometrical shift of charge cloud in y direction
 - electrons will follow B-field direction, depends on tilt angle, saturates at certain B-field strength
 - lorentz shift of charge cloud in x direction
 - electrons experience Lorentz force perpendicular to E- and Bfield depending on B-field strength & tilt angle (higher Φ increases E_I component)



shifts of charge cloud centroid in B-field

- below the geometrical shift is shown for different tilt angles
- Measured with Photonis 946P541 (3x100 pixels)
- Saturation starts at a few hundred mT, as expected
- At 25° tilt angle, saturation at ~ 1.8 mm shift → 3 4 pixels shift for EDD
- Also at 15° tilt angle & 1 T B-field ~ 1.1 mm shift → geometrical shift not negligible for Barrel DIRC
- Only geometrical shift was measured last time in Jülich
- For Lorentz shift measurement the tube needs to be rotated by 90 ° & scanned in x direction for varying tilt angles
- next time in Jülich, we will try to measure Lorentz shift

Summary

- Signal damping problem of DiRICH is now understood & a solution found
- But still new ideas need to be tested (10 nF condensators)
- Charge cloud centroid gets significantly shifted at high B-fields and tilt angles
 - geometrical shift within E B plane (here the yz plane)
 - Lorentz shift perpendicular to E B plane (here the x axis)
- This needs to be taken into account for simulations & data analysis in the later experiment
- Plan for next Jülich mission is to also measure the Lorentz shift component of the charge cloud centroid