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SYNOPSIS

The computing demands for modern experiments in high-energy particle and nuclear physics

are becoming increasingly challenging. This holds in particular for experiments relying

heavily on real-time data processing. For an example, real time processing requirement in

the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and

Ion Research (FAIR), Germany is enormous. In High Energy collisions of protons or heavy

ions many particles are generated with extremely low production rate. One such particle is

J/ψ also known as charmonia and termed as J/Psi. J/Psi decays promptly into the dimuon

channel of µ+ and µ- [1]. The multiplicity of the J/Psi is extremely small, therefore, to get rea-

sonable statistics, CBM experiment intends to run with an unprecedented 107 collisions per

second. A Muon Chamber (MuCh) system [2] will be employed for the detection of dimuon

pairs originating from the nucleus-nucleus collisions. The MuCh system is being developed

at VECC and it consists of alternating layers of segmented absorbers and detector stations.

Each station consists of three detector layers. Due to very high interaction rates of up to 10

MHz, CBM will employ a free-streaming data acquisition with self-triggered readout elec-

tronics, without any hardware trigger. Efforts are concentrated towards the simulation of

such raw data stream of messages termed as “digi” which will contain a global time stamp

to generate free flow of data.

As collision rate is extremely high and J/Psi production is very low at FAIR energies (Lab

Energy EL = 10-40 AGeV), a real time selection process needs to be implemented to select

only those events which are likely to contain J/Psi [3]. The major motivation of this work,

towards the achievement of this goal could be itemized as below,

1. No algorithm is readily available for selection of events and based only on the hits, for

particle interaction rate of the order of 10 MHz, on the detector. Therefore a detailed

study needs to be carried out for development of a first level event selection algorithm.

The algorithm also has to be optimized further to cater to the above unprecedented

interaction rate.
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Figure 1: Pictorial representation of straight line fitting of 3 space points at the last station of
MuCh.

2. To cope up with an event rate of 10
7 events per second, event selection algorithm;

therefore, should deploy on the emerging technologies & platforms or their combina-

tions to achieve its best possible performance.

3. A time based real data stream scenario is to be simulated. Studies for different interac-

tion rates and the results are to be compared with the event by event data flow.

The work presented in this thesis titled ªDevelopment and implementation of First Level

Event Selection process on heterogeneous systems for high energy heavy ion collision ex-

perimentsº will demonstrate all the three requirements in detail and the thesis is therefore

broadly divided into three parts. In the first part, algorithmic development of first-level

event selection process will be discussed. The second part will concentrate on achieving

real-time execution of the first level of event selection process using heterogeneous comput-

ing. The third part will focus on the development of a time based signal generation such that

a realistic time based data stream can be generated which resembles the real experimental

data stream.

First-level event selection process:

To select candidate events in real-time which contain J/Psi, an event selection criterion is

required. The signature for J/Psi (J/ψ → µ+µ−) candidate events is a rather simple one.

The two daughter muons, having high momenta because of the large q value of the decay,
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traverse all absorber layers and reach the trigger station, while hadrons, electrons, and low-

momentum muons will be absorbed. Since J/Psi decays promptly (cτ = 7.1 · 10
−21

s), the

decay products practically originate from the primary (collision) vertex, i.e., from the target.

Owing again to the high momenta of the muons, their trajectories can be approximated by

straight lines even in the bending plane of the dipole magnetic field, which has a bending

power of 1 Tm (as represented in figure 1). The trigger station consisting of three detector

layers, termed as L1, L2, L3 respectively, provides three position measurements for a muon,

allowing to check the back-pointing to the primary vertex. The signature of a J/Psi candidate

event is thus the simultaneous registration of two particles in the trigger station which can

be extrapolated backward to the target. On basis of the above signature, using brute force

approach following event selection process has been developed,

1. Create a triplet of hits in the trigger station for an event, with one hit from each layer.

2. For the triplet:

(a) Fit the hits of the triplet plus the event vertex (0, 0, 0) by a straight line as repre-

sented in figure 1. Perform fitting for both the x− z (bending) plane and the y− z

(non-bending) plane, i.e., x = m0z and y = m1z.

(b) Compute the Mean Square Deviation (MSD) of the triplet fit.

3. Repeat the same steps [1..2] for all possible triplets of hits in the trigger station, with

one hit from each layer.

4. Mark the probable event is desirable if their MSDxz and MSDyz are within threshold

(discussed later) and two such triplets are registered.

5. Repeat the same steps for all the event.

For getting the final selection threshold for both (MSDxz) and (MSDyz), analysed both (MSDxz)

and (MSDyz) distributions for 3 different data sets (signal events, background events, and

background with one embedded signal event). MSD threshold values have been computed.

Computational complexity of the above brute force algorithm is O(n3) for an event. Here n
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is the number of pads fired on the last layer of the trigger station in an event, which is of the

order of maximum of 0.05% of the total pads on the last layer for the maximum FAIR energy

setup. After analysing all the parallel computing techniques and performance optimizations

discussed in heterogeneous computing section, execution time for the event selection pro-

cess using the Brute-Force algorithm reaches to about 105 events per second whereas CBM

is intended to run at an interaction rate of 107 events per second, therefore the algorithm

is revised, and based on the selection of the region of interest, a novel algorithm has been

developed and termed as “Selective Algorithm” which is different in terms of finding the

probable triplets as compared to that in the Brute-Force algorithm. Working principle of the

revised selective algorithm is as below:

1. In an event, select one space point from the L3 layer.

(a) For each selected point, calculate two dimensional (2-D) angle with the vertex for

both xz and yz plan assuming fitting in straight line. (A priory a region of interest

has been computed based on study of different data sets.)

(b) Search in a vector of points from L1 L2 layers.

(c) Mark the triplet is desirable if point from the L2 and L1 fall in the region of inter-

est.

2. If two such triplets are found in any event then the event is the probable candidate of

Jpsi particle.

3. Repeat the same steps for all the event.

The Brute-Force algorithm is based on processing all the combinations of three points from

the last three layers (one from each layer), however, in the selective approach single vector is

created for L1 and L2 layer the complexity of selective algorithm is O(n2). To optimized fur-

ther, in selective algorithm, only those space points are processed which fall under the pre-

analysed tolerance range and it is optimized for minimal memory consumption to maximize

execution throughput on the co-processors. Both the algorithms have been implemented for
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Figure 2: Processing time per event in microseconds as function of the number of events.
The left panel compares the implementations i1, i2 and i3 with CUDA on the Tesla GPU. A
comparison of the execution times on GPU (implementation i3) and on CPU (single-thread)
is shown in the right panel.

the first-level event selection process. Comparison between both the algorithms has been

performed. The achievement listed at the end of this synopsis shows that the developed

novel selective algorithm is an optimized solution which can cope the CBM requirement

within the available resources.

Heterogeneous computing:

For processing 10M events in a second within minimal resources, a detailed literature sur-

vey [4, 5, 6] has been performed to understand the state of the art methodologies. Modern

computers come with a variety of concepts for concurrent data processing on many-core ar-

chitectures, examples include, dedicated co-processors like NVIDIA or AMD GPUs, Many

Integrated Core (MIC) by Intel such as Xeon Phi, the Accelerated Processing Unit (APU) of

AMD, the Cell Processor of IBM and others. By using less powerful i.e. several cores of

GPU, a heterogeneous CPU-GPU system can be used to accelerate the parallel processing.

In a heterogeneous computing environment, different compute elements are interconnected

to provide a variety of computational capabilities to execute tasks that have diverse require-

ments [6]. After survey of Flynn’s Classical Taxonomy for heterogeneous architecture [7], it
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Figure 3: Execution time per event as function of the number of events processed at a time
for the implementations with pthread, OpenMP, MPI and OpenCL on the Intel and AMD
CPUs. The number of threads equals that of the available physical cores (12 for Intel, 64 for
AMD).

is figured out that such systems are based on the SIMT (Single Instruction Multiple Thread)

technology and come with a plenitude of processing units, allowing to run many threads in

parallel. However, in order to make use of their computing potential, adequate program-

ming paradigms are needed.

To achieve the fast execution of event selection process, heterogeneous computing based on

many/multi core machine has been investigated in detail. The pure parallel programming

paradigms Posix Threads (pthread), Open Multi-processing (OpenMP) and Massage Pass-

ing Interface (MPI) and heterogeneous parallel programming paradigms OpenCL (Open

Compute Language) and CUDA [4] have been used for implementation & optimization of

event selection trigger algorithms. TESLA and Quadro series of NVIDIA GPUs have been

used as test-bench. The brute force event selection algorithm has been implemented using

the CUDA API and then compiled with the NVIDIA compiler. Detailed analysis of the entire

first level event selection process, with respect to execution time, memory footprint, CPU-

GPU data transfer etc, has been performed. Memory has been arranged according to the

GPU architecture and possible optimizations have been performed. Figure 2 (left), shows
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the per-event GPU execution time for the various optimizations (i1, i2, i3) on a Tesla GPU

and respectively the per-event CPU to GPU data transfer time and figure 2 (right) compares

the single-threaded execution time on CPU. Multiple events are processed at the same time,

one event being allocated to one thread.

Other than many core GPUs, detailed investigations have been performed using pthread,

OpenMP, MPI and OpenCL for two different types of multi core hardware architecture Intel

and AMD for FLES process. The results are shown in figure 3, showing the execution time

for different configurations. Detailed investigation shows, the OpenCL is suitable option for

heterogeneous computing environments.

Time Based Signal Generation:
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Figure 4: Pile-up fraction in each sector of the first layer of the first MuCh station for a dead
time of 400 ns and for different interaction rates. The left panel shows the (realistic) case of
minimum-bias events, the right panel the (artificial) case of central events only.

The data acquisition systems of most experiments in high-energy particle or nuclear physics

are based on hardware triggers, where a signal generated by a suitable set of hardware indi-

cates that a collision took place and triggers the timely readout of the front-end electronics.

The hardware trigger thus defines an ªeventº as collections of moderate size data represent-

ing a separate single collision, which may then be either written to a permanent storage or

subjected to further inspection and selection by higher-level triggers, e.g., on FPGA or in

software. The software framework used for simulation and analysis of such experiments
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are thus designed on an event-by-event scheme, where each event is treated as a separate

and independent entity. But this triggered readout scheme is not feasible at CBM which

intends to inspect up to 10
7 nuclear collisions per second, each producing several hundreds

of particles to be registered in the detectors. These conditions will lead to use a trigger-

less, free running data acquisition, where self-triggered front-end electronics register signals

above a predefined threshold as caused by particles traversing the respective detectors and

autonomously push the data forward. Such a system is not limited by latency, i.e. the time

needed to generate a hardware trigger, but by data throughput bandwidth. It results in a

continuous data stream in contrast to a series of events defined by the hardware trigger in

conventional readout schemes. The association of raw data to physical events is based on

precise time stamps. In this thesis, the software to analyse this data stream - both in real-time

and offline will be discussed in detail. The time based simulation of the muon detector sys-

tem MuCh incorporating response of detectors, front-end electronics and electronics noise

etc., has been developed and performance of the same has been studied. Consequence of

a self triggered free running data stream is inter-event pile-up due to dead-time of the un-

derlying readout chip which is STS-MuCh-Xyter [8]. Figure 4 shows the pile-up fraction

differentially for each sector in the first layer of the first MuCh station for different interac-

tion rates, varying from 10
4/s to 10

7/s.

We enlist here major achievements in the thesis,

1. Development and implementation of first-level event selection (FLES) process for CBM-

MuCh using brute force and a selective algorithms. Performed a comparison of per-

formance between the two algorithms.

2. The developed event selection procedures suppresses the archival data rate by almost

two orders of magnitude without reducing the signal efficiency, thus satisfying the

CBM requirements for high-rate data taking [9].

3. A speed-up of 4.5 for event selection process using NVidia GPU is achieved in com-

parison with execution time of the optimized single-thread execution on CPU. (The
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results are published in Computer Physics Communications journal.)

4. Results show that using the Brute Force Algorithm, about 3 ·105 events per second and

using the Selective Algorithm about 107 events per second can be processed on a single

GPU card of NVIDIA Tesla family. (The study has been presented in an international

conference.)

5. Systematic study of heterogeneous architecture and different parallel computing paradigms

have been presented and performance comparison of the algorithms on CPU, GPU

using pthread, OpenMP, MPI, CUDA and OpenCL has been performed. It is found

that the cross-platform OpenCL is a proper choice for heterogeneous computing envi-

ronments typical for modern architectures, which combines CPU cores with GPU-like

accelerator cards.

6. By the throughput obtained for the selection of J/Psi candidate event, it is determined

that the computing demands of the CBM experiment can be achieved by properly

making use of the parallel heterogeneous computing architectures.

7. Development of a time-based signal generation scheme for the Muon Chamber simula-

tion by enabling interference of tracks from different events with small time separation,

using an intelligent buffering procedure and a proper prescription for the treatment of

signals arriving close in time in the same read-out channel (pad). (The results are pub-

lished in Journal of Instrumentation.)

8. Integration of the MuCh simulation software with the cbmroot simulation framework

to generate a free running data stream similar to that expected from the real experi-

ment.

9. Development of noise generation framework for MuCh system such that the treatment

of thermal, uncorrelated noise is included in the simulated data stream.
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Abstract of the Thesis

The computing demands for modern experiments in high-energy particle and nuclear

physics are becoming increasingly challenging. This holds in particular for experiments

relying heavily on real-time data processing. For an example, real time processing require-

ment in the Compressed Baryonic Matter (CBM) experiment at the future Facility for An-

tiproton and Ion Research (FAIR), Germany is enormous. In high energy collisions of pro-

tons or heavy ions many particles are generated and a few have extremely low production

rate. One such particle is J/ψ known as charmonia. J/ψ decays promptly into the dimuon

channel of µ+ and µ-. The multiplicity of the J/ψ is extremely small, therefore, to get rea-

sonable statistics, CBM experiment intends to run with an unprecedented 107 collisions per

second. A Muon Chamber (MuCh) system will be employed for the detection of dimuon

pairs originating from the nucleus-nucleus collisions. The MuCh system is being developed

at VECC and it consists of alternating layers of segmented absorbers and detector stations.

Each station consists of three detector layers. Due to very high interaction rates, CBM will

employ a free-streaming data acquisition with self-triggered readout electronics, without

any hardware trigger.

The thesis presents the algorithmic development for selection of J/ψ events based only on

the hits on the last station of the MuCh detector. A detailed study has been carried out for

development of a first level event selection process. The algorithm also has been optimized

further to cater to the unprecedented interaction rate. To achieve throughput of 107 events

per second, event selection algorithm has been deployed on the emerging technologies &

platforms or their combinations to achieve its best possible performance. Performance com-

parative study for FLES process has been presented using pure parallel and heterogeneous

computing paradigms. After algorithmic development, a time based real data stream sce-

nario is simulated for MuCh system with CBM collaboration. Studies of inter event and

in-event pile up varying interaction rates have been done and the results, from simulated

free running data stream, are compared with the event by event data flow.
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Chapter 1

Introduction

In High Energy Physics (HEP) Experiments or during the high energy heavy ion collisions,

different types of particles are produced with varying yields, some of them are produced very

rarely depending on the collision energy & system. At relatively low energy collision like

(Lab Energy ELab = 10 - 40 AGeV) one rarely produced particle is J/ψ meson, pronounced

as J/Psi, which decays to dileptons with high branching ratios [1]. As the multiplicity of

J/ψ is extremely small, therefore, to get a reasonable statistics, an experiment is required

to deal with high collision rate [2]. In this direction, the Compressed Baryonic Matter

(CBM) [3] experiment is an experimental setup at the upcoming Facility for Antiproton and

Ion Research (FAIR) [4] which aims to collect data at the interaction rate of 107 collisions

per second. As collision rate is extremely high and J/ψ production is very low at FAIR

energies [5], a real-time selection process is needed to select only those events which are

likely to contain J/ψ and the process should be executed at a speed equivalent to that

of the interaction rate. For such an experiment, the software stack is required to simulate,

reconstruct and analyse the data, in the realistic experiment scenario. For this, an approach

is required which can not be based on the conventional ‘event-by-event’ simulation. In CBM,

the data acquisition system will also provide a free flow data stream which is not separated

collision by collision (i.e. event wise). To develop such a unique scheme of simulation, the

1



entire CBM collaboration, along with the other experiments at FAIR, has been working

in this direction and each system is to provide realistic time based detector simulation

incorporating response of detectors, front-end electronics and electronic noise.

The major motivation of this work, towards the achievement of this goal could be item-

ized as below,

1. No algorithm is readily available for selection of events and based only on the hits, for

particle interaction rate of the order of 10 MHz, on the detector. Therefore a detailed

study needs to be carried out for development of a first level event selection algorithm.

The algorithm also has to be optimized further to cater to the above unprecedented

interaction rate.

2. To cope up with an event rate of 107 events per second, event selection algorithm;

therefore, should deploy on the emerging technologies & platforms or their combina-

tions to achieve its best possible performance.

3. A time based real data stream scenario is to be simulated. Studies for different inter-

action rates and the results are to be compared with the event by event data flow.

The present thesis deals with all the three core aspects in detail. It will cover the

development of a first level event selection process and then to achieve real-time execution

of the first level of the event selection process, use of heterogeneous computing will be

investigated and harness the available computing resources such that the requirement can

be met [6]. This selection will be performed in real-time (almost on-line) and the main

motivation is to archive the probable candidate of J/ψ events, thereby making the selection

criteria not very stringent. Further selection of the events will be performed at a later stage

at big computing farm during the detailed analysis of physics observables.

The aim is to get the events containing muons, decayed from the J/ψ at vertex. As muons

are of high energy and high momentum, they will traverse almost in a straight line from

the vertex and in the CBM muon setup they will reach the last layer of the Muon Chamber
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Chapter 1. Introduction

System MuCh (described later). All other low momentum particles would be absorbed due

to multiple absorbers as per construction of the Muon Chamber (MuCh) system [7] and

most of the muons coming from J/ψ will reach the last layer. Background muons or the

other particles which will reach the last layer may be secondaries or decay particles and will

not satisfy the criterion of coming from the vertex. For selection of such events, two first

level event selection algorithms, named Brute-Force and Selective, have been developed,

analysed and implemented using heterogeneous computing platforms.

To achieve the fast execution of the event selection process, Heterogeneous computing

based on many/multi core machines has been investigated in detail. The use of the Graph-

ical Processing Unit (GPU), primarily used for graphics rendering, as a general purpose

processing is becoming increasingly popular. This thesis describes how GPU computing can

be used and beneficial in High Energy Physics (HEP) online computation. HEP computing

deals with embarrassingly parallel problems as billions of events need to be processed using

same algorithm (described in Sec. 3), therefore by using heterogeneous computing, online

event selection can be achieved with higher event rate. The thesis discusses about the avail-

able computing architectures, available hardware brands, compilers, parallel paradigms and

parallel libraries. In this thesis, the GPU, pure parallel paradigms, heterogeneous parallel

paradigms among others will be discussed in detail with respect to the implementation and

optimization of the event selection trigger algorithm.

The CBM experiment is designed to take data in nuclear collisions at very high interac-

tion rates of up to 10 MHz and therefore will employ a free-streaming data acquisition with

self-triggered readout electronics, without any hardware trigger. A simulation framework is

being developed to cope with this requirement. For MuCh detector subsystem also a realistic

digitization has been developed to provide a realistic simulation of the time-stamped data

stream, which is a part of this thesis (in chapter 4 explained in detail). The implementation

of the free-streaming detector simulation and the basic data related effects on the detector

with respect to the interaction rate has been investigated in section 4.4.
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1.1. CBM Experimental Setup

1.1 CBM Experimental Setup

Figure 1.1: Schematic layout of the Facility For Antiproton and Ion Research (FAIR) com-
plex at GSI with the CBM experiment using the beams from the SIS-100 and SIS-300
synchrotrons.

The Compressed Baryonic Matter CBM [3] experiment is a dedicated relativistic heavy

ion collision experiment at the upcoming FAIR [4] facility at GSI Helmholtz Centre for Heavy

Ion Research, Darmstadt, Germany. Figure 1.1 shows the layout of the FAIR facility. This

figure shows two parts separated by dotted line. Left side of this figure shows the existing

GSI complex in which existing accelerators like Unilac, proton linac and SIS-18 synchrotron

are shown [8]. The right side shows the entire proposed FAIR facility which is presently

under full-fledged construction and scheduled be ready by the year 2025. In the FAIR facility,

SIS-100 and SIS-300 high energy synchrotrons are proposed to be built. In the first phase,

SIS-100 will be commissioned and in future, SIS-300 will be commissioned as an upgrade

plan. There are 4 experiments named CBM, NUSTAR (Nuclear Structure, Astrophysics and

Reactions), APPA (Atomic, Plasma Physics and Applications), and PANDA (antiProton
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ANihilation at DArmstadt). In Fig. 1.1, only the location of the CBM experiment is shown

with yellow colour mark. In this experiment, highly energized ions (like Au) will be collided

with a fixed target (Au plate) and after collision (Au − Au collision), a large number of

particles will be produced and they will pass through different detectors like Silicon Tracking

Station (STS), Transition Radiation Detector (TRD), Time of Flight (TOF) detector. The

CBM is a facility and different setups like hadron setup, electron setup and muon setup

could be used. The Figure 1.2 shows CBM in the muon setup in which MuCh is in data

taking position and Fig. 1.3 shows CBM in the electron setup with Ring Imaging Cherenkov

(RICH) detector is in data taking position along with the other detector subsystems. Muon

Chamber Detector System (MuCh) is shown in Fig. 1.4.

Figure 1.2: Schematic layout of The Compressed Baryonic Matter (CBM) muon setup with
MuCh and RICH is in parking position.
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1.2 MuCh and FLES

In this work, we discuss the use of MuCh for measurement of J/ψ, via their decay into the

di-muon (µ+ and µ−) channel and as the production rate of J/ψ is extremely small at the

CBM energy regime, therefore MuCh detector in the muon setup of CBM will run with

extreme interaction rate of 10 MHz.

Figure 1.3: Schematic layout of The Compressed Baryonic Matter (CBM) electron setup
with RICH and MuCh is in parking position.

Muon Chamber (MuCh) detector is being designed by a collaboration of Russian and

Indian institutes. The muon detection system comprises of six iron slabs of different thick-

ness, varying between 20 cm to 100 cm, with detector triplets inserted in the gap between

two consecutive slabs. Each detector triplet between two consecutive absorbers is termed

as one MuCh station. The total number of detector layers (also number of stations) will
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vary based on the collision energy and the type of particles to be detected. The maximum

energy for SIS-100 [8] will be 11A GeV and accordingly MuCh will comprise four detector

stations with 3× 4 = 12 layer configuration as shown in Fig. 1.4 and the maximum energy

for SIS-300 will be 35A GeV, and corresponding configuration for MuCh will comprise six

stations as shown in Fig. 1.5. The last three layers in the last station of the muon system

is known as trigger station because our software trigger is based on the hits from these 3

detector layers only. This station is positioned after a one-meter thick iron absorber in the

setup. As the multiplicity of J/ψ which decay into muons (µ+ and µ−) particle is very

low and event rate is very high, therefore it is reasonable to store only those events which

produce muons. Other events which do not resemble as probable candidate for J/ψ are

known as background events. To reduce the background events, a first level event selection

process is essential. After development of an event selection algorithm, another challenge

is that it should be implemented such that 107 events can be processed within a second or

less. In this thesis, we will describe in detail about a real-time event selection process and

its implementation on heterogeneous hardware such that 107 events can be processed within

a second. This event selection is known as online trigger software.

As per an estimate, the data acquisition system will provide more than 1 Tera Bytes

per second of data stream, and the first level event selection process is a must in terms

of reduction in the data volume by approx 3 order of magnitude from the storage point

of view. For online reconstruction and the implementation of software trigger, a First

Level Event Section (FLES) [9] computing farm is under development inside the Green IT

Cube [10] at GSI, Darmstadt. FLES farm will comprise of data acquisition boards, input

nodes and compute nodes. Raw data from data acquisition will directly land at the FLES.

Due to first level of event building and first level of event selection will be performed on the

FLES farm therefore it is termed as the First Level Event Selection farm. Discussions and

implementations are ongoing for the tasks to be performed at the FLES level. All the event

selection results presented in this thesis are based on the highest energy i.e. 35 AGeV and
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Figure 1.4: Schematic layout of the MuCh setup as per physics requirement of SIS-100
energies..

SIS-300 setup which will provide extreme conditions for computation.

1.3 Heterogeneous Computing

Computational power is a major requirement in high energy physics experiment which can-

not be satisfied by conventional sequential processing on CPU. Parallel programming is one

of the key options in this direction which allows many instructions to run simultaneously.

Such a requirement can only be met using many and multi-core systems. To utilize such

architecture, pure parallel computing paradigms like Posix thread, Open Multi-processing

(OpenMP), Message Passing Interface (MPI) etc and heterogeneous parallel computing

paradigms like Compute Unified Device Architecture (CUDA), and Open Computing Lan-

guage (OpenCL) are available [11]. By using less powerful i.e. several cores of GPU, a

heterogeneous CPU-GPU system can also be used to accelerate the parallel processing.

GPU is a graphics processor or co-processor, mainly known as throughput processor which

allows creating a large number of concurrently executing threads at very low system resource
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Figure 1.5: Schematic layout of the MuCh setup as per physics requirement of SIS-300
energies.

cost. Now a days it can also be used, other than graphics processing, for general purpose

computing and therefore is termed as GPGPU (General Purpose Computing via GPU).

1.4 Time Based Simulation

The data acquisition systems of most experiments in high-energy particle or nuclear physics

are based on a hardware trigger, where a signal generated by a suitable set of hardware

indicates that a collision took place and triggers the timely readout of the front-end elec-

tronics. The hardware trigger thus defines an “event” as collections of moderate size data

representing a separate single collision, which may then be either written to a permanent

storage or subjected to further inspection and selection by higher-level triggers, e.g., on

Field Programmable Gate Arrays (FPGAs) or in software. The software framework used

for simulation and analysis of such experiments are thus designed on an event-by-event
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scheme, where each event is treated as a separate and independent entity.

Several next-generation experiments, however, face the difficulty that such a triggered

readout scheme is not feasible, e.g., due to high interaction rates and/or complex trigger

topologies which are not well suited to be evaluated in hardware logic and are time consum-

ing (CBM experiment is an example of such a scenario). CBM intends to inspect up to 107

nuclear collisions per second, each producing several hundreds of particles to be registered

in the detectors. These conditions will use a trigger-less, free running data acquisition,

where self-triggered front-end electronics elements register signals above threshold caused

by particles traversing the respective detectors and pushes the data forward [12]. Such a

system is not limited by latency, i.e. the time needed to generate a hardware trigger, but by

data throughput bandwidth. It results in a continuous data stream in contrast to a series of

events defined by the hardware trigger in conventional readout schemes. The association of

raw data to physical events is based on a precise time stamp associated to each measurement

by a central timing system.

The software to analyse this data stream - both in real-time and offline - must cope

with the experimental situation [13]. The same holds true also for the software to simulate

the experiment, which must generate such a data stream from appropriate physics models

of high-energy nuclear collisions. The simulation package thus has to convert a series of

events into a stream of data incorporating response of detectors, front-end electronics and

data acquisition to these events. The CBM software framework CbmRoot [14], based on

the FairRoot simulation and analysis framework [15], provides the appropriate structures

for this task, in particular the software emulation of the data acquisition collecting the

free-streaming data from the detector front-ends [12]. These framework structures must of

course be filled by the implementation of the actual detector response of the various CBM

sub-systems. Therefore, for the time based simulation of the CBM muon detector system

(MuCh) simulation software has been developed using signal buffering scheme.

After this detailed introduction, chapter 2 will present the event selection signature,
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algorithms and validation of algorithms. Chapter 3 will demonstrate in detail the imple-

mentation and optimization of the first level event selection algorithms on the many-multi

core heterogeneous systems. Chapter 4 will describe the software implementation of the

detector response for the MuCh detector. Verification and performance of the simulation is

discussed in detail in section 4.4. Each chapter gives a summary and conclusions and also

chapter 5 presents final conclusions and discusses about outlook on the development.
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First Level Event Selection

2.1 Introduction

High energy physics experiments fall into two categories, one is fixed target experiment in

which particle beams are extracted from the accelerator and then collide with a fixed target

like CBM and the other one is the collider experiments in which two particle beams coming

from opposite directions collide with each other like in STAR, ALICE, CMS, LHCb, etc. In

both types, one single collision is considered as one event. The events generated from these

collisions are used to study different physics observables. On the basis of physics observable,

the particular type of events need to be selected for which event selection process is required.

In the fixed target CBM experiment, the collision of heavy ions at beam energy range

of 2 - 40 AGeV, a dense fireball is to be created. Multi-strange baryons, di-lepton pairs and

charmed particles will be the diagnostic probes for such a medium [5]. All these observables

will be identified via their decay products. The charmonia, a proposed key observable, can

be measured via its decay into the di-muon channel µ+ µ− [1]. The average multiplicity

of charmonium in these collisions is extremely small. These decay muons being weakly

interacting, do not interact with the medium and make them a diagnostic probe. Due to

low multiplicity of charmonia, data collection at an extreme interaction rate is required to

13



2.1. Introduction

have a good statistics in a reasonable time. The low rates of these rare particles decide the

experiment to plan to run at the required high interaction rate which is upto 107 events per

second. This high interaction rate demands the experiment to perform with the cutting edge

electronic technologies and the fastest computing processes. As the event rate is extremely

high and J/ψ production is very low, therefore it creates another challenge of selecting

events which are likely to contain J/ψ. Extreme interaction rate will generate approximately

1 TeraByte (1012 Bytes) per second of raw data stream [12] which is not feasible to store

continuously at that rate on the permanent storage device. Thus, to achieve the goal, an

event selection process or a trigger algorithm is required.

This chapter describes in detail the event selection process, i.e. the specific algorithms.

This process of event selection will be deployed at the first stage after data taking and

therefore is termed as the First Level Event Selection (FLES). Due to high interaction rate,

hardware trigger is not feasible therefore this FLES algorithm is also known as software

trigger algorithm. All the detector systems of CBM experiment are working with self-

triggered electronics only.

2.1.1 Trigger signature

The signature of events for J/ψ → µ+µ− is visualized in the Fig. 2.1. The two daughter

muons, having high momentum because of the large q value of the decay, traverse all absorber

layers and reach the trigger station, while hadrons, electrons, and low-momentum muons

will be absorbed before hand. Since J/ψ decays promptly (cτ = 7.1 · 10−21s), the decay

products practically originate from the primary (collision) vertex, i.e., from the target [6].

Owing again to the high momentum of the muons, their trajectories can be approximated

by straight lines even in the bending plane of the dipole magnetic field, which has a bending

power of 1 Tm [16]. The trigger station consisting of three detector layers provides three

position measurements, allowing to check the back-pointing to the primary vertex. The

signature of a candidate event is thus the simultaneous registration of two particles in the
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x 
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z 

Figure 2.1: The CBM muon detection system with a pictorial view of a J/ψ decaying into µ+

and µ−. Triplets of tracking stations (magenta) are placed between absorber slabs (yellow).

trigger station which can be extrapolated backward to the target.

2.2 Software Environment

When we work in a large scale experiment like CBM, for doing simulation, reconstruction,

material study and all the physics performance analysis, we need sophisticated modular

software environment which consists of all the facility to do the required simulation, calcu-

lation, visualization and quality assurance. For this we used ROOT which is an open-source

object-oriented data analysis framework. The ROOT framework utilises the latest C++

features and compatible with the C++14 and C++17 also. FAIR project software devel-

opment team has bundled a toolkit named FairSoft comprising ROOT and many external

packages like CLHEP, GNU Scientific Library, BOOST and many more. FairSoft pro-

vides a complete software environment to perform the simulation, reconstruction and data
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analysis. To include core services specific to FAIR, desired physics analysis and experiment

detector simulations, two more packages named FairRoot [15] and CbmRoot [14] have been

developed and customised for the FAIR and the CBM experiment respectively. FairRoot

provides common software environments for all the FAIR experiments and CbmRoot is a

collection of libraries which enable all CBM related geometry, classes and parameters. The

entire software stack is designed to optimise the accessibility for beginners and developers

and is flexible (i.e. able to cope with future developments), to enhance synergy between the

different physics experiments at/or outside the FAIR project. The entire software frame-

work is working on the concept of continuous development and continuous integration and

it supports many systems and compilers. Users are free to run FairSoft, FairRoot and

CbmRoot on his/her desktop, laptop and/or server of any make and on any operating system

variant. Efforts are going towards compiling FairSoft, FairRoot and CbmRoot software

on any hardware/platform. For continuous compatibility, automatic testing across differ-

ent hardware and platforms are going on and the accumulated test results from different

platforms are sent to a web server, such that, results are displayed on dashboards by which

developers can immediately know if there is any compatibility issue on any of the different

systems.

FairSoft, FairRoot and CbmRoot have been installed for performing simulation related

work presented in this thesis, in particular, for MuCh event selection and time based devel-

opment (later described in chapter 4). Using this software stack, I have created simulated

data and/or performed analysis with the desired geometry and setups.

As discussed in Sec. 1.1, CBM will operate with 2 interchanging configurations i.e. di-

muon (shown in Fig. 1.4) and di-electron (shown in Fig. 1.3). The di-muon configura-

tion of the MuCh system will also use different set of detector configurations. To cater

all the configurations, CbmRoot provides multiple setups named as sis100_muon_lmvm,

sis100_muon_jpsi, sis100_electron etc. Moreover, GEANT3 and GEANT4 [17, 18]

transport engines are supported for transporting the particles through the geometry. GE-
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ometry ANd Tracking (GEANT) is the name of a series of simulation software designed to

describe the passage of particles through matter, using Monte Carlo methods. The frame-

work enables us to construct detectors and/or analysis tasks in a simple way, it also delivers

some general functionality like event display, track visualization etc. Moreover an interface

for reading magnetic field maps is also implemented. For the work presented in this thesis

FairSoft, FairRoot, and CbmRoot have been extensively used.

2.3 Event selection

As explained in Sec. 2.1.1, the aim is to get those events having muon pairs, which decayed

from J/ψ at the vertex in three dimensional spaces (x, y and z). The mean momentum of

muons from J/ψ decay at SIS-300 energies will be around 6 GeV/c [2]. As muons are of

high energy and high momentum, they will traverse almost in a straight line from the vertex

though high magnetic field in the STS region and they will reach the last layer of the MuCh

because of low interaction cross section. Due to 100 cm thick iron absorber (situated before

the last station of MuCh shown in Fig. 2.1 in the SIS-300 setup, all other low momentum

particles would be absorbed and most of the muons coming from J/ψ will reach the last

detector layer. Background muons or other particles which will reach the last layer may be

secondary particles or decayed from other particles and not likely to satisfy the criteria of

coming from the vertex in a straight line. For event selection, first, a simple algorithm named

“Brute-Force algorithm” has been developed based on all the combinations between hits

on the last 3 layers. After detailed study on this algorithm, another algorithm has been

developed named “Selective algorithm”. Both the algorithms are based on the following

physics signatures:

1. Owing to very small lifetime J/ψ decay into µ+ and µ- at the vertex (origin),

2. Due to their large momentum these muons travel approximately in a straight line.
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Figure 2.2: Event-wise hit distribution on the last MUCH station (combined of the last
three layers);

The algorithms are therefore based on the straight line fitting of the hits in the last

station. Fig. 2.4 depicts the straight line path of muons which will be produced by J/ψ and

decayed at vertex.

To study the feasibility of these selection algorithms, a sample of background (minimum

bias Au + Au) events (not containing any J/ψ decay) have been simulated in the CBM

setup. The procedure of generating the simulated event in this work is discussed later.

Fig. 2.2 shows the number of hits per event for the trigger station (combined for all three

layers). The average number is about 45 for the trigger station and 15 for each of its

layers . The dominant sources of this background are secondary muons originating from the

weak decays of Λ and K0
S between the target and the trigger station. Fig. 2.3 shows the

spatial distribution of these background hits on the transverse plane (x− y). The void area

in the centre is not instrumented, since it hosts the vacuum pipe for the non-interacting

beam [7, 19].
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Figure 2.3: x− y distribution of background hits in the trigger station for 1000 events. The
accumulation at the periphery is due to secondaries not shielded by the absorber.

2.4 Brute-Force Algorithm

The Brute-Force algorithm is based on the approach of selecting triplets on the last station

which fall on a straight line from the vertex out of all the possible triplets formed using 3

hits. The algorithm picks up three space points, termed as triplet from the last three layers

of MuCh detector with one from each layer and makes all triplets of such combinations

consisting of three points each. A threshold criterion (described later) has been designed to

select the triplets. It may therefore be noted that a triplet means a combination of three

space points from the last three MuCh layers (one from each layer) and fitted in a straight

line passing through the vertex (0, 0, 0) as presented in the Fig. 2.4.

Chapter 2 Page 19



2.4. Brute-Force Algorithm

2.4.1 Implementation

External event generators are used in the CbmRoot framework to introduce the input event

files for further transport simulation. In this work, we have used Ultra-relativistic Quantum

Molecular Dynamics (UrQMD) [20] which is a microscopic model used for simulating (ultra)

relativistic heavy ion collisions at the FAIR energy range and generate simulated events.

This model is widely used to produce typical events for detector studies, as well as providing

background events for physics studies. PLUTO [21] is a Monte Carlo simulation tool for

hadronic physics. The vector meson decays were simulated with the PLUTO generator

assuming a thermal source with a temperature of 130 MeV which is a tunable parameter.

The background, consisting mainly of decays of charged pions and kaons, was calculated

with the UrQMD event generator for the same system. Both the signal generated via

PLUTO and the background generated via UrQMD are transported through the detector

setup using CbmRoot employing GEANT3. One J/ψ signal particle is generated via PLUTO

event generator and embedded during transport simulation in each event. For development

of event selection, it is kept in mind that it needs to run online or on heterogeneous hardware,

therefore the ROOT dependence is minimized. Now these generated simulated output space

points corresponding to the interaction of particles through the medium were transported

(moved) into a text file such that the input to further analysis is not dependent on ROOT

file layout. The space points for 1000 Au−Au collision events were read from a text file (in

actual it will come from the online data stream) and depending on the value of Z, the space

points for each event are stored into L1, L2 and L3 vectors (these are 3 different vectors for

3 different layers in the last station). Vector containers (from c++ stl) are efficient with

respect to dynamic allocation of memory. The flowchart for the Brute-Force event selection

process has been presented and discussed in ref [22].

In order to study the trigger algorithms and assess their performances, the following sets

of simulated data were produced and studied:

D1. Signal events containing only one J/ψ → µ+µ− per event. The phase-space distribu-
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Figure 2.4: Pictorial representation of straight line fitting of 3 space points at last station
of MuCh.

tion of the J/ψ were generated using the PLUTO generator [21].

D2. Background events (central Au−Au at pbeam = 35A GeV) generated using the UrQMD

model [20].

D3. Background events with one embedded decay J/ψ → µ+µ− in every UrQMD event.

Following are the key steps for the Brute-Force event selection algorithm:-

1. Create a triplet of hits in the trigger station for an event, with one hit from each layer.

2. For the triplet:

(a) Fit the hits of the triplet plus the event vertex (0, 0, 0) by a straight line as

represented in Fig. 2.4. Performed straight line fitting in both the x−z (bending)

plane and the y − z (non-bending) plane, i.e., x = m0z and y = m1z.

(b) Compute the Mean Square Deviation (MSD) of the triplet fit.

3. Repeat the same steps [1..2] for all possible triplets of hits in the trigger station, with

one hit from each layer.

4. Repeat the same steps for 1000 Events distributed in 3 different data sets mentioned

as D1, D2 and D3.
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5. Analysed both (MSDxz) and (MSDyz) distributions for all combinations and a typical

distribution of (MSDxz) and (MSDyz) are shown in Fig. 2.5.

6. For getting the final selection threshold comparisons have been made for different

threshold values according to their MSDxz and MSDyz.

As per algorithm, detailed investigation has been performed for finding the optimal

threshold criteria for the selection of probable triplets containing muon. A triplet is rejected

if the MSD (per degree of freedom) is above the chosen threshold (0.03 for MSDxz, 0.025 for

MSDyz). MSD distribution for the background is almost uniformly spread over the larger

range as shown in Fig. 2.5. The MSD cut suppresses random combinations of hits as well

as real triplets from secondary tracks. To illustrate, Fig. 2.5 shows the MSD distribution

for the x− z plane (upper) and the y − z plane (below) for signal tracks (central Au+ Au

events at pbeam = 35A GeV)(blue) with overlay of all triplets in background events (red)

and a vertical (green) line indicates the cut value. The threshold is obtained from an

optimisation procedure, resulted from the performance in terms of signal efficiency and

background suppression. Computational complexity of the above Brute-Force algorithm is

O(n3) for an event. Here n is the number of pads fired on the last layer of the trigger station

in an event as shown in Fig. 2.3.

2.4.2 Performance

A detailed study has been performed for selection of the mean square deviation (for xz and

yz) of triplets with respect to following conditions:-

1. Those events which have at least one triplet.

2. Those events which have at least two triplets.

3. Those events which have at least one triplet which satisfy the threshold criteria.

4. Those events which have at least two triplets and satisfy the threshold criteria.
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Figure 2.5: Upper: MSDxz and lower: (MSDyz) event normalised distribution for signal
tracks in 1000 signal events (Au+Au at 35A GeV) overlay with all triplets in background
events with vertical (green) cut line.
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After collision, the probability of events with µ+ and µ− pairs is higher in the events with

two and more triplets. So, efficiency/performance of the algorithm is calculated with those

events with two or more triplets in the last station. In order to evaluate the performance of

the trigger algorithm, the following performance figures are used:

a) efficiency (E): the fraction of embedded signal events selected by the algorithm;

b) efficiency under acceptance (EUA): the fraction of selected embedded signal events in

which both decay muons have hits in all three layers of the trigger station;

c) background suppression factor (BSF): the ratio of all background events to the back-

ground events selected by the trigger algorithm.

The efficiency is mainly determined by the geometrical coverage of the muon detection

system. Typical values are about 39 %. With the threshold values named above, the EUA

is 85.4 %. The reason for it to be lower than 100 % is that one or both the signal tracks

not passing the MSD cut. The BSF of 71.4 shows that the primary aim of the algorithm -

suppression of a large fraction of the input data rate - is reached; the probability to find a

chance pair of triplets passing the MSD cut is still not negligible.

Further background suppression will be achieved by full track reconstruction in the full

CBM setup. This will provide the track momentum and more precise determination of

the track impact parameter on the target plane, allowing to better separate primary from

secondary muons. Full track reconstruction, however, is algorithmically involved [23] and

thus requires significant computing resources. Owing to the first-level trigger algorithm

described here, it needs only be applied on a data rate already reduced by a factor of

about ∼ 70.
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Table 2.1: Computing performance tuning of a process

Level Potential gains Estimate
Algorithm Major ∼ 10x-100x

Source code Medium ∼ 1x-10x
Compiler Level Medium-Low 10%-20%

Operating System Low ∼ 5%-20%
Hardware Medium 10%-30%

2.5 Selective Algorithm

In the next chapter, we will discuss in detail about implementation of the Brute-Force al-

gorithm on the heterogeneous platforms including in GPUs. In the Sec. 3.4, we will show

that after analysing all the parallel computing techniques and performance optimizations,

execution time for the event selection using the Brute-Force algorithm reaches to about 105

events per second whereas CBM is intended to run at an interaction rate of 107 events per

second, therefore the event selection process needs to be improved in terms of computing

speed. We analysed the Brute-Force algorithm and found that the processing of all possible

combinations to form triplets is the most computing time intensive. To improve the com-

putational complexity of the Brute-Force algorithm, we have investigated implementation

of the triplet finding using matrix representation of fired hit coordinates, but the number of

pads fired on the last layer of the trigger station in an event is of the order of maximum of

0.05% of the total pads on the last layer for the maximum FAIR energy setup. This resulted

in huge memory requirement to store the hit coordinates for an event in the matrix form.

As discussed in the chapter 3, GPU has limited memory, therefore the approach for storing

hits in the matrix format is not optimal for the Brute-Force event selection process.

To increase the performance of any process with respect to the computation time, it

can be guided by estimates provided in Table 2.1 [24]. According to the table, algorithmic

improvement of a process provides major potential gain compared to the other hardware/-

software tuning, therefore, the algorithm is revised, and based on the selection of the region

of interest, we have developed a new algorithm termed as “Selective Algorithm” which
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Figure 2.6: Pictorial representation of Selective Algorithm.

is different in terms of finding the probable triplets as compared to that in the Brute-Force

algorithm.

Working principle of the revised selective algorithm is pictorially represented in Fig. 2.6.

In the Brute-Force algorithm, all the combinations as shown in Fig. 2.6 using red and green

oval shaped representations, have been processed for event selection. It is trivial that triplet

combination represented by red oval shape will never fit in a straight line with the vertex

(0, 0, 0), therefore need not to be considered for further processing. Triplet represented as

green oval mark might be fitted as straight line with the vertex. This logic is used in the

Selective algorithm [25] and it is performed as below:

1. In an event, select one space point from the L3 layer.

(a) For each selected point, calculate two dimensional (2-D) angle with the vertex

for both xz and yz plan assuming fitting in straight line. (A priory a region of
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Figure 2.7: Flowchart for “Selective” event selection algorithm
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interest has been computed based on study of different data sets.)

(b) Search in a vector of points from L1 & L2 layers.

(c) Mark the triplet is desirable if point from the L2 and L1 fall in the region of

interest.

2. If two such triplets are found in any event then the event is the probable candidate of

J/ψ particle.

3. Repeat the same steps for all the event.

Figure 2.7 shows the flowchart for the Selective algorithm and Fig. 2.8 shows the pictorial

representation of triplet selection using the tolerance regions for (a) xz plane (b) yz plane

separately.

As explained earlier, the Brute-Force algorithm was based on processing all the combi-

nations of three points from the last three layers (one from each layer) and then performed

straight line fitting for all the triplet combinations. However, in the selective approach sin-

gle vector is created for L1 and L2 layer, therefore, the complexity of selective algorithm

is O(n2). To further optimise, in selective algorithm, only those space points are processed

which fall under the pre-analysed tolerance range and it is optimised for minimal memory

consumption to maximise execution throughput on the co-processors. Both the algorithms

have been implemented for the first-level event selection process.

In Sec. 3.5, a comparison of per event execution time between both the algorithms is

presented and it is demonstrated that using the selective algorithm, 107 to 108 events can

be processed in a second using the experimental GPU used for this study.

2.6 Conclusion

In this chapter, requirement of event selection process and selection of probable event candi-

dates which may contain J/ψ particle have been discussed in detail and the algorithms have
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Figure 2.8: Pictorial representation of finding tolerance region for the Selective algorithm
upper: xz plane, lower yz plane.
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been discussed for the first level event selection process. Two different algorithms (a) the

Brute-Force and (b) the Selective have been studied and flowcharts have been derived. Both

the algorithms have been implemented on the software framework and tested with respect

to the efficiency of selection, background suppression fraction and the computing time. It

is seen that the requirement of high rate data taking for the CBM experiment can be met

using the event selection algorithms. The algorithms suppresses the archival data rate by

almost two orders of magnitude without reducing the signal efficiency. In the next chapter,

we will discuss the implementation of both the algorithms on the many-multi core machines

as the optimal computing performance with respect to execution time can be achieved using

pure parallel computing paradigms and heterogeneous parallel computing paradigms.
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Heterogeneous and parallel computing

paradigms

3.1 Introduction

HEP experiments produce a huge amount of data, therefore requiring non conventional

computing approach for processing and further analysing. In this direction, multi-core

architecture based processors or compute elements are being used for almost two decades.

“Multi-core architecture” became essential as single core processor frequency hit the physical

limitation of the clock oscillation frequency. After multi-core processors, on the similar line,

many hardware developers have started building “many-core architecture” based dedicated

processors other than CPU like NVIDIA GPU (Graphical Processing Unit), MIC (Many

Integrated Core) by Intel named as Xeon PHI, AMD (earlier ATI) GPU. Manufactures

have started experimenting on the CPU such that both many-core, multi-core architectures

co-exist e.g. APU (Accelerated Processing Unit) by AMD, Cell processor by IBM among

others. An APU contains both a CPU and a GPU on the same die allowing it to render

and display images on screen. In this direction, fast pace developments are going on in

the industry. All these various types of processors are based on different instruction-set
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architecture (ISA). If a system hosts multiple processors based on different instruction-

set architectures then it is known as heterogeneous computer and it is utilised for general

computing then it is termed as heterogeneous computing.

In a heterogeneous computing environment, different compute elements are intercon-

nected to provide a variety of computational capabilities to execute tasks that have diverse

requirements [26]. There are many types of heterogeneous systems, including parallel, dis-

tributed, clusters, grids and clouds. These are found in industry, laboratory, government,

academic, and military settings. An important research problem for heterogeneous comput-

ing is how to assign computation and communication resources to the tasks and to schedule

the order of their execution to maximize some performance criteria, a process known as

mapping or resource management. The factors that must be considered include machine

and network loading, how well does the execution needs of a task match the computational

capabilities of a machine, any inter-task communications, operating constraints, and the

optimisation of the performance criteria.

When we talk about heterogeneous architecture, it is useful to list the Flynn’s Classi-

cal Taxonomy for heterogeneous architecture [27]. Flynn’s taxonomy distinguishes multi-

processor computer architectures according to the two independent dimensions, Instruction

Stream and Data Stream. Each of these dimensions can have only one of two possible states:

Single or Multiple.

1. SISD - Single Instruction Stream Single Data Stream

2. SIMD - Single Instruction Stream Multiple Data Stream

3. MISD - Multiple Instruction Stream Single Data Stream

4. MIMD - Multiple Instruction Stream Multiple Data Stream

Heterogeneity of computing came into picture prominently due to GPU, which targeted

to maximise the computing performance or to accelerate the parallel processing. GPUs
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are graphics processors, mainly known as throughput processors which allow creating a

large number of concurrently executing threads at a very low system resource cost. As

the name suggests, in the beginning, these processors were designed for graphics rendering

purposes only. Subsequently it is observed that it can also be used for areas other than

graphics processing e.g. for general purpose computing and started to be known as GPGPU

(General Purpose Computing via GPU). All these hardware like GPUs, co-processors are

based on SIMT (Single Instruction Multiple Thread) technology and come with hundreds

of cores (specific lightweight cores) so that many such threads can run in parallel. On the

contrary all the modern CPUs are based on MIMD technology and populated with a few

general purpose cores. SIMT is very similar to Single-Instruction, Multiple-Data (SIMD). In

SIMD, multiple data can be processed by a single instruction. In SIMT, multiple threads are

processed by a single instruction in lock-step. Each thread executes the same instruction, but

possibly on different data sets. It needs to be noted that, in terms of hardware architecture,

a single core on CPU is different from single core on GPU though both are termed as core

only.

After study of different system types and heterogeneous systems following is the overview

of the presently available hardware as computing elements,

• CPUs (lightweight, heavyweight) – Mostly produced by Intel and AMD,

• GPUs (Graphics Processing Units) – Primarily produced by NVIDIA and AMD

• Co-processors – Mainly products of Intel eg. Xeon Phi

• APUs (CPU+GPU on the same chip) – Not suitable for high throughput computing

• DSPs (FPGAs) – Application specific hardware and has to be built according to the

application.

In order to make use of the computing potential of the computing elements mentioned

earlier, appropriate programming paradigms are needed. Parallel computing paradigms are
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Figure 3.1: Overview of available hardware architectures and corresponding software stacks
to utilize underlying systems.

broadly divided in two categories, (a) pure parallel programming paradigm for single type of

compute elements and (b) heterogeneous parallel programming paradigm for multiple types

of compute elements [11]. The pure parallel programming paradigms like Posix Threads

(pthread) [28], OpenMP [29] and MPI (Message Passing Interface) [30, 31, 32] are available

since long for utilizing multi-core CPU architectures like those of Intel, AMD, or IBM. For

many-core architectures, Apple developed the OpenCL (Open Compute Language) managed

by the Khronos group [33], and NVIDIA came with CUDA [34, 35]. CUDA is a proprietary

parallel programming API that can be used for NVIDIA hardware only.

We enlist below the available parallel paradigms to utilize many-core and/or multi-core

systems (list is not exhaustive):
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• Posix Thread (p-thread): POSIX Threads, usually referred to as pthreads, is an ex-

ecution model that exists independent of a language, as well as a parallel execution

model. It allows a program to control multiple different flows of work that overlap in

time. The POSIX thread libraries are a standard-based thread API for C/C++. It

allows one to spawn a new concurrent process flow.

• Open Multi-processing (OpenMP) : The OpenMP supports multi-platform shared-

memory multiprocessing programming in C, C++, and Fortran, on many platforms,

instruction-set architectures and operating systems, including Solaris, AIX, HP-UX,

Linux, macOS, and Windows. It is an open source environment, based on shared

memory, and useful for multi core computing.

• Message Passing Interface (MPI): Massage Passing Interface (Useful for clusters): Mes-

sage Passing Interface (MPI) is a standardised and portable message-passing standard

designed to function on parallel computing architectures. The MPI standard defines

the syntax and semantics of library routines that are useful to a wide range of users

writing portable message-passing programs in C, C++, and Fortran.

• Compute Unified Device Architecture (CUDA): CUDA is a parallel computing plat-

form and application programming interface (API) model created by NVIDIA. It

allows software developers and software engineers to use a CUDA-enabled graphics

processing unit (GPU) for general purpose processing, an approach termed GPGPU.

The CUDA platform is a software layer that gives direct access to the GPU’s virtual

instruction set and parallel computational elements, for the execution of compute ker-

nels. The CUDA platform is designed to work with programming languages such as

C, C++, and Fortran.

• Open Computing Language (OpenCL): OpenCL, developed by Apple, is a framework

for writing programs that execute across heterogeneous platforms consisting of central

processing units (CPUs), graphics processing units (GPUs), digital signal processors
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(DSPs), field-programmable gate arrays (FPGAs) and other processors or hardware

accelerators.

• System Computing Language (SyCL): SyCL is a higher-level programming model to

improve programming productivity on various hardware accelerators. It is a single-

source domain-specific embedded language based on pure C++17. It is a standard

developed by Khronos Group only and a successor of OpenCL.

• OpenACC: OpenACC is a programming standard for parallel computing developed

by Cray, CAPS, Nvidia and PGI. The standard is designed to simplify parallel pro-

gramming of heterogeneous CPU/GPU systems. It is an open programming standard

for parallel computing and based on compiler directives.

In a nutshell Fig. 3.1 shows the available hardware software combinations. First two rows

in Fig. 3.1 represent multi-many core architecture systems and terminologies used to denote

them. Thereafter we present the available silicon developers who build such computing

elements. After that, the compilers for compiling programs on these elements are shown.

The second last row of Fig. 3.1 lists the parallel paradigms, which can be compiled using

different compilers. In the last row, we have listed parallel libraries which may be used to

parallelise the program. As none of the standard algorithms is used in our work, therefore,

did not require any parallel library for the event selection algorithms.

In a parallel computing or computation, multiple processors work together to solve a

given problem. The largest parallel machine has over a hundred-thousand processors with

few millions of computing cores, and it is believed that machines with over ten thousand

computing cores will be commonly available in the market very soon. Furthermore, with

most ASIC manufacturers moving toward multi-core processors, most machines are parallel

ones and therefore parallel computing is playing a pivotal role for exploiting the power of

presently available infrastructure. While parallel machines provide enormous raw compu-

tational power, it is often not easy to make effective use of all this power. The problems
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encountered in making effective use of a large number of machines are similar to those en-

countered in making a group of people work together. Challenges towards parallel computing

can be understood with examples given below:

(i) People may spend much of their time talking to each other, instead of doing useful

work. Communication between processors is quite expensive, compared with the CPU

speed, so we need to pay attention to minimizing the amount of communication,

otherwise much of the time will be spent on inter-processor communications, rather

than on useful work.

(ii) In a group, a few people may only do much of the work, while others relax. Similarly,

in a computation, the work load on different processors may differ. In order to make

effective use of the parallel machines, we need to keep the workload balanced on all

processors.

(iii) It may be difficult to decompose a problem so that people can work on different parts

simultaneously.

For example, consider someone who wants to have dinner cooked, eat it and then have

the dishes washed. It is not easy to speed up this process by hiring someone to cook,

and another person to wash the dishes, because the three tasks are sequential; the food

needs to be cooked before it is eaten, and the food needs to be eaten before the dishes

are washed. Similar problems occur in parallel computations too, and the sequential parts

of the computation can reduce the effectiveness of parallelisation substantially, however,

HEP computations is trivial to parallelise at inter event level, rather intra event level. In a

typical HEP computation, similar or almost the same computations need to be performed

on hundreds of millions of events and computed information need to be collected for each

event.

Main motivation behind parallelising any problem is to save time and maximise the

utilization of all the underlying resources. During the past 20+ years, the trends indicated
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Figure 3.2: A modern computer architecture: which provides different dimensions to achieve
high computing performance.

by ever faster networks, distributed systems, and multi-processor computer architectures

(even at the desktop level) clearly show that parallelism is the future of computing.

When we talk about a general computing element like a single CPU, it comes into mind

that what are the dimensions available in the CPU by which we can harness or exploit

the computation. Fig. 3.2 shows seven dimensions of a modern computer architecture and

by utilising these we can improve the computing performance. We have used these for

optimising event selection algorithms e.g. optimisation using vectorisation, pipelining and

compiler features have been performed and improvements obtained. However, in general, as

discussed in Sec. 2.5 and presented in Table 2.1, to achieve one to two order of improvement

in computation time for any problem, the underlying algorithms need to be optimised.
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3.2 GPU for Event Selection

As described in introduction Sec. 1.2, GPUs are going to be used as basic computing building

block along with CPUs for event selection work in the CBM Experiment and will be placed

in the FLES. The First-level Event Selector (FLES) will be the central physics selection

system in the CBM. Full event reconstruction will be performed online in FLES on the 1

TB/s input data stream [12]. In order to achieve the high throughput and computation

efficiency, all available computing devices will be used, in particular FPGAs at the first

stages of the system for aggregation and sorting of the subsystem hit messages, followed by

heterogeneous systems comprising CPUs & GPUs, for the subsequent event reconstruction,

selection and track reconstruction.

As per the motivation discussed in Sec. 1.3, after development of the event selection algo-

rithm, major challenge is to perform the event selection on the heterogeneous systems such

that 107 events per second can be processed. In this section, we explore the GPU execution

process, architecture specific memory arrangements, the implementation and optimisation of

the event selection process on NVIDIA GPUs. We compare different heterogeneous parallel

programming paradigms (CUDA and OpenCL) on NVIDIA’s Tesla and Quadro GPUs.

For the algorithms described in the previous chapter 2, we have tested implementations

of both the algorithms on the following two heterogeneous platforms which are used as test

bench for the entire study of this thesis:

S1. A Dell T7500 workstation comprising two Intel Xeon 2.8 GHz six-core processors with

2 GB/core RAM, together with two NVIDIA GPUs (Tesla C2075 [36] and Quadro

4000 [37]).

S2. An AMD-based HP Server with four AMD Opteron 2.6 GHz processors comprising

16 cores with 4 GB/core RAM (total 64 cores).
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3.2.1 GPU execution process

GPUs are the co-processors and can not be used as a main processor on which operating

system can reside. Machines based on heterogeneous architecture, GPUs or co-processors

are termed as ‘device’ and CPUs are as a ‘host’. Methods or functions which will be executed

on the GPUs are termed as Kernel and are denoted using __kernel__ compiler directive.

To utilise a GPU, following basic steps need to be adapted as a work flow,

1. Program the code for CPU GPU including GPU kernel part.

2. Allocate GPU memory.

3. Transfer and copy needed data from host to device.

4. Execute program in parallel at GPU.

5. Transfer back the result or outcome from the device to the host.

6. Use the results for further processing.

3.2.2 GPU Architecture and TESLA C2075

In the hardware industry, NVIDIA is the major player for the development of GPUs. Our

test setup S1 machine also contains the NVIDIA GPUs of TESLA and QUADRO family.

Nvidia Tesla was named after pioneering electrical engineer Nikola Tesla and the TESLA

series products targeted for stream processing or general-purpose graphics processing units

(GPGPU). Nvidia Quadro is mainly for visualisation and graphics purposes, however, the

same can also be utilised for general purpose computing via CUDA. The detailed investiga-

tion of computing performance is presented in the coming sections.

The Tesla C2075 GPU [36] used in this work consists of an array of 14 multiprocessors

called the Streaming Multiprocessors (SMs). Each SM contains 32 Scalar Processors (SPs)

cores therefore total 14 × 32 = 448 cores in a single GPU card. All SPs within each SM
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Figure 3.3: Grid, block and thread architecture of a GPU

share resources such as registers and memory. The instruction issue unit issues the same

instruction across SPs inside a SM. Thus, execute the same instruction at any time like as

SIMT. Figure 3.3 [38] shows a diagrammatic representation of GPU multiple grid, block,

thread architecture. The thread hierarchy is of two levels. At the top-most level, there

exists a two-dimensional grid of thread blocks. At the second level, the thread blocks are

organized as a 3 dimensional array of threads. Kernel execution takes place in the form of

a batch of threads organized as a grid of thread blocks. The thread blocks are scheduled

across SMs. Each block comprises of many warps of 32 threads. Threads belonging to the

same warp execute the same instruction over different data. The efficiency of computation is

the best when the threads follow the same execution path for majority of the computation.

Execution divergence, when threads of a warp follow different execution paths, is handled

automatically inside the hardware. The size of the thread blocks (number of threads per

block) and number of blocks can be managed by the program, and both values need to pass

during the calling the GPU kernel.
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Figure 3.4: GPU memory organization

3.2.3 NVIDIA GPU memory architecture

In general, NVIDIA GPU’s memory organisation is hierarchical as shown in Fig. 3.4. Each

thread has its own private local memory. The Tesla C2075 GPU, includes a configurable L1

cache per Streaming Multiprocessor (SM) block and a unified L2 cache for all the processor

cores. All threads inside a block share a memory space and this memory space local to thread

is different for each block. Size of this local shared memory is 48 KB for the C2075 GPU.

Life time of this memory equals that of the block and it is characterised by low memory

access time. Shared memory comprises of a sequence of 32 bit words called “banks”. There

also exists a global memory shared across all the threads across all the thread blocks. The

lifetime of this global memory is of the entire application. The size of this global memory

is 6 GB for the C2075 GPU. Access time for this global memory is larger than the other
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memories. Global Memory is composed of 128 byte segment sequence and memory requests

for 16 threads (equal to a half warp) are serviced together. Each segment corresponds to a

memory transaction. If the threads in a half warp access data spread across different memory

segments (un-coalesced memory request), the corresponding multiple memory transactions

would lower the performance. Our first implementation of the Brute-Force event selection

algorithm on GPU could not achieve required performance due to un-coalesced memory

access, the same is shown and explained below.

3.2.4 Implementation and optimisation of the Brute-Force event

selection algorithm using CUDA

The Brute-Force event selection algorithm, described in Ch. 2, Sec. 2.4 has been imple-

mented in C language using CUDA API and then compiled with the NVIDIA compiler

(nvcc v7.0.27). Optimisation of the event selection code on GPU is not straight forward,

therefore according to GPU architecture as described earlier, we analysed the Brute-Force

event selection program and modified the memory arrangement accordingly [39]. Multiple

events are processed at the same time, one event being allocated to one thread. After de-

velopment and implementation of the event selection process using CUDA, we concentrated

on optimising the CPU to GPU data transfer time, which is significant as the data volume

is large. Data transfer time from CPU to GPU is an overhead but it is required towards

utilising GPU computing capabilities.

Implementation and optimisation (i1):

In our first approach for implementation of event selection process, all the event hit data

of the setup, consisting of the STS and MuCh detectors, were transferred to the GPU. The

following steps were taken:

1. In the program data are read in from of a file. In the actual experiment, the data will

be deployed in shared memory by the data acquisition software [9] and access to the
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shared memory will be performed in parallel to the algorithmic computation. Note:

The file input time is not included in all the execution time measurements presented

in this thesis.

2. Memory on the GPU device is allocated for a chosen number of events nev(cudaMalloc).

3. Single precision hit data for nev events are transferred from CPU to GPU (cudaMem-

cpy).

4. The number of blocks b and the number of threads per block t are selected to optimise

the GPU computation time.

5. The event selection algorithm is executed in GPU threads for nev events in parallel,

with nev ≤ b · t.

6. The list of selected events is transferred back to the CPU (cudaMemcpy).

The GPU schedules and balances the selected number of blocks and threads on the

available SMs (14 for C2075) and SPs (32). For processing, the data container with the hit

coordinate array is arranged as

x11, y11, z11, x12, y12, z12, ....... x1n, y1n, z1n

x21, y21, z21, x22, y22, z22, ....... x2n, y2n, z2n

........

xm1, ym1, zm1, xm2, ym2, zm2, ....... xmn, ymn, zmn

where x, y, z are the hit coordinates in configuration space; the first index denotes the event,

the second one the consecutive number of the hit in the event.

Implementation and optimisation (i2) : Using coalesced memory access

Our investigation showed that this data arrangement suffers from uncoalesced memory ac-

cess to the x, y, z coordinates (see also [39]). By its SIMT architecture, CUDA executes

32 threads of a block simultaneously; therefore all 32 threads should read from the global
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Figure 3.5: Processing time per event in microseconds as function of the number of events.
The left panel compares the implementations i1, i2 and i3 with CUDA on the Tesla GPU
(see text).

memory in a single or double read instruction. To cope with this, we rearranged the data

such that coalesced memory access is possible. First, we introduced separate data containers

for each coordinate axis, and second, hits of different events are arranged together:

x11, x21,........xm1, x12, x22, ........xm2................x1n, x2n........xmn

y11, y21,........ym1, y12, y22, ........ym2................y1n, y2n........ymn

z11, z21,........zm1, z12, z22, ........zm2................z1n, z2n........zmn
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Figure 3.6: Processing time per event in microseconds as function of the number of events. A
comparison of the execution times on GPU (implementation i3) and on CPU (single-thread)
is shown.

Implementation and optimisation (i3): Using reduction in global read

In the course of further optimising the process, we found that the majority of time is taken

by the global read of data by each thread, thereby requiring a reduction in global read time

as data reside in the global memory and not in the shared or private memory of the GPU.

By construction of the algorithm, the number of global reads for each thread is proportional

to the number of events nev. Each event contains about 5000 hits, and every global read

takes around 300–400 clock cycles [40]. For the computation, however, only a small fraction

of these data are used, namely hits in the last (trigger) station, which are about 15 per layer

per event (see Fig. 2.2). Thus, we introduced a filtering of the data on the CPU host side,

such that only hit data in the trigger station are transferred to GPU [22].

The importance of the optimisation steps is illustrated in Fig. 3.5, showing the per-event

GPU execution time for the various implementations on the Tesla GPU and respectively

the per-event CPU to GPU data transfer time. This study was performed for up to 4,000
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events because of memory limitations of the GPU. The processing time is reduced by a

factor of two from the first implementation (i1) to the one properly using coalesced memory

(i2). The data transfer time is the same for both implementations since the same data are

transferred. Filtering of input data at the host side (i3) gives a reduction by about two

orders of magnitude for the per event-execution time compared to (i2) and one order of

magnitude for the per-event data transfer time.

Table 3.1: Results for the event selection algorithm on the Tesla GPU

#
Events

#
blocks

#
threads

GPU
Time
(ms)

CPU-
GPU
Transfer
Time(ms)

CPU
Time
(ms)

Speed-
Up (CPU
time/GPU
time)

1000 32 32 23.9 1.2 16.38 0.69
2000 64 32 27 2.9 32.40 1.20
3000 64 64 29 6.7 48.60 1.68
4000 64 64 32 9.4 64.83 2.03
5000 128 64 33.9 10.1 81.16 2.39
10000 128 128 48.9 12 161.67 3.31
20000 256 128 89.7 14.5 320.24 3.57
40000 512 128 140.7 19.7 640.25 4.55
80000 1024 128 289.8 28.3 1280.39 4.42

Figure 3.6 and Table 3.1 compare the per-event GPU execution time and data transfer

time for implementation i3 to the single-threaded execution time on CPU. The data filtering

on the host side relaxes the restrictions imposed by the limited GPU memory, such that

a larger number of events (we tested up to 80,000) can be processed at a time. The data

transfer time is lower by one order of magnitude compared to the execution time; moreover,

it can be hidden by performing computation and transfer in parallel [41]. The measure-

ments demonstrate the importance to load the GPU with sufficient data in order to make

optimal use of its capacity. Compared to the single-threaded execution on the CPU (using

optimisation in the gcc compiler, discussed later), we obtain a speed-up of 4.55 for a data

set of 40k events by using the Tesla GPU. Table 3.1 shows that for more than 40k events,

the speed-up with respect to the single-threaded CPU is slightly reduced, indicating that
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Figure 3.7: Comparison of the execution time between optimised with -O2 option and
unoptimised with -O0 option, left: for Intel CPU and right: for AMD CPU.

the optimal data load on the GPU is reached with this amount of events. Our investigations

show that about 3 · 105 events per second can be processed on a single Tesla GPU.

Optimisation on CPU using the compiler options:

After achieving optimal computing performance on the GPU, we started to investigate

performance on the CPUs. GCC, GNU Compiler Collections, has been used to compile

CPU programs written in C and C++ languages. Compiling program always has challenge

of balancing between program performance, memory usage, compilation time, debugging

information, etc. Other than interpreting the code and converting into a machine language

that the system understands, gcc compiler also provides code optimisation options which can

be set via -O flag. In particular, to optimise the execution time performance of any program,

four options -O0, -O1, -O2, -O3 are available with gcc compiler. Most optimisations are

completely disabled at -O0 and it is default option. -O1 option tries to reduce code size and

execution time, without performing any optimisations for compilation time. -O2 performs

nearly all supported optimisations that do not involve a space-speed trade-off. -O3 option

optimises more than -O2, however, execution time performance using these different options

varies depending on the underlying program. It is not always the case that -O3 flag optimises
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the best with respect to the program execution time.

All these different gcc compiler optimisation options (-O0, -O1, -O2, -O3) have been

investigated in detail for the CPU implementation of the Brute-Force algorithm and option

-O2 found to be optimal in context of total execution time. Figure 3.7 compares the exe-

cution time between optimised with -O2 flag and unoptimised with -O0 flag [42]. The left

panel of Fig. 3.7 shows the comparison for Intel CPUs of S1 setup and the right panel shows

for AMD CPUs of S2 setup.

All the execution time measured for CPUs in this thesis have been achieved after optimi-

sations using the -O2 gcc compiler flag. Also architecture specific option –march = native

is used.

3.3 OpenCL: Open computing Language

OpenCL is a low-level API for heterogeneous computing and it provides parallel computing

paradigm. It also provides a framework for writing programs consisting of CPUs, GPUs, dig-

ital signal processors (DSPs), filed-programmable gate arrays (FPGAs) and other processors.

It includes a language for writing kernels and also works like an application programming

interface (API) that is used to define and control the platforms.

3.3.1 Implementation with OpenCL and comparison with CUDA

The previous section has demonstrated that making optimal use of a GPU with the CUDA

API is far from trivial and requires sophisticated optimisation of the data arrangement.

The OpenCL programming paradigm [33] offers an architecture-independent alternative.

However, for a beginner, OpenCL seems difficult as far as its syntax and programming

procedures are concerned. Writing a small “Hello World” program in OpenCL needs creating

platform, device, context, and command queue, then memory allocation via create and

writing buffer, program object creation via creating source and building program, program
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Figure 3.8: Execution time per event for CUDA and OpenCL implementations on the
NVIDIA Tesla and Quadro GPUs

execution via create kernel, enqueueing kernel, reading back buffer, etc. At first sight, this

seems cumbersome compared to CUDA which provides an easy terminology for writing

programs [35]. On the other hand, OpenCL programs can be compiled via available C or

C++ compilers, unlike CUDA which requires a vendor-specific compiler.

Once OpenCL programs are written and compiled, then can be executed on any device,

whether GPU, CPU, or APU, whereas CUDA can be executed only on NVIDIA GPUs.

Both CUDA and OpenCL treat the CPU as host, but for CUDA only the NVIDIA GPU

is a device, whereas OpenCL treats any hardware as computing device by creating an

instruction queue that can be executed on all available computing resources. We thus

investigated OpenCL as an open-source solution for heterogeneous programming in the

spirit of the studies presented in [43] and [44].
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Figure 3.9: Throughput (number of events executed per second) obtained with the pthread,
OpenMP and the MPI implementations as a function of the number of cores used in parallel
for a sample of 20k events. The left panel shows the results for setup S1 (Intel, 12 physical
cores), the right panel those for setup S2 (AMD, 64 physical cores).

Figure 3.8 shows the per-event execution time of the event selection algorithm for differ-

ent numbers of events on the Tesla and Quadro GPUs using the implementations in CUDA

and in OpenCL. We find the OpenCL code execution time to be slightly higher than that

of the CUDA code on both Tesla and Quadro, possibly indicating that CUDA is better op-

timised to the NVIDIA GPU architectures. However, the difference is modest and seems a

reasonable price for the flexibility offered by an architecture-independent code. Comparing

Tesla and Quadro, we find the Tesla GPU to be more powerful, which becomes visible at

large-enough input data (number of events). The hardware differences between these two

GPU cards are manifold – processor speed, global memory size, number of computing cores

etc [36, 37]. We conclude that the Tesla GPU seems more appropriate for our problem than

the Quadro GPU.
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3.4 Investigations on multi-core CPU

An alternative to using GPU accelerator co-processors is to make use of the multi-core CPU

architecture present in contemporary computers [45, 46]. Concurrency on CPU cores can

be established using pthread, OpenMP, MPI, and OpenCL, all of which are open-source

programming paradigms, where OpenCL is primarily developed for many-core or GPU

architecture. A preliminary study using pthread and OpenMP only was presented in [42],

demonstrating the importance of the proper choice of compiler options. Here, we study in

addition MPI and, in particular, OpenCL. We tested implementations of the event selection

algorithm for all four of these programming paradigms on the two platforms S1 and S2; the

GPUs of the S1 setup were idle or in open condition. Hardware parallelism was exploited

in the simplest way by processing one event per thread (see Sec. 3.2.4).

Figure 3.9 (left) compares the throughput (number of events executed per second) on

the Intel Xeon processors (2 x 6 cores) of setup S1 in dependence of the number of cores

(threads) used in parallel for a sample of 20000 events. We find for all three pure parallel

programming implementations a linear scaling with the number of threads up to 12 threads,

from when on the throughput decreases again. This signals that from this point onwards,

the context switching time starts to dominate the total processing time. The same test was

performed on the setup S2 (4 x AMD Opteron 16 cores) as shown in the right panel of

Fig. 3.9, obtaining similar results for 64 threads. OpenCL treats the underlying device, in

this case the CPU, as a single compute unit; therefore, different timing results cannot be

gathered by varying the number of cores.

For both setups, we find the throughput to scale with the number of threads / physical

cores (the speed-up is 35 for AMD and 11 for Intel), which is to be expected for pure data-

level parallelism. On the Intel setup, the performance obtained with pthread, OpenMP and

MPI are similar, where MPI shows slight higher throughput. On the AMD setup, both

pthread and OpenMP are less performant than MPI, although hardware-specific compiler

flags were used. Note: thread spawning and distributing time are not accounted for the MPI
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Figure 3.10: Execution time per event as function of the number of events processed at a
time for the implementations with pthread, OpenMP, MPI and OpenCL on the Intel and
AMD CPUs. The number of threads equals that of the available physical cores (12 for Intel,
64 for AMD).

implementation; they contribute in proportion to the number of threads. We attribute our

findings to the fact that the event selection process does not use shared memory or inter-

thread communication. Unlike the other frameworks, MPI statically binds the thread to

CPU cores. The similarity of the results for the pthread and the OpenMP implementations

are to be expected since internally, OpenMP uses pthread for spawning multiple threads.

The performances obtained with OpenCL, pthread, OpenMP and MPI on the two hard-

ware architectures are compared in Fig. 3.10 for different numbers of events processed at a

time (up to 80,000 events). The number of threads is 12 for Intel and 64 for AMD, as shown

to be optimal by Fig. 3.9. On both platforms, we find the execution times for pthread and

OpenMP to decrease with the number of events and then saturate, indicating a minimal

data size (about 20k events) from which on the process overhead can be neglected. On Intel,

OpenCL performs clearly worse than the other implementations, whereas it is slightly better
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Figure 3.11: Execution time per event as function of the number of events processed at
a time for the implementations (a) with GPU comparing to CPU (single-thread) (b) with
OpenMP, MPI and OpenCL on the Intel CPU.

than OpenMP and pthread on AMD; here, MPI is found to clearly give the best execution

speed. As reasons for OpenCL to perform worse than e.g., MPI, we have to acknowledge the

fact that OpenCL was primarily designed as a GPU programming tool; thus, its performance

is proportional to the number of thread invocations. OpenCL also produces vectorised code

in an automatized way, whereas manual vectorisation and/or compiler optimisation flags

need being used for better performance on other implementations [6].

A comparison of the Intel and AMD processors is not straight forward because of the dif-

ferences in the number of computing units and theoretical peak performances. Considering

only the throughput per core, AMD appears less performant than Intel for all implementa-

tions since the number of parallel threads is 5 times larger than for the Intel CPUs, but the

per event execution time is only 2.5 times smaller. A complete assessment, however, would

have to also take into account the costs for purchase and operation, which is beyond the

scope of the thesis.
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Figure 3.12: Comparison of execution time of event selection process on NVIDIA Tesla GPU
with both the algorithms, the Brute-Force algorithm (blue) and the Selective algorithm
(red).

3.5 The Selective algorithm results and comparison with

the Brute-Force algorithm

Upto now all the studies presented in this chapter is for the Brute-Force event selection

algorithm. Similar studies have also been performed for the Selective algorithm with the

setup S1 machine. As described in Sec. 2.5, the algorithmic complexity is an order lesser

than the Brute-Force algorithm complexity. The effect of algorithmic revision of the Brute-

Force algorithm is clearly visible in all the execution time measurements. For completeness,

the left panel of Fig. 3.11 shows per event execution time as a function of the number of

events for the NVIDIA Tesla GPU and compare with the execution time on S1 setup CPU

(single thread). The right panel of Fig. 3.11 shows the per event execution time for the

OpenMP, MPI and OpenCL implementation of the Selective algorithm on the Intel CPUs

of setup S1.

Figure 3.12 shows comparison of the execution time with varying number of events for

both the algorithms. Note: the execution time is not normalised with number of events.
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The algorithmic improvement of the Selective algorithm than the Brute-Force algorithm in

terms of the execution time is clearly seen in the Fig. 3.12.

3.6 Conclusions

We have described the development of an event selection algorithm for the CBM-MuCh

detector and a systematic study for the implementation of the event selection process using

different parallel computing paradigms like pthread, OpenMP, MPI, and OpenCL for multi-

core CPU architectures, and CUDA and OpenCL for many-core architectures like NVIDIA

GPUs. For both the platforms, the event selection procedure suppresses the archival data

rate by almost two orders of magnitude without reducing the signal efficiency, thus satisfying

the CBM requirements for high-rate data taking.

On GPUs, we have found a speed-up of 4.5 with respect to the optimised single-thread

execution on CPU. This result, however, is only obtained after careful optimisation of the

implementation in CUDA. OpenCL on NVIDIA GPUs are found to perform only slightly

worse than that for CUDA. Our results show that about 3 · 105 events per second can be

processed on a single GPU card of NVIDIA Tesla family. Present hardware supports up

to four GPUs on a single motherboard. This suggests that the targeted CBM interaction

rate of 107 events per second can be accommodated by a small number of servers properly

equipped with GPUs.

In a multi-core CPU environment, we have compared OpenCL, pthread, OpenMP and

MPI as open-source concurrency paradigms. A linear scaling of the data throughput with

the number of parallel threads is observed up to the number of available physical cores. In

the powerful S2 setup with in total 64 AMD cores, we find that about 2 · 106 events can

be processed per second, which is already close to the targeted event rate of 107/s. This

demonstrates that SIMD instructions provided by modern CPUs are essential to achieve

the required throughput, and that the computing demands of the CBM experiment for the

Page 56 Chapter 3



Chapter 3. Heterogeneous and parallel computing paradigms

real-time selection of J/ψ candidate events can be achieved by properly making use of the

parallel capacities of heterogeneous computing architectures. As an example, the NVIDIA

Tesla GPU of setup S1 could be placed into setup S2 to achieve the desired goal.

Comparing the different programming paradigms, we find the cross-platform OpenCL to

be a proper choice for heterogeneous computing environments typical for modern architec-

tures, which combine CPU cores with GPU-like accelerator cards. For such kind of systems,

OpenCL provides a suitable solution to simultaneously exploit all available compute units

for a given application. It also provides the flexibility to future improvements in computing

architectures, which is of particular importance for CBM as an experiment in the construc-

tion stage. This flexibility, however, comes at the price of a reduced performance on CPU

when compared to pure parallel programming paradigms.
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Chapter 4

Digitization and Time Based Simulation

4.1 Introduction

One of the major goals of the CBM experiment at FAIR is the investigation of rare probes.

To achieve the goal, it is required to build the facility which can run with an unprecedented

interaction rates and good statistics of rare probes can be collected. For the same to cope

with the high interaction rates (∼10 MHz), self triggered electronics have been instrumented

and every signal message on each readout channel will be gathered. In the real experiment,

gathered information from the data acquisition system will be in the form of hardware

messages which will be converted into subsystem or detector specific objects termed as

“digi”. Digi is the representation of single raw data or the smallest unit of raw data, in the

context of the CBM software stack. In this respect, almost realistic digitized information is

a must for performance simulation of the experiment.

Digitization is the key process for simulating the realistic output of a subsystem. The task

of the digitization is to calculate the detector response to a track traversing an active detector

element. The process mainly depends on the underlying detector technology and therefore

each subsystem is liable to provide the realistic implementation. Before digitization, one

needs to understand the basic of input and output for the digitizer for any HEP simulation
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ROOT file

Figure 4.1: Schematic for event by event simulation flow.

process. Figure 4.1 depicts the simulation work flow for event by event simulation which

is based on the event by event processing. A large fraction of the HEP experiments so

far are based on the hardware-trigger approach, and therefore the entire software stack

comprising blocks like simulation, reconstruction had been developed keeping generation

of event at the hardware level in mind. As depicted, after the transport simulation, using

a suitable transport engine (e.g. GEANT3), MCPoint objects have been created which

represent particle interaction points inside the active medium of the detector. The MCPoint

object, termed as CbmMuchPoint for MuCh, stores the geometrical information of the track

intersection with the detector. This MCPoints Array and the related information have been

stored event by event in the permanent storage in the form of a ROOT tree, in which one

entry of the tree represents one event. In CbmRoot, it is represented as CbmEvent branch.

This entire data flow works in synchronous mode and each individual process takes one

event as input and produces one event as output and there is one to one correspondence.

This architecture of simulation flow needs to be redesigned for the time based simulation.

Figure 4.2 depicts the probable solution for generation of a free running timestamped data

stream in the form of time slice and stored as CbmTimeSlice in a ROOT tree for further time
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based simulation. Here multiple simulated MC events are taken into the digitizer (described

later) and CbmDaq generates time-slice. At this point the one to one event association is

destroyed and an asynchronous mode is adapted. These time slices will be equivalent to

time stream data gathered from self triggered electronics and DAQ. From these time slices,

after event building, CbmEvent will be created. In event-by-event and time-based, further

reconstruction tasks operate on input vector of digis (described later) and produce output

array, the vector and the array corresponds to one event or one timeslice, respectively.

Figure 4.3, shows the further reconstruction of clusters, hits, and tracklets from digis.

Digitiser CbmTimeSlice

Array of 

CbmMCPoints

from transport
CbmDaq

CbmDigiArray of 

CbmMCPoints

from transportArray of 

CbmMCPoints

from transport

Figure 4.2: Schematic for time based simulation flow.

To have a realistic time based scenario, the MuCh digitizater should fulfil the following

criteria,

(a) Implementation of a realistic detector response,

(b) Should work in both the event by event mode and the time-based (free-streaming)

mode,

(c) Should be compatible with the framework scheme of the in-memory buffer,
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(d) Proper treatment of the interference of tracks in a given readout channel both in the

event mode (interference within one event) and in the time-based mode (interference

within the dead time of the electronics, within or across events),

(e) Generation of time-based digis and then store them into time stream data such that

it describes the self-triggered, free-streaming readout of the detector,

(f) Noise generation (originated from the electronics and the physical processes).
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Figure 4.3: Schematic reconstruction data flow after digi creation.

In this chapter, we describe the entire digitization process in detail covering all the above

requirements, with emphasis on realistic time stamping to every digi specific to the MuCh

detector subsystem. This corresponds to creating the MuCh digi (CbmMuchDigi) objects

from the Monte Carlo Point (CbmMuchPoint) objects.
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Later in this chapter we will provide a detailed performance study which is relevant for

the implementation of a trigger-less free-running data acquisition system. It describes the

implementation of a free-streaming detector simulation for the muon detector using GEMs

and RPCs and analyses the performance and the rate-dependent effects (e.g. data losses

arising from pile-up) of the DAQ system.

4.2 Detector response simulation

4.2.1 Simulations in CbmRoot

In CbmRoot, simulations are performed in two separate steps with intermediate file output.

In the first step called “transport simulation”, the primary particles are traced through the

detector, taking into account their trajectory in the magnetic field, their interaction with

the materials and - for unstable particles - their decay. Secondary particles created by decay

or by interaction with materials are created and traced as well. This step employs external

transport engines; the framework makes use of the ROOT TVirtualMC [47] features which

allow to choose between GEANT3 and GEANT4. The simulation results presented in this

thesis are with the GEANT3 transport engine. At transport level, a realistic description of

the detector geometries, the proper material properties and a map of the magnetic field are

required [19]. As output of the transport simulation, the geometric intersections of particle

trajectories with the active detector elements (“MCPoints”) are recorded, along with the

time-of-flight from the event start and the energy deposit in the active material. These

information are stored in a file and provides the input for the second simulation step.

The task of the detector response simulation is to model the physics processes in the

active detector material, the readout and the digitization in the front-end electronics. The

output objects called “digi” represent the simulated measurements of a single read-out chan-

nel - corresponding to one read-out pad in case of the MuCh. This atomic data unit, “digi”,

contains the information on the respective channel address, the time of the measurement
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termed as time-stamp, and the digitized charge. The digi objects are then forwarded to the

software emulation of the CBM DAQ system as implemented in CbmRoot. At this step, the

association of digis to events is destroyed as described in Sec. 4.1, resulting in a data stream

similar to that expected from the actual experiment. In the time-based simulation, based

on the dead-time discussed later, a single pad might be recorded as two digis with different

time-stamps.

In the context of a free-streaming readout as described in Sec. 4.1, the correct description

of the timing behaviour is of utmost importance. The effects contributing to the finally

registered time stamp are:

• Event time: the time corresponding to the actual collision. It is generated by the

CbmRoot framework from the time profile of the beam and the interaction probability

of the beam particles in the target.

• Time-of-flight: from the event start to the intersection with the detector element. This

time is provided by the transport engine and stored in the MCPoint object.

• Drift time: the time taken by the primary electrons in the GEM or RPC detectors in

MuCh to drift to the readout planes.

• Time response of the readout ASIC to the analog charge collected in the readout pads.

An important figure is the dead time of the readout electronics, i.e., the time after a

hit in which the corresponding readout channel is blocked, such that a second hit arriving

within this time is neglected. This leads to a detector inefficiency and track pile-up which are

obviously dependent on the interaction rate, i.e., the time separation between two subsequent

collisions.

4.2.2 Analogue response simulation

The working principle of a multi-layer GEM detector is illustrated in Fig. 4.4. A traversing

charged particle creates a number of primary electrons in the drift gap through ionisation
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of the gas. The primary electrons drift in the electrical field towards the GEM foils, where

amplification through the creation of avalanches takes place. This process is repeated in

various transfer gaps between the successive GEM foils. Finally, the produced electrons are

further amplified. Amplification takes place in the GEM holes. The drift and transfer fields

are there to guide the secondary electrons to the next GEM foil. Fields in the induction

gap helps in collecting the charge on the pads of the readout PCB.

Our analogue simulation implements a simplified scheme as shown in the Fig. 4.5. The

trajectory of the charged particle in the drift gap is approximated by a straight line, the

coordinates of the entry and exit points being provided from the transport simulation stage.

For each particle, the number of primary electrons is sampled from a Landau distribution,

the parameters of which depend on particle type, energy, track length in the active volume

and specifications of the gas mixture [48]. The primary electrons are randomly generated

along the trajectory in the active volume with a uniform distribution.

Figure 4.4: Working principle of a multi-layer GEM detector
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For each primary electron arriving at the amplification gap, the number of secondary

electrons is calculated from the gas gain settings, and the charge depositions to the gaps

are calculated assuming a spot radius of the avalanche. Depending on the track inclination,

the gas gain and the avalanche profile, a particle can activate one or several pads. The drift

time is the time taken by the primary electron to traverse the active volume (up to the

first GEM foil). The avalanche travels close to the speed of light, such that its propagation

time is negligible in comparison to the drift time. Primary electrons generated in the passive

volume do not contribute measurably to the total signal since no avalanche production takes

place. Transfer gaps between the GEM foils and the induction gap between, the last GEM

foil and readout PCB are combined and termed as passive volume as shown in the Fig. 4.5.

Figure 4.5: Simplified scheme of GEM detector as implemented in the analogue response
simulation.

The parameter input to this analogue simulation consists of the parameters of the Landau

distribution for the number of primary electrons, the drift velocity of the primary electrons,

the gas gain, and the avalanche spot radius. All these parameters are tunable in the CbmRoot

software. The size of the drift gap is taken as per geometry of GEM or RPC. The analogue
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simulation process is the same for GEM and RPC detectors, but with different parameters.

The default settings for both detector types are summarised in Table 4.1.

Table 4.1: Parameters for the analogue simulation of GEM and RPC
detectors

Parameter GEM RPC

MPV for primary Landau distribution from HEED* 12
Drift gap (fixed as per detector geometry) 3 mm 2 mm
Drift Velocity of primary electrons (µm/ns) 100 120
Gas gain 5000 30000
Spot Radius 500 µm 2 mm

* a code to generate primary electrons.

The analogue simulation as described above is performed separately for each input MC-

Point. The resulting charge depositions to the readout pads, however, cannot directly be

digitized, since they block the respective electronics channel for a certain amount of time

(dead time), thus potentially influencing later measurements. Such incidences of different

particles contributing charge to the same pad can happen within one event (conventional

pile-up), but in our free-running scenario also for particles from different events, provided

the difference in the event time is comparable or smaller than the dead time. To cope with

this situation, the registered charges per pad are internally buffered and keeps a match

object associating a link per corresponding incident track. Later this match information is

used for finding the primary and secondary track contribution towards generation of digi or

pile-up. The stored information also contains the pad address, the signal time, the charge,

and the duration of the active signal.

4.3 Digital response simulation

The digital response to the accumulated charge in the readout pads is modelled following

the properties of the readout ASIC, the STS/MUCH-XYTER (SMX) [49, 50]. This ASIC

features two shaping channels, the fast shaper used to determine the time stamp of the

Chapter 4 Page 67



4.3. Digital response simulation

measurement, and the slow shaper measures the charge amplitude by time-over-threshold.

Once a signal in the fast shaper crosses a pre-defined threshold, the signal in the slow shaper

is evaluated and a message to the DAQ system is issued when the amplitude in the slow

shaper falls below a second threshold. The signal shape in the slow shaper thus defines under

which conditions two subsequent signals in the same readout channel can be disentangled.

If two signals could not be disentangled then it is termed as pile-up.

The realistic functionality of merging of two signal shapes due to pile-up had been imple-

mented (described below) and a new signal shape is obtained by bin-by-bin addition of the

two merging signal shapes. A detailed study had been performed regarding charge deposi-

tion effect due to the pile-up cases. In the process, each primary electron generated during

particle tracklet passing via the active volume of the detector had been taken and according

to gas gain and spot radius resulted charge spot area was created. A CbmMuchSignal is cre-

ated for each pad which falls under the area created by spot radius. Then this intermediate

signal is stored in the buffer. The same process is repeated for all the primary electrons for

the same tracklet and new CbmMuchSignal objects are created. Subsequently during storing

in the intermediate buffer (described later), if this new signal interfere with older signal in

the buffer, it is detected as pile-up and the corresponding CbmMuchSignal is modified with

bin by bin addition of signal shape accordingly. This process is then performed for each

primary electron of every MC Point. This realistic implementation has been committed in

CbmRoot version of 2016 [51]. The described realistic process of electronics chip consumes

huge system memory and processing time. This process is realistic but output of SMX chip

is only 5 bit ADC value corresponding to the accumulated charge, therefore, it is decided

that this high compute intensive calculations are not required [52], the same has therefore

been replaced with a rather simple version as described in the next paragraph.

Now merging of two signals is modelled in the latest version of CbmRoot software by a

delta function for the signal shape, the start time being the time stamp and the duration

being the dead time of the ASIC [53]. The amplitude is the total charge. Two overlapping
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signals (i.e., the second one arriving within the dead time of the first) are merged into one,

having the start time of the first signal, the stop time of the second, and the amplitude

is the sum of both the signals. The generated signals are transiently stored in a readout

buffer. When the system time (the time of the currently processed event) exceeds the stop

time of the signal, it is digitized, since then it is guaranteed that it will not be influenced

by subsequently arriving signals.

All analogue signals exceeding the threshold are digitized, using the parameters of the

ADC built into the SMX. The charge is linearly discretised, above a tunable threshold, into

32 bins corresponding to the 5 bit resolution. The time of the digital signal is smeared by a

Gaussian distribution representing the time resolution of the ASIC. The parameter input to

the digital response simulation are thus the number of ADC channels, the ADC threshold,

dynamic range, and the time resolution. The ADC dynamic range is defined as fQMax-fQMin

in the MuCh Digitizer. The currently used values of these parameters are summarised in

Table 4.2. It should be noted that these parameters are still subject to changes; in particular,

the dead time, which is a critical parameter for the performance of the detector system, is

expected to be smaller for SMX v2.2 currently under development [54].

Table 4.2: Parameters for the digital response simulation of GEM and RPC detectors

Parameter GEM RPC
Number of ADC channels 32 (5 bit) 32 (5 bit)
ADC threshold (Min charge equivalent in fc) 2 fC 30 fC
Maximum charge (equivalent in fc) 80 fC 130 fC
ADC dynamic range (fQMax-fQMin) 78 fC 100 fC
Dead time 400 ns 400 ns
Time resolution 5 ns 5 ns

4.3.1 Implementation in CbmRoot

In the context of the CbmRoot framework, MuCh digitization is implemented as CbmMuchDigitizeGem

task class and the same is compatible with the FairRoot framework which is instan-
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tiated using FairRunSim or FairRunAna kind of steering classes. Earlier [51] this task

class was compatible for event mode simulation only. It took a long time to convert

the existing classes from the event mode to a time based mode. Each digi contains a

unique 32 bit CbmMuchAddress and for each detector channel CbmMuchPad is assigned with

one CbmMuchAddress. Each CbmMuchDigi is associated with CbmMuchPad uniquely using

CbmMuchAddress. Here CbmMuchPad is active if a particular detector element is fired and

the corresponding digi is created.

For free streaming scenario or time based mode, track interference can happen within an

event and also across the event. To implement generation of time stamps for each digi, we

investigated all the relevant classes. As discussed earlier, that CbmMuchDigi is associated

with CbmMuchAddress and in turn with CbmMuchPad. The CbmMuchPad is the first choice to

implement timing measurement. During simulation in CbmRoot, all the pads are reset after

each event, therefore to keep active channel information in the CbmMuchPad is not feasible. A

detector channel, CbmMuchPad, can also be fired due to inter event track interference for the

free streaming scenario and CbmMuchPad is reset after each event. To keep some information

across the events, a buffer is required, which is implemented as CbmReadoutBuffer in the

CbmRoot framework.

For time based implementation, MuCh related data classes must be compatible with the

following requirements,

1. to work both in event mode and time-based (free-streaming) mode;

2. be compatible with the framework scheme of CbmReadoutBuffer;

3. properly treat interference of tracks in a given readout channel both in the event mode

(interference within one event) and in the time-based mode (interference within the

dead time of the electronics, within or across events).

To cope up with the requirement of implementation of interference a new class CbmMuchSignal

has been introduced to keep the signal shape according to the energy deposition of the in-
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cident track. For each channel/pad, a CbmMuchSignal is generated, which describes the

analogue response. It contains the unique detector address, the signal time, the time un-

til the signal is active and can be influenced by subsequent signals (stop time), and the

signal shape represented by a TArrayD in steps of nanoseconds according to the charge

accumulation formula [49].

The time of the signal, which is crucial for a correct description of the free-streaming

behaviour, is calculated from the event start time (obtained from FairRunAna), the time

of the CbmMuchPoint (time-of-flight from event start to detector) and the drift time in the

GEM/RPC.

The created signals are buffered in the CbmMuchReadoutBuffer singleton object, deriving

from the CbmReadoutBuffer template. This buffer is responsible for dealing with pile-up.

In case a second signal arrives in a given readout channel (pad) within its dead time, the

Modify() function is called. This method merges the two signals into one. The start time

of the resulting signal is the minimum of the start times of the merged signals, the stop time

is the maximum of the two stop times. The new signal’s amplitude is obtained by the sum

of both the signals.

After processing all CbmMuchPoint objects of one event in this manner, the readout

buffer releases all buffered signals with a stop time before the current event time, since they

cannot be influenced by following signals any more. In case of event-by-event simulation,

the entire buffer is read out irrespective of time, which excludes interference of tracks from

different events, however, interference of tracks within the single event has been taken care

of.

CbmMuchSignal objects released by the readout buffer are converted into digital infor-

mation (CbmMuchDigi) taking into account the properties of the readout ASIC like number

of ADC bins, dynamic range and threshold. As described earlier, STS-MUCH-XYTER

chip [54] is used for the readout of 128 readout channels. Detailed description and working

principle of the SMX chip is not in the scope of this thesis, however, timing features, ADC,
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dynamic range etc of the chip have been studied and considered for the precise and realistic

implementation.
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Figure 4.6: Logical diagram for MuCh digitizer for time based, signal buffered scheme.

The digis (CbmMuchDigi) are delivered to the CbmDaq software instance, which aggregates

digis from all detector systems, builds time slices and stores them in the output tree. In

case of event-by-event simulation, the digis are directly written into the output tree. The

work flow for digitization in MuCh is schematically shown in Fig. 4.6.

4.3.2 Dead-time of Electronics

An important figure is the dead time of the readout electronics, i.e., the time after a hit in

which the corresponding readout channel is blocked, such that a second hit arriving within

this time is neglected. This leads to a detector inefficiency which is obviously dependent

on the interaction rate, i.e., the time separation between two subsequent collisions. In

case a second signal arrives in a given readout channel (pad) within its dead time, the

buffered signal is modified and the two signals are merged into one. The start time of the

resulting signal is the minimum of the start times of the merged signals, the stop time is
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the maximum of the two stop times. Typical signal shape and general electronics response

is shown in Fig. 4.7. Implementation of realistic deadtime is under continuous development

as the SMX chip has undergone major revisions and SMX v2.2 [54] will be released in near

future using fast response (90 ns configuration) of the slow shaper. The SMX chip has 4

different configurations which vary from 90 - 280 ns [54].

Figure 4.7: General electronics response and signal shape generation.

Signal objects released by the readout buffer are converted into digital information (digi

object) taking into account the properties of the readout ASIC. SMX ASIC [54] is used for

the readout of 128 channels and each channel is uniquely connected with a single pad of the

detector by almost maintaining the same track length for each channel.

In a nutshell, the task of the MuCh digitization is to calculate the detector response

to a track traversing an active detector element. Inside CbmRoot, this means creating

CbmMuchDigi objects (representing the smallest unit of raw data) from CbmMuchPoint ob-

jects, which store the geometrical information of the track intersection with the detector

obtained from transport simulation. To save the run-time memory, drift-time calculation

is performed only once for a track or a MC Point, not for all primary electrons generated
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during drift gap for a single track.

Detailed pile-up effect investigation is performed and described in coming Sec. 4.4. It is

seen that for the MuCh setup, pile-up at high interaction rate has a significant impact on

the first station.

4.3.3 Noise generation and simulation

There are two types of noise, (a) Electronics Noise and (b) Physics Noise. Both are not

event correlated noise (not correlated to any particle produced in the event) and makes more

sense in the time-stream mode, which will be part of the real data.

Electronics Noise: A self-triggered electronics or free streaming electronics work with

the threshold concept, i.e., whenever the noise in a given pad/channel exceeds the threshold,

it generates a signal. In this respect, the noise signal may trigger continuously depending

on the threshold value.

Every pad is connected with one of the channels of the SMX front end board, which

means the electronics noise may occur at any channel. In our implementation, the noise rate

has been introduced in the MuCh digitizer as a tunable parameter to perform a detailed

study of the achievable data stream and to generate the realistic data stream including

electronics noise. We have generated per-module noise for a period between the previous

event time (t1) and the current event time (t2). The mean number of noise signals in a

module is equal to the per-pad noise rate × the number of pads in the particular module

× the time duration (t2 - t1). Number of noise signals in between this time duration is

implemented as Poissonian distribution of mean noise. Time of each noise signal is taken as

uniformly random between t1, t2 and charge of the signal is estimated based on a Gaussian

distribution around the threshold charge. These generated noise signals have been added to

the corresponding signal if it introduces a pileup with any earlier signal. It may be noted

that the generated noise signals are not matched with any input Monte-Carlo track.

Physics Noise: Signals which are not event correlated but are produced due to physics
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processes are referred to as physics noise. These are not taken care of in the event generators

as these are not event correlated. One such signals are delta electrons produced by the beam

particles in the target. These do not introduce a significant effect for MuCh setup, therefore,

it is not implemented in the MuCh digitizer.

Thermal noise generation: Our simulation also covers thermal noise generating

random signals from the readout electronics. Thermal noise is always present in the readout

channel; the distribution of its value is approximately Gaussian. Whenever the noise charge

exceeds the threshold, a message is generated just as in case of charge originating from a

traversing particle. The occurrence of this noise is random and not correlated in time to

events.

In MuCh digitizer implementation, the noise generation can be enabled or disabled and

is described by a tunable parameter the noise rate per pad. From this parameter, the

number of noise signals is sampled for each module for the time period from the previous

to the current event time from a Poissonian distribution with the expectation value noise

rate × number of pads per module × time interval. The time of the noise signals is sampled

from a uniform distribution in the respective time interval; their charge is sampled from the

Gaussian noise distribution. Noise signals are inserted into the readout buffer and thus into

the simulated data stream. They can interfere with “real” signals from traversing particles

in the same way as two “real” signals (see the previous subsection).

4.4 Investigations of time-stamped data stream

The CBM experiment intends to operate at high interaction rates of up to 107 events per sec-

ond. At such rates, the average time between two subsequent events (100 ns for 107 events/s)

becomes comparable to the dead time of the readout electronics (400 ns). Consequently,

losses due to interference from particles originating from different events are expected. The

developed simulation software as described in the previous section allows to study such
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timing effects and to quantify rate-dependent losses, which is essential to determine the

performance of the detector.

For the following studies, we have simulated both minimum-bias and central Au + Au

collisions at pbeam = 10 GeV/c. In the minimum-bias event sample, the collision impact

parameter b is realistically distributed according to the geometric cross section (∝ bdb).

The time sequence of such events corresponds to the actual experimental situation. Central

events (b ∼ 0) create the highest track multiplicity and thus the highest data load on the

detectors. A time series of central events only does not correspond to the physical situation,

but is used here to verify the simulation software since it magnifies effects arising from the

finite dead time.

The result of the MuCh simulation is a stream of digi objects integrated by the DAQ

software into the streams of the other CBM detector systems. Now we can generate time

stream of digis. In the framework, timeslice length and interaction rate are tunable param-

eters which can be provided in the run_digi.C macro. By default, event rate is 107 events

per second and timeslice length is 10000 nanoseconds is set in the macro. It simulate, the

free streaming scenario. Due to 107 Hz interaction rate, on an average events are 100 ns

apart. In the CbmRoot system interaction is simulated with Poisson distribution. In this

case approx 100 generated events will be placed in one time slice of 10000 ns length.

4.4.1 MuCh detector configuration for SIS-100 energies

The MuCh detector [7] serves for the identification of muons by filtering out other particle

species in segmented absorbers. For the SIS-100 muon setup, the absorbers are arranged as

five segments with three detector layers in between each pair of segments. The segmented

absorber system allows to trace particle trajectories through the entire setup, which would

not be possible by a monolithic absorber because of small-angle scattering of the muons

in the absorber material. A thick absorber also likely to absorb muons without generating

signal. Figure 4.8 shows the MuCh geometry consisting 4 detector stations and 5 abosorbers
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Figure 4.8: Schematic layout of the MuCh detector for SIS-100 muon setup, consisting of a
set of absorber segments inter-laid with detector stations.

as implemented in current version of the CbmRoot. Earlier in Fig. 1.5, shown in Sec. 1.2,

we showed the MuCh setup for SIS-300. Hereafter, all studies presented are based on the

MuCh setup for SIS-100.

The hit rates in the detector layers differ significantly because of the successive absorption

of particles by the absorber segments. Thus, different detector technologies have been

employed for MuCh construction: the two upstream stations (detector triplets) will use Gas

Electron Multiplier (GEM detector), while the two downstream stations will be constructed

from high-rate low gain Resistive Plate Chambers (RPC). In both cases, the detector readout

planes are segmented into pads in a r − φ geometry, the granularity depends on the layer

position and the radial distance from the beam. The readout segmentation was optimised

based on efficiency and signal-to-background ratio for the detection of muon pairs in heavy-
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Figure 4.9: Pad segmentation of the one quarter of first layer of the first station. Here, the
angular granularity is δφ = 1◦ and δr = rδφ.

ion collisions at FAIR energies [7, 55]. The pad layout is illustrated in Fig. 4.9 as an example

of the first layer of the first station. Similar pad layout but of different pad dimensions is

implemented in the MuCh Geometry under CbmRoot. The station-1 and station-2 have 1◦

segmentation and station-3 and 4 have 5◦ and 6◦ segmentation respectively for all 3 detector

layers under each station.

Figure 4.10 shows the digi rate obtained from the time-stamped data stream simulation

combined for all 4 MuCh stations. In this data stream, there is no event boundary and

all the digis have their time stamp. The MC-true event time generated by the CbmRoot

simulation framework is overlaid for event start time representation. We see that events
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can be identified by peaks in the distribution of digis [56]. The event building has been

discussed as outlook in the conclusion Sec. 5.1.
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Figure 4.10: The time distribution of the MuCh digis for a certain time period ( within a time
slice), with several events in and with moderate noise switched on, resembling self-triggered
free running data stream. Overlaid MC true event start time as red dashed line.

4.4.2 Pile-up effect

The rate-dependent data losses can also be qualified by studying the pile-up effects. In

our simulation, as earlier mentioned, the reference to the Monte-Carlo origin is kept for

each digi object. Pile-up thus happened if a digi object has references to more than one

Monte-Carlo particles. We define the pile-up fraction as the number of digis with multiple

MC references divided by the total number of digis. As discussed in Sec. 4.3, SMX chip is

continuously being upgraded and the efforts are going on in the direction of reducing the

dead-time, however effective dead-time of SMX [54] for MuCh mode will be upto 400 nano-

second only and therefore all the studies presented in this thesis have been performed using
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400 nano-second of deadtime.

A common detector performance figure is the occupancy, conventionally defined as the

probability for a single channel to be activated in one event. In our free-running scenario,

we calculate this quantity as the number of digis divided by the number of pads and the

number of simulated events.
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Figure 4.11: Average single-channel occupancy in the first layer of the first station as a
function of dead time for Au+Au collisions at 107 events/s.

Figure 4.11 shows this occupancy (averaged over one detector layer) for the first layer

of the first station at an event rate of 107/s as a function of the single-channel dead time.

The decrease in occupancy with dead time, moderate for minimum-bias events and better

visible for central events, is an expected consequence of the data loss due to signals arriving

in the dead time of a previous signal.

Pile-up fraction is shown in Fig. 4.12 again as a function of dead time for an interaction

rate of 107/s. For minimum-bias events, the fraction slowly varies with dead time; for a value

of 400 ns, corresponding to the current SMX design, it amounts to about 13%. It should be

mentioned that as discussed later the maximum contribution to this pile-up fraction is from

the secondary tracks generated in the material. This does not represent the pile-up for all
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Figure 4.12: Average pile-up fraction in the first layer of the first station as a function of
dead time for Au+Au collisions at 107 events/s.

tracks (primary & secondary) associated with the incident primaries, which will govern the

capabilities of tracking of primary tracks in the detector.

The pile-up fraction is not dependent on centrality therefore change in pile-up fraction

from central to minimum bias is not directly correlated as for occupancy. Similarly from

event mode to time stream mode, the pile up effect increases but not consistent for different

stations. As an outlook, we will investigate in detail about this behaviour corresponding to

physics observable.

The pile-up fraction is shown in Fig. 4.13 differentially for each sector in the first layer

of the first station for different interaction rates, varying from 104/s to 107/s. Here one

sector denotes one ring containing 360 pads which is according to progressive geometry (see

Fig. 4.9). Again, the rate effect is better visible for central events (right-hand panel) than

for minimum-bias events (left-hand panel). Pile-up at low rates happens between tracks

within the same event and is thus irreducible by varying the dead time; it corresponds to

conventional “double hits” and is fixed by the granularity (pad layout) of the detector. From

an event rate of about 106/s on, the additional pile-up between tracks from different events
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becomes visible and increases with increasing rate.
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Figure 4.13: Pile-up fraction in each sector of the first layer of the fist MuCh station for a
dead time of 400 ns and for different interaction rates. The left panel shows the (realistic)
case of minimum-bias events, the right panel the (artificial) case of central events only.

Both occupancy and pile-up studies have been performed using central events to see the

extreme effect along with that for the minimum bias events. Fig. 4.14 shows the occupancy

distribution and Fig. 4.15 shows the timing inefficiency or pile-up effect as a function of the

sector number representing the radial ring as per readout segmentation for event-by-event

and time-based simulation for the first layers of all 4 MuCh stations. The pile up plots in

Fig. 4.15 show that for central events, pile ups on the first station accounts up to ∼ 26%

for time stream mode compared to ∼ 10% in the event-by-event mode. Though, the effect

is lesser in minimum bias events which is realistic, however, it is significant.

In Sec. 4.2, it is mentioned that the segmentation parameters of RPC based 3rd and 4th

MuCh stations are not similar to that of the first two stations, therefore the occupancy and

pile up effect is not similar for the third and the fourth stations as compared to the first

two stations.

The Occupancy and the timing inefficiency plots with varying dead time have been

studied in detail. It is found that the effect of varying dead-time is not visible in the event

by event mode as most of the particle in an event arrives at the same time therefore dead

time does not play any significant role. However, for the time-based mode, increasing dead-
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Figure 4.14: Occupancy with respect to sector for the 1st layers of all 4 MuCh Stations.
Occupancy is compared for the time based mode and the event mode for both central and
min-bias events.

time decreases the digi occupancy as once pad is fired it is active for minimum upto next 3

events and could not be fired again if track passes to the same detector channel therefore

not counted for the occupancy for the later cases.

The situation in the other three MuCh stations is comparable to the one in the first

station, as shown in Fig. 4.16. In all stations, an increase of inter-event pile-up with rate

is observed on top of the irreducible in-event pile-up. Note that for constructional reasons,

station-2 has the same angular pad segmentation as station-1, although the hit density is

significantly reduced in the absorber segment in between which can be seen in the left panel

Chapter 4 Page 83



4.4. Investigations of time-stamped data stream

0 10 20 30 40 50 60 70 80 90 100

sector

10

p
ile

-u
p

 f
ra

c
ti
o

n
 (

%
)

central (event by event mode)

central (time stream mode)

minimum bias (event by event mode)

minimum bias (time stream mode)

station 1 (layer1)

0 10 20 30 40 50 60 70 80 90 100

sector

10

p
ile

-u
p

 f
ra

c
ti
o

n
 (

%
)

central (event by event mode)

central (time stream mode)

minimum bias (event by event mode)

minimum bias (time stream mode)

station 2 (layer 1)

0 2 4 6 8 10 12 14 16 18 20

sector

10

p
ile

-u
p

 f
ra

c
ti
o

n
 (

%
)

station 3 (layer 1) central (event by event mode)

central (time stream mode)

minimum bias (event by event mode)

minimum bias (time stream mode)

0 2 4 6 8 10 12 14 16 18

sector

10

p
ile

-u
p

 f
ra

c
ti
o

n
 (

%
)

central (event by event mode)

central (time stream mode)

minimum bias (event by event mode)

minimum bias (time stream mode)

station 4 (layer 1)

Figure 4.15: Pile-up fraction for event by event and time stream mode for 4 stations of
MuCh setup. Dead time is 400 ns and event rate is 10 MHz.

of Fig. 4.17. This results in a lower occupancy and a lower amount of pile-up losses compared

to station-1. The pad layouts of stations-3 and 4 were chosen so as to result in an occupancy

similar that to in station-1. The right panel of Fig. 4.17 shows the digi occupancy for first

layer of 3rd and 4th MuCh station as a function of the sector number.

The consequence of the pile-up for the sensitivity of the detector to physics observables

must be assessed by proper simulations including the full reconstruction of the simulated

data stream in terms of hits and tracks. Such studies are yet to come. However, identifying

the Monte-Carlo origin of the pile-up cases, we find that 92.47% of all pile-up cases happen

between two secondary tracks in a shower created close to the downstream edge of an
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Figure 4.16: Average pile-up fraction as a function of interaction rate for minimum-bias
Au+Au collisions at 10AGeV/c. The single-channel dead time was taken to be 400 ns.

absorber layer. Such shower tracks concentrated in a small emission cone are thus more

likely to deliver charge into the same read-out pad. About 7.4% of pile-ups occur between

a primary and a secondary track; the fraction of pile-ups between two primary tracks (from

the main event vertex) is negligible. This suggests the impact of pile-up on the physics

performance of the detector to be minimal.
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Figure 4.17: Digi occupancy as a function of the sector number of the first layer of 1st and
2nd MuCh stations (left panel) and 3rd and 4th MuCh stations (right panel).
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4.5 Cluster and hit finding

In reconstruction, the cluster and the hit finding process, is the first reconstruction task, to

be executed before track finding as shown in Fig. 4.3. There are two probable approaches

for event building from the time-stream data (a) performing event building based on the

digi multiplicities, (b) event building using tracking [57, 56]. Both approaches need precise

cluster and hit finding procedure and should thus be independent of the size of the time

stream delivered by the data acquisition and should not depend on the event by event

processing. A precise process has been developed to find clusters and hits with respect to

time measurement for the MuCh setup. First, using both spatial and temporal information,

neighbouring fired pads are grouped to form a cluster. The centroid of a cluster is then used

to construct a hit. The implementation sorts the input raw data (digis) into a std::vector

for each module. Each detector layer under every MuCh station is divided into a few

modules. The module size is according to the availability of the largest width GEM foil and

production feasibility, thus, number of modules in a layer varies for each station. Cluster

and hit findings are independent of the module, thus can be executed in parallel for each

module [58]. The corresponding classes are developed in such a way that it can be used for

both the event-by-event and the time-based mode and compliant to free-streaming data.

The DAQ will deliver time sorted data stream, therefore simulation framework as de-

scribed in Sec. 4.2 also stores all the digis in time sorted manner, which will be input for

the cluster and hit reconstruction tasks. At the beginning, the cluster finding process in-

termediately stores module wise digis information into a vector, and thereafter, looped over

all digis of a particular module. Different time windows, based on the tunable parameter of

cluster separation time, have been built for further processing. It helps to maintain uniform

execution time performance for the event by event and time stream mode. Thereafter, it is

looped over generated time windows and enable fired pads (channels) in that vector. After

this, it is looped over on the fired pad vector to create clusters accordingly. Keeping online

reconstruction in mind, the entire cluster and hit finding processes have been developed
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based on a modular design.

Clusters generated from the cluster finding algorithm are used to generate hits (real

space points). Detailed performance of hit finding algorithm has been performed using

three types of hit finding approaches (a) one hit per pad (b) one hit per cluster and (c)

search for local maxima. The search for local maxima has been seen as the most realistic

hit finding approach and used as default algorithm in the MuCh simulations [7]. Hereafter,

cluster-by-cluster search for local maxima, in terms of the charge distribution stored as

ADC value, has been performed. Hit coordinates are assigned to the centre of gravity based

on the ADC values of fired pads of a cluster, corresponding to local maxima. If cluster

dimensions are less than equal to 2 pads then one hit is created. The spatial position is

determined based on charge distribution on the pads of a particular cluster which is based

on eq 4.1 and eq 4.2. For time-based reconstruction, timestamp of the hit is important and

hit time is the minimum time of the digi out of all the digis under the particular cluster as

per eq 4.3.

Xhit =

∑
i(xi × qi)∑

i(qi)
(4.1)

Yhit =

∑
i(yi × qi)∑

i(qi)
(4.2)

T = min(ti) (4.3)

All the hardware messages (hits information) given by the data acquisition system

(DAQ) [59] are gathered in time stream in the form of data packages (known as time

slices). Time slice contains data for a pre-defined fixed time interval, which will comprise

many events (O(1000) - O(100000)). All reconstruction algorithms have to operate on such

time slices as is the raw data input format. In the context of the processing time of such

time streams, its execution time should thus be independent of the size of the time slice
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delivered by the data acquisition, making it suitable for being used in the online recon-

struction. Above mentioned cluster and hit reconstruction processes have been optimized

keeping this requirement in consideration. The Figure 4.18 shows the per event execution

time as a function of time slice length (number of events per time slice) and it shows per

event cluster and hit reconstruction execution time is independent of the number of events

under a time slice.
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Figure 4.18: Execution time for cluster and hit finding.

In the latest version of CbmRoot, few example macros are available which guide to gener-

ate time-stampled data stream. One such common example macro is run_digi.C, in which

the output time-slice length and interaction rate can be set as input parameters. To further

visualise our time based simulation study, data stream equivalent to real experiment-like

scenario has been generated with very low interaction rate e.g. 105 and time slice length of

10000 ns. In this case, most of the generated events should be placed such that one event

fall in one time slice.

Figure 4.19 shows the distribution of the number of MuCh digis for simulated time-slices

generated by providing 1000 background events as input. According to the selected input

combination of interaction rate and time-slice length, one event should fall under one time-

slice, but due to Poissonian distribution of event start time, few time-slices are containing

two or three events and similarly few time-slices are containing none of the event.

The time distribution of digis within a single event is shown in Fig. 4.20 together with
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Figure 4.19: The MuCh digi distribution per time slice for simulated 1000 events. With
generation of time-slices, correspondence to event is broken.

the corresponding Monte-Carlo true time of the track in the detector. Included is also the

reconstructed hit time, where a hit results from a cluster-finding procedure which groups

simultaneously active neighbouring pads. The MC true time shows a narrow peak and

an approximately exponential tail. The peak originates from both primary and secondary

tracks, which are registered within a time span of less than 10 ns. Due to interaction with

absorber material of the muon system, 94.5% digis, registered in MuCh detector layers, are

generated from secondary tracks. The offset of the peak (about 7 ns) reflects the time-of-

flight from the main interaction vertex to the MuCh detectors (z distance of first MuCh

detector layer is shown in Fig. 1.5). The exponential tail comprises secondary tracks only.

In comparison, the digi time distribution shows a broadening of the peak due to the time

resolution and an additional offset stemming from the drift time of the electrons in the drift

gap of the GEM counters (see Fig. 4.5). Note that the integrals of the distributions of MC

points and digis are different since one track can activate more than one pad and more than

one MC points can generates one digi. The hit time, on the other hand, is corrected for the

electron drift and thus shows no offset with respect to the MC origin.
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Figure 4.20: The time distribution of MuCh digis in a single event.

4.6 Hit Reconstruction Validation

Correctness or validation of the generated hit time after reconstruction including digiti-

zation, clusterization and hit creation needs to be evaluated with respect to time after

transportation. Monte Carlo time is the time of flight. Each MC-Point contains time in

nanosecond which is the time elapsed since the beginning of the event till the start of the

point. For event by event processing, interaction time = 0 for each event. Digi time is

computed as the sum of event time, MC-Point time and drift time (due to the underlying

detector as described in detail in the Sec. 4.2). As explained in Sec. 4.5 hits are created after

clustering of digis. During the computation of hit time, correction of drift time is taken care

such that the global hit time is independent of the underlying detector effect.

The Figure 4.21 shows the time measurement for all 4 MuCh stations after 3 different

stages (i) transport simulation (black), (ii) digitization (red) and (iii) hit reconstruction

(green). It shows that almost all the particles reach a particular station at the same MC

time (denoted with black colour) and varies according to time of flight to the particular

station. It can be seen that time after digitization (red colour) shifts towards right due to
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Figure 4.21: Time distribution of Monte-Carlo points (black), digis (red) and hits (green) in
a single event in the first layer of all 4 MuCh stations of the MuCh detector (top left station
1, top right station 2, bottom left station 3, bottom right station 4). Hits are reconstructed
from clusters of digis in neighbouring active pads. The origin of the time axis corresponds
to the Monte-Carlo event time.

the drift time of the underlying detector. The peak of the hit time (green colour) coincide

with the MC time as the drift time correction performed during hit reconstruction. The

long tail of time distribution is due to slow momentum and late particles.

To validate the time measurement process, masked the introduction of drift time in the

digitization and also removed the correction done in the hit reconstruction. All the plots

of Fig. 4.21 have been regenerated for all 4 MuCh stations to qualify the correctness of the

process.

The Figure 4.22 shows time measurement after masking of drift time effect for all 4 MuCh

stations. It can be seen that MC time, digi time and hit time coincide with each other. Hits

multiplicity is slightly lesser than MC point multiplicity due to hit finding algorithm which

is based on the search for local maxima, not the one-hit per fired pad.

Validation of simulated time measurement can be evaluated via residual and pull distri-

bution with respect to time. Residual time is defined as the reconstructed time (hit time)
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Figure 4.22: Time measurement for all 4 MuCh stations after transportation (monte
carlo time (black)), after digitizatoin (digi time(red)) and after hit reconstruction (hit
time(green)) for (a) station 1, (b) station 2, (c) station 3, (d) station 4.

minus MC time generated by transport simulation and pull distribution is generated after

the division of individual time error associated with each hit on the residual time. The

Figure 4.23 shows residual and pull distribution which is Gaussian in shape due to detector

drift time effect (black), however, without drift time distribution is peaked at 0 (blue) which

shows that reconstruction is flawless with respect to time measurement.
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Figure 4.23: Residual (left) and pull (right) distribution for the entire MuCh setup.
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Summary and Discussions

The computing demands for modern nuclear physics experiments are increasing in manyfold,

this holds true in particular for experiments relying heavily on real-time data processing.

The Compressed Baryonic Matter experiment will probe strongly interacting matter at

extreme net-baryon densities. Its ambitious physics programme requires to take data in

free-streaming mode at an unprecedented interaction rate of 10 MHz, thus, event building,

on-line event selection, trigger generation among others will be performed on the computers

at real time only. One can say that the CBM is in one hand a mega physics experiment and

a big computing project on the other.

In CBM, during proton or heavy ion induced collisions, J/ψ mesons will be generated

with an extremely low production cross section. As J/ψ decays dominantly into the dimuon

channel of µ+ and µ−, a Muon Chamber (MuCh) system is being designed and developed for

the detection of dimuon pairs originating from these collisions. It consists of an alternating

layers of segmented absorbers and detector stations. As collision rate is extremely high

and the rate of J/ψ production is very low at FAIR energies (EL = 10 − 40 AGeV), it has

motivated us, to develop a real-time event selection process. The process selects events

which are likely to contain J/ψ. In this thesis we have described following in detail,

1. Development of an event selection algorithm also known as trigger algorithm for the
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CBM-MuCh detector data which decides based only on the hits of the last MuCh

station whether the specific event likely to contain J/ψ or not. This goal leads to

the development of two event selection algorithms, (a) Brute-Force and (b) Selective

based on the di-muon signature.

2. A systematic study for the implementation of the event selection process using different

parallel computing paradigms using heterogeneous computing has been performed and

it has been demonstrated that the events containing J/ψ can be selected on-line using

single machine comprising GPU and CPU.

3. Development of a time based software stack to perform trigger-less real time collision

simulation and generated realistic data stream.

To select candidate events in real-time which contain J/ψ decaying into µ+µ−, the

Brute-Force and the Selective event selection algorithms have been developed on the basis

of the signature that the two daughter muons of high momenta traverse all the absorber

layers of MuCh and reach the trigger station, while hadrons, electrons, and low-momentum

muons will be absorbed before reaching the last station. Since J/ψ decays promptly (cτ =

7.1 · 10−21s), the decay products practically originate from the primary (collision) vertex,

i.e., from the target. Owing again to the high momenta of the muons, their trajectories

can be approximated by straight lines even in the bending plane of the dipole magnetic

field, which has a bending power of 1 Tm. The trigger station consisting of three detector

layers provides three space points for a muon, allowing to check the back-pointing to the

primary vertex. The signature of a candidate event is thus the simultaneous registration

of two particles in the trigger station which can be extrapolated backward to the target.

The Brute-Force algorithm processes all combinations of space points of the last 3 layers

of MuCh and the Selective algorithm processes only selective combinations which follow

tolerance range criteria, thus algorithmic complexity reduces by an order for the Selective

algorithm than the Brute-Force algorithm.
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It has also been demonstrated that using different parallel computing paradigms like

pthread, OpenMP, MPI, and OpenCL for multi-core CPU architectures, and CUDA and

OpenCL for many-core architectures like NVIDIA GPUs, processing at an interaction rate

of 107 events per second can be achieved by the studied event selection algorithm. For

both platforms, the event selection procedure suppresses the archival data rate by almost

two orders of magnitude without reducing the signal efficiency, thus satisfying the CBM

requirements for high-rate data taking and demonstrated that events containing J/ψ can be

selected on-line using available GPU and CPU.

On GPUs, we have found a speed-up of 4.5 with respect to the optimised single-thread

execution on CPU. This result, however, is only obtained after careful optimisation of the

implementation in CUDA. OpenCL on NVIDIA GPUs are found to perform slightly worse

than that for CUDA. The execution time measurements for the Brute-Force event selection

process show that about 3 · 105 events per second can be processed on a single GPU card of

NVIDIA Tesla family. It is shown that the compute complexity of the Brute-Force algorithm

is O(n3), and O(n2) for the Selective algorithm. The complexity of the selective algorithm

has been reduced by an order of magnitude and therefore shows that more than 107 events

per second can be processed on a single GPU card and also using a single machine with dual

CPU. Present hardware supports up to eight GPUs on a single motherboard. This suggests

that other real-time processing like event building may also be accommodated together with

our event selection for the targeted CBM interaction rate of 107 events per second.

In a multi-core CPU environment, we have compared OpenCL, pthread, OpenMP and

MPI as open-source concurrency paradigms. A linear scaling of the data throughput with

the number of parallel threads is observed up to the number of available physical cores.

For the Brute-Force event selection process, in the powerful S2 setup consisting of the total

64 AMD cores, we find that about 2 · 106 events can be processed per second, which is

close to the targeted event rate of 107/s. This demonstrates that the SIMD instructions

provided by the modern CPUs are essential to achieve the required throughput. It is also
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shown that the computing demands of the CBM experiment for the real-time selection of

J/ψ candidate events can be achieved by properly making use of the parallel capacities of

the heterogeneous computing architectures. As an example, the NVIDIA Tesla GPU of the

S1 setup could be placed into the S2 setup to achieve the desired goal.

By comparing the different programming paradigms, we find that the cross-platform

OpenCL to be a proper choice for the heterogeneous computing environments typical for

modern architectures, which combine CPU cores with GPU-like accelerator cards. For such

kind of systems, OpenCL provides a suitable solution to simultaneously exploit all available

compute units for a given application. It also provides the flexibility to future improvements

in computing architectures, which is of particular importance for CBM as an experiment in

the construction stage. This flexibility, however, comes at the price of a reduced performance

on CPU when compared to pure parallel programming paradigms.

After detailed investigations of heterogeneous computing and available parallel com-

puting paradigms, we have also presented a time-based simulation scheme for the MuCh

detector of the CBM experiment which provides a realistic detector response of detector

and read-out electronics in the environment of a self-riggered, free running data acquisition

system. The key to this scheme is to enable interference of tracks from different events

with small time separation, using an intelligent buffering procedure and a proper prescrip-

tion for the treatment of signals arriving close in time in the same read-out channel (pad).

The described MuCh simulation software is integrated into the common cbmroot simulation

framework, which produces a data stream similar to that expected from the real experiment.

The treatment of thermal, uncorrelated noise has also been incorporated.

The simulation software allows us to study the performance of the CBM-MuCh detector

in a realistic scenario of a time sequence of minimum-bias nuclear collisions. In particular,

rate-dependent effects like data losses arising from pile-up between subsequent events can be

addressed, which is essential to influence the reconstruction efficiency of the detector under

various operating conditions. Our findings of pile-ups as a function of the electronics dead
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time and of the interaction rate are in qualitative agreement with our expectations, which

to a certain extent verifies the software implementation. Quantitatively, we see significant

losses from inter-event pile-up, over and above the irreducible in-event double hits, for

interaction rates from 106/s onwards.

The developed software also allows to optimize the read-out of the detector in terms of

parameters like single-channel dead time, time resolution or the applied threshold, thus pro-

viding feedback to the designers of the read-out SMX ASIC. The software will be validated

against the real detector behaviour using data from the laboratory and the in-beam tests of

detector prototypes. In particular, we plan to improve the currently simplified treatment of

double hits in an ASIC channel, replacing the now used theta function with the real signal

shape in the slow channel of the SMX.

The quantitative effects of the rate-dependent data losses on the sensitivity of the detec-

tor to physics observables will be the subject of further studies. This requires the application

of the full, time-based reconstruction (hit and track finding) on the generated data stream.

The simulation software described in the thesis provides the required tools for such studies.

In HEP experiments, cluster and hit finding is the first step in the reconstruction. In the

trigger-less experiments like CBM, output from the experiment is time-slice, thus processing

time of cluster and hit finding step should not vary with the size of event or time slice. It has

been demonstrated that the computational performance of the hit finder meets this design

requirement and per event execution time is constant. Further speed-up of the cluster and

hit finding algorithms will be possible via data-level parallelisation. In a nut shell, we have

described the development of the entire time-based simulation approach for the CBM-MuCh

detector. It is shown that the framework is ready with realistic time based measurements.

In the CBM collaboration, simulation studies being performed are based on time stream

mode and detailed comparisons are being performed between the event-by-event and the

time-stream mode.
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5.1 Outlook

The event selection procedure developed and investigated in the first part of thesis relies on

data aggregated into events, corresponding to a single nucleus-nucleus interaction. The data

acquisition of the CBM experiment, however, will deliver free-streaming data not associated

to a single event by hardware trigger. To properly account for this situation, not only the

spatial coordinates, but also the time measurement of each hit must be considered for the

event selection. This will increase the complexity of the current, rather simple algorithm.

We are working together with the CBM collaboration towards extending the algorithm

to event building and selection from the real online data stream and also will investigate

the throughput on multi-core and many-core platforms in parallel using hybrid program-

ming [60]. In addition, other algorithmic approaches to the trigger problem will be investi-

gated, reducing the combinatorics by a more selective triplet construction.

Our study shows that the computational problem can be solved with a reasonable expen-

diture on CPUs, but also on GPUs as co-processors, or by a combination of both [61, 62]. It

does not yet include a full exploitation of possible measures for further acceleration, like us-

ing vendor-specific compilers (Intel) or using manual code vectorization. Such investigations

will be performed in the future as prerequisites for a decision on the hardware architecture,

which of course will have to have balanced performance with acquisition and running costs.

After simulating the free-streaming data as expected to be delivered from the DAQ

system of the running experiment, the event building process is to be implemented in the

current framework as the entire reconstruction process is fully oriented on an event-by-event

process.

There are multiple approaches for the event building [56]. For example, an approach

could be based on dip detection on the free data stream [57]. In this approach, the event

building process can be performed with respect to MuCh and thereafter the same can be

adopted for the other detector systems. Once the event boundary is defined, thereafter,

all reconstruction algorithms, working on an event-by-event base, can be used without any
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modification. A very preliminary event building flowchart from time-slice data stream is

shown here in Fig. 5.1.

Figure 5.1: Proposed event building flowchart

We are working together with the CBM collaboration towards multi-level event building

approaches from the real online data stream such that events could be generated precisely.

Due to the extreme event rate, huge amount of data are expected to be produced. To

use multi-core processing and online reconstruction of a continuous data stream, it requires

modifications to the framework and also to the data model which are currently based on

TClonesArrays of ROOT framework. Discussions and modifications are going on towards

using std::vector as data containers instead of TClonesArray.
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5.2 Achievements

After a brief summary and outlook, we enlist here major achievements in the thesis,

1. Development and implementation of a first-level event selection (FLES) process for

CBM-MuCh using the Brute-Force and the Selective algorithms. Performed a com-

parison of performance between the two algorithms.

2. The developed event selection procedure suppresses the archival data rate by almost

two orders of magnitude without reducing the signal efficiency, thus satisfying the

CBM requirements for high-rate data taking [12].

3. A speed-up of 4.5 for event selection process using NVidia GPU is achieved in com-

parison with execution time of the optimized single-thread execution on CPU. (The

results are published in Computer Physics Communications journal.)

4. Results show that using the Brute Force Algorithm, about 3 · 105 events per second

and using the Selective Algorithm about 107 events per second can be processed on

a single GPU card of NVIDIA Tesla family. (The study has been presented in an

international conference.)

5. Systematic study of heterogeneous architecture and different parallel computing paradigms

have been presented and performance comparison of the algorithms on CPU, GPU us-

ing pthread, OpenMP, MPI, CUDA and OpenCL has been performed. It is found

that the cross-platform OpenCL is a proper choice for heterogeneous computing envi-

ronments typical for modern architectures, which combines CPU cores with GPU-like

accelerator cards.

6. By the throughput obtained for the selection of J/ψ candidate event, it is determined

that the computing demands of the CBM experiment can be achieved by properly

making use of the parallel heterogeneous computing architectures.
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7. Development of a time-based signal generation scheme for the Muon Chamber simula-

tion by enabling interference of tracks from different events with small time separation,

using an intelligent buffering procedure and a proper prescription for the treatment

of signals arriving close in time in the same read-out channel (pad). (The results are

published in Journal of Instrumentation.)

8. Integration of the MuCh simulation software with the CbmRoot simulation framework

to generate a free running data stream similar to that expected from the real experi-

ment.

9. Developed noise generation framework for MuCh system such that the treatment of

thermal, uncorrelated noise has been included in the simulated data stream.
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