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1 Introduction

The Compressed Baryonic Matter (CBM) experiment at FAIR will investigate the
QCD phase diagram at high net-baryon density (up > 400 MeV) in the energy
range of \/syy = 2.7-4.9 GeV. Precise determination of dense baryonic matter
properties requires multi-differential measurements of strange hadron yields, both
for most copiously produced kaons and A as well as for rare (multi- )strange
hyperons and their anti-particles.

In this presentation, the CBM performance for the multi-differential yield mea-
surements of strange K hadron will be reported. The strange hadrons are re-
constructed via their weak decay topology using the Kalman Filter algorithm.
Machine Learning techniques, such as XGBoost, are used for non-linear multi-
parameter selection of weak decay topology, resulting in high signal purity and
efficient rejection of the combinatorial background. Yield extraction and extrapo-
lation to unmeasured phase space is implemented as a multi-step fitting procedure,
differentially in centrality, transverse momentum, and rapidity at different colli-
sion energies. Variation of the analysis parameters allows estimating systematic
uncertainties. A novel approach to study feed-down contribution to the primary

strange hadrons using Machine Learning algorithms will also be discussed.



2 CBM experiment physics motivation

2.1 Investigation of the QCD phase diagram

The strong interaction between quarks and gluons is described by Qauntum Chro-
modynamics (QCD). Diagram of strongly-interacting matter is shown in Fig. [2.1}
At low temperature and moderate baryon chemical potential(pp) quarks and glu-
ons are bounded within hadrons and cannot be observed in the free state. This
phenomenon is called confinement. At high temperatures and baryon chemi-
cal potential quarks and gluons can be in unconfined state called Quark Gluon
Plasma(QGP). The lattice QCD describes transition between these two phases
at zero and low pp and temperature about 150 MeV. There are some challenges
how to extend this theory for higher up . The most interesting phenomena is
predicted at higher up. Going along the phase-space trajectory towards higher
pp values one expects to observe first-order phase transition; for extreme values
of pup color superconductivity state is predicted.

There are some ways to investigate the properties of the strongly interacting
matter. Relativistic heavy ion collisions proved to be a useful tool for probing
above processes in the laboratory.
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Figure 2.1: Sketch of the phase diagram for strongly-interacting matter \|

2.2 Dynamics of heavy-ion collision
The heavy-ion collision evolves throw 4 stages:
e Initial state: two bunches approach each other at relativistic velocities

2



e Energy stopping hard collisions: QGP formation. Heavy ions approach to
the distances of strong interaction. The system evolves while not reaching
the thermal equilibrium. At this stage, the first order phase transition takes

place.

e Hydrodynamic evolution: systems reaches the thermal equilibrium and ex-

pands.

e Hadron freez-out: system cools down and reaction products fly away to

hadrons after the reaching the critical temperature

The evolution of the system happens within few femtoseconds; thus, its stages
are indistinguishable time-wise for the observer: reaction products from all stages

of the ion collision are being registered at once.

Timeg—»

Initial state Hydrodynamic

Evolution Hadron Freezeout

Figure 2.2: The stages of the heavy-ion collision [3]

2.3 Strangeness production as an evidence of the deconfined state

Strangeness enhancement is one of the most important probes of new deconfined
state proposed in [4]. There are two main reasons for that: high temperatures at
higher densities in heavy-ion collision and additional enhancement at large baryon
densities.

The QCD Lagrangian has an approximate symmetry; in the limit of vanishing
quark masses (m, —0, where m, are the quark masses entering the Lagrangian,
i.e. the so-called “bare” or “current” masses), it reveals chiral symmetry.

At zero and low temperature the chiral symmetry is broken. With the rise of

the temperature chiral symmetry is tend to be restored.



At low temperatures production of the strange quark is suppressed because of
the large dynamical mass value. After chiral symmetry restoration the effective
mass of the s quarks decreases, which leads to the strange hyperon production.

The second reason for the strangeness enhancement at energies 13-150 Gev
per nuclei in laboratory frame rises when there is large baryon stopping. At these
energies heavy-ion collision have large baryon density which corresponds to high
baryonic potential. Therefore, if the hadronic matter is deconfined during the
collision, the production of u and d quarks will be suppressed by Pauli blocking.
Then at these energies we expect a global increase of strangeness production.

Strangeness enhancement is an important evidence of the deconfined state.
Therefore strange hyperon precise reconstruction is important part of the CBM

physics analysis [5].

2.4 Motivation of KY yield measurement

This thesis is focused on the K3 mesons. In the Lagrangian one can see that
the neutral K" consists of d and 3 quarks and is a superposition of two weak
eigenstates: K2 and K with different lifetimes. K2 has a mean lifetime 0.8954 x
10 % s which corresponds to ¢ — 2.6844 cm. Kg has invariant mass 0.4976 GeV.
The most probable decay is K3 — w7~ with branching ratio 69.20+0.05% |[6].
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Figure 2.3: Multistrange hyperons production at SIS-100 energies |7]

2.5 FAIR - Facility for Antiproton and Ion Research

The Facility for Antiproton and Ion Research (FAIR) is a future accelerator com-

plex at GSI, Darmstadt, which is designed to provide high-intensity heavy ion



beams with the SIS-100 accelerator ring with magnetic rigidity of 100 Tm. The
beam kinetic energy range is 2-12A GeV for gold ions and 5-11 and 14-29 GeV

for protons. The schematic plan of the FAIR accelerator complex is shown in

Fig 2.4
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Figure 2.4: The schematic plan of the FAIR accelerator complex @

2.6 CBM experiment at FAIR

Compressed Baryonic Matter(CBM) is a future experiment at FAIR. CBM physics
program includes study QCD mater in extreme conditions (high net-baryon den-
sities, moderate temperatures), equation of state of nuclear matter at densities
similar to the densities in the core of neutron stars.

The major observables to be studied during the experiment operation:

e particles containing strange or charm quarks: (multi-)strange hyperons(K,

A7 27 E) Q)? J/w
e light mass vector mesons decaying via dilepton channel

e the excitation functions of yields, spectra, and collective flow of these parti-

cles;

e the in-medium mass alteration of low-mass vector mesons;
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e event-by-event fluctuations

CBM will operate with event rate up to the 107 Au+Au collisions per second
which will provide us with ample number of events containing the above phenom-

ena. This is a uniquely high rate in comparison to other experiments.
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Figure 2.5: CBM event rate with respect to the collision energy in comparison
to other experiments |9

2.7 CBM detector setup

CBM experiment is a single-arm forward spectrometer. There are several detec-
tors composing the CBM experimental setup: they provide information necessary
for the event building, tracking and vertex reconstruction and particle identifi-
cation. The tracking system in the volume of the superconductive 1 Tm dipole
magnet provides charged particle tracking and momentum measurements. It con-
sists of 2 detectors: a Micro Vertex Detector (MVD) and a Silicon Tracking Sys-
tem (STS). To identify particles the PID setup is used along with tracking setup.
The PID system has 4 parts: Ring Imaging Cherenkov (RICH), Muon Chamber
(MuCh), Transition Radiation Detector (TRD) and Time-of-Flight wall (TOF).
Projectile Spectator Detector (PSD) is used for collision geometry characteriza-

tion.



MVD+STS

Figure 2.6: CBM detector subsystems \\

e a superconducting dipole magnet

e MVD is a system for track position resolution of few microns in the target

region. It consists of four layers of silicon monolithic active pixel sensors.

e STS is a system for patricle trajectory and momentum determination. It is

based on double-sided silicon micro-strip sensors.

e MuCh is a system for muon identification consisting of a set of gaseous
micro-pattern chambers sandwiched between hadron absorber plates made

of graphite and iron.

e RICH is a system for dedicated to the electron/pion discrimination. It is a
detector comprising a CO» radiator and a UV photon detector realized with

multianode photomultipliers for electron identification.

e TRD is a system for pion suppression, particle tracking, and identification

using specific energy loss.

e TOF is a system for hadron identification. It is based on Multi-Gap Resistive
Plate Chambers (MRPC) with low-resistivity glass.

e a Projectile Spectator Detector (PSD) is a system for centrality and reaction

plane angle measurement. It is a hadron calorimeter with 44 modules.
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TOF and STS are the most important detector components for short-lived
particles reconstruction, because identification of charged particles is performed
using Time-of-Flight technique, and STS provides information about particle’s

momentum.

2.8 (Multi-)strange analysis workflow

(Multi-)strange hyperon analysis is one of the most important analyses on the
CBM experiment.

The first step includes track and event reconstruction from Monte Carlo sim-
ulated data of the particles interaction with the tracking system. Then one can
reconstruct decays using and computing variables which describe decay’s kine-
matic. After that one can select candidates with the use of machine learning
techniques. This process comes with configuring of the machine learning model.
One needs to estimate a quality assurance(to check if the model is not overfitted
and able to generalize predictions) of the selection, as well as the efficiency. After
the proper selection advanced analysis such as yields and flows computation takes

place. Fig. demonstrates the (multi-)strange analysis is performed in the CBM

experiment.
decays reconstruc- candidates
reconstructed ‘ : : i : :
tion PFSimple selection with signal extraction
tracks and events - 2 > . . .
data / MC E.p,x% a,DCA, Machine Learning (yield, flow)
m (hipe4ML)

o efficiency
extraction

e ML configu-
ration

e QA distribu-

tions

Figure 2.7: The scheme of the CBM (Multi-)strange analysis workflow




3 Short-lived particles reconstruction in CBM experiment

3.1 PFSimple reconstruction

Short-lived particles can’t be reconstructed directly. However, they can be recon-
structed indirectly from their stable long-lived decay products. Stable particles
trajectories are reconstructed in the tracking system and following parameters are
measured: coordinates and momentum projections (X, ¥, 2, pa, Py, P2)-

For example, for K2 reconstruction, positive and negative charged pions are
reconstructed in MVD and STS and identified using TOF. Then, every pion-pion
pair is considered as Ko candidate. For this a point of the closest approach be-
tween daughter particles trajectories is found by numerical methods and parame-
ters of the particles are extrapolated to this point. Then the obtained momentum
and energy of daughters are summed up [11].

To perform this reconstruction efficient and fast tool KFParticle Finder was
developed based on KF Particle package |12, [11].

The Particle Finder Simple package is simplified version of the KFPartice
Finder package based on its mathematical apparatus. It is developed for the
complete reconstruction of short-lived particles with their momentum, energy,
mass, lifetime, decay length, rapidity, etc [13]. It takes input information about
daughter particles(including track parameters, track charge, covariance matrix of
track parameters etc) and returns as an output kinematics information and topo-
logical variables, matching with MC-true information for mother and daughter
particles.

Fig. shows the distributions of K§ baryon selection variables that were

obtained from PFSimple reconstruction.
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Figure 3.1: K2 baryon selection variables that were obtained from PFSimple
reconstruction

To provide highest accuracy for further analysis we need to be sure that some
daughter pair belongs to the signal, not background. For instance, in K& — 777~
case signal is denoted as 77~ pair that originates from K§ decay. Other 77~
pairs are denoted as background.

KFParticle Finder is fast and more powerful online tool, while PFSimple has
the same functional with more flexibility for physics analysis.

PFSimple provides manual optimization of selection criteria to distinguish sig-
nal from background. Unlike the current implementation, the selection criteria
based on Machine Learning (ML) algorithms can be adjusted multi-dimensionally

by the algorithm for different input data sets.

3.2 Selection variables

PFSimple returns selection variables. For K2 — 777~ decay these variables are:

o X}%rim - squared distance Ar between the daughter track and the primary

vertex (PV) divided by its error covariance matrix
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DCA - distance of closest approach between 7 and 7~ tracks

X?]eo - squared distance Ar between daughter tracks divided by its error

covariance matrix
cosinepos - cosine of the angle between PKg and P+
cosineneg - cosine of the angle between Pro and Pr-

L/AL - distance between PV and secondary vertex, the point of lambda

decay, divided over its error

Xt20p0 - squared distance Ar between candidate trajectory and the PV divided

by its error covariance matrix
cosine topological - cosine of the angle between PV and point of KY origin

issignal - target binary variable which defines type of event (signal or back-

ground)

priml Primary 2

2 vertex X aco | DCA

Secondary

vertex

X‘ topo

Primary
vertex

Figure 3.2: K} selection variables. (a):variables associated with the decay
tracks of K§ candidates. (b): variables associated with angles between PKo P

and Pﬁf

These variables need to be optimized, so wee need an algorithm to find the

minimum of the cost function in this multidimensional space.
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3.3

Quality assurance cuts

Prior to the application of machine learning a data set needs to be cleaned. Clean-

ing refers to removing nan values, infinite and numerical artifacts. Nan( numeric

data type used to represent any value that is undefined or unpresentable) and

infinite entries are dropped from the data and the numerical artifacts which don’t

have physical meaning and come from the mistakes of reconstruction are elimi-

nated by applying the following selection criteria on the data:

Xoim: Xocos Xiopo =0, since x? > 0
Xf,rim < 3x108, Xgeo < 103, Xgeo < 3x10° to reduce amount of data
invariant mass > 0.28 GeV; conservation of mass imposes that the mass of

the K§ should be greater than the sum of the rest masses of 77(0.139 GeV)
and 77(0.139 GeV)

invariant mass < 1 GeV to reduce amount of data

-5 <L <80 cm - Decay kinematics require that the distance between sec-
ondary vertex and PV should be equal or greater than 0, however, some
candidates have negative L values. To reconstruct the track of a charged
particle, the particle has to register hits in three stations of the tracking
system, but the last two stations of the tracking setup are above 80 cm.

Therefore, any candidate decaying above 80 cm will not be reconstructed
-25 < L/AL < 15000
-1 < 7z < 80 cm for the same reason

DCA > 0 cm; distance between two distinct points is always positive, there-

fore, proton and pion tracks for which distance of closest approach is negative
will be discarded

DCA <100 cm; the largest station of the tracking setup i.e. the 8th station
of STS has a surface area smaller than 100 cm?, therefore, two tracks which
have DCA greater than 100 are discarded [14].

x|, [y] < 50 cm restriction comes from the size of STS

12



e p.>0, pr>0, p>0 because detector has a fixed target geometry
e p<20 GeV, pr<3 GeV to reduce amount of data

e 1 <1 < 6.5 because STS covers polar angle from 2.5° to 25°, where
n = -In tan(g), 0 is a polar angle and magnetic field has an impact on

pseudorapidity

The results of cuts application could be found here [15].

3.4 Data simulation

Data simulation for CBM experiment physics analysis is based on two Monte
Carlo simulation packages for heavy-ion collision simulations: Ultra relativistic
Quantum Molecular Dynamics(UrQMD) and Dubna Cascade Model and Statis-
tical Multifragmentation Model(DCM-QGSM-SMM) |16, |17}, [18, [19]. Both treat
the production of new particles via formation and fragmentation of specific col-
ored objects, strings. The differences between the models arise on different stages
of a string formation and fragmentation [20].

UrQMD /DCM-QGSM-SMM simulated dataset containing ~3.6 M events with
Au+Au collisions at ppegn = 124 GeV/c is analyzed in this study.

Simulation of interaction of these products with different parts of the detector
was performed using GEANT4 |21, 22]. From hits tracks are reconstructed and
put to the special data format AnalysisTree |23] or the ROOT format.

All pion tracks (MC PID is used) are combined into K§ candidates. Pion pair
coming from a K; decay is termed as signal (MC=1). Pion pair not originating

from a K decay is considered as background (MC=0).
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4 Machine learning framework for analysis of particle de-

cays

4.1 Machine learning methology

Machine learning (ML) is a complex of computer algorithms that learn to perform
a specific task by learning from data. ML algorithms make predictions based on
previously analysed information. It is widely-used in a wide range of applications:
beam adjustment in accelerators, track finding and fitting, and data analysis in
physics performance studies

A ML model is a mathematical model that has found patterns in the data and
can now make predictions based on that. The part of making a model in which
an ML algorithm learns from the data is referred to as training while the making
predictions part is called as testing.

There are three ways to a train model: supervised, unsupervised and reinforce-
ment learning.

Supervised learning is a way to teach model using previously labeled training
dataset. Then during the testing stage the trained model is applied to unlabeled
dataset.

This supervised machine learning approach can be also used to classify particle

candidates.

4.2 Machine learning advantages

Machine learning approach has some advantages in comparison with manual se-
lection. Existing KFPF particle based selection criteria optimization maximizes
signal to background ratio for a certain collision energy and a heavy-ion event
generator. The selection criteria depend on the collision energy and centrality,
decay channel and detector configuration. Machine learning provides efficient

multidimensional, automatized optimization of selection criteria.

4.3 Hipe4ml

Hipe4ml is selection optimization tool developed in ALICE Collaboration, mini-

mal heavy ion physics environment for machine learning [24]. It provides simple

14



and efficient functional for physics analysis, such as:

e Data selection
e Quality assurance of input data

e Finds Search for the best parameters for model to be trained (hyperparameters

tunning)
e Model training and testing

e Model application to the user’s specified data

Despite the hipedml basic analysis toolkit, some extended options are in need:

e Plot (non-)linear correlations
e Check results after selection

— confusion matrix
— possibility to visualize the selection
— pp-rapidity distributions

— variables distributions before and after ML cut (signal and background)

e Save model as C++ library

Integration with already existing hipe4ml is a solution of this problem [25].

4.4 Input data for the ML algorithm

Machine learning algorithm requires some selection of the input data except the
quality cuts.

The dataset consists of background samples generated from URQMD model
and signal samples generated from DCM-QGSM-SMM model. We take signal
samples within 50 range from K9 invariant mass peak(0.4976 GeV). We cut from
background samples region within 5o range from K2 invariant mass peak. Fig. |4.1

shows how the dataset was created.
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Figure 4.1: Data selection for train and test dataset

The ranges of signal and background invariant masses respectively:
e 0.4349 GeV < my,, < 0.5614 GeV
e 0.28 GeV < mjp,< 0.4349 GeV and 0.5614 GeV < mjp, < 1 GeV

That was done to eliminate the bias of the algorithm, because it’s not known

if the area under the peak has some signal or not.

4.5 Correlation studies

Correlation study is an important aspect of training variables selection. If two
variables have strong correlation, one of them should be excluded from the analysis
to make the learning algorithm faster and decrease bias. If one of the variables
has strong correlation with invariant mass it should be eliminated, as well, to
exclude model’s bias.

Correlation between invariant mass and all the variables is checked to make

sure that certain variable could be included to the analysis. Firstly, Pearson
cov(X,Y)

OX0y

correlation coefficient pxy = corr(X,Y) = is calculated for all variables

with invariant mass and the matrix is shown in Fig 4.2
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Cov(X)Y) = E|(X-E[X])(Y-E[Y])], where E[X] is expected value known as the
mean of X, oy is standard deviation, ox = \/F[X? — E[X]?.

signal background

didates_et;

,(b..) D

Figure 4.2: Pearson coefficient correlation matrix after applying quality cuts.
(a): signal. (b): background

Standard error of the mean (SEM), \/Lﬁ Correlations of all variables with

invariant mass along with SEM are shown in Fig. 4.3,

Correlation of all variables with Candidates_mass along with SEM
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Figure 4.3: Correlations of all the variables with invariant mass

Since Pearson correlation coefficient only shows linear correlation between two
variables, therefore, a different approach is also followed. The variable to be
checked for correlation is taken and its data is divided into 25 bins. Similarly, the
distribution of invariant mass variable is also divided into 25 bins. Fig. shows

the correlations for Xgeo variable.
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Figure 4.4: Mean of each bin with the SEM of X?;eo bin versus mass. Bin center
of invariant mass plotted versus the bin center of invariant mass. The error bars
represent the SEM of each bin and the red line shows the mean of the K2 peak

according to PDG value. (a): signal. (b): background.

detect suspicious structures.
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One can build 2D correlation plot between variables and invariant mass to

Figure 4.5: Example of correlation between variable and invariant mass plot

4.6 Training variables

Correlation studies showed that the following variables are the most suitable for

the model training: X2, Xoeo DCA, L/AL. These variables do not strongly

correlate neither with invariant mass nor with each other.

The one can easily check the distribution of each variable before and after

XGBoost selection(Fig. [4.6]).
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Figure 4.6: Distribution of the X?]eo variable before and after XGBoost selection

4.7 ML framework configuration with TOML

At the beginning of the work user specifies input data (signal and background
path, candicate mass etc) to configuration file in TOML format. TOML for-
mat|26] is a minimal configuration file format that’s easy to read due to obvious
semantics. It was designed to map unambiguously to a hash table and is easy to

parse into data structures in a wide variety of languages.

signal]
ath = */home/olha/CBM/dataset10k_tree/dcm_1m_prim_signal.root"
ee = "PlainTree"

ha/CBM/dataset10k_tree/urqmd_100k_cleaned.root"

2 58% S58Ww
S8 828

nge
s = 1.115683

sgn_left_edge = 1.108
sgn_right_edge = 1.1227

bgr_left_edge = 1.07
bgr_right_edge = 1.3

Figure 4.7: Implemented for CBM: User can specify parameters via configura-
tion files
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4.8 ROC curve and BDT threshold optimization

Receiver operating characteristic(ROC) curve is the plot that illustrates binary
classifier performance as its discrimination threshold is varied.

Any classifier isn’t able to separate signal samples from background. Some of
them anyway will be classified as background. After classification all the sam-
ples are compared with their Monte Carlo label. If the sample’s MC label is
signal(MC=1) and it was classified as signal it is denoted as true positive. If
the sample’s MC label is background(MC=0) and it was classified as signal it is
denoted as false positive.

ROC curves typically feature true positive rate on the Y axis, and false positive
rate on the X axis. This means that the top left corner of the plot is the “ideal”
point - a false positive rate of zero, and a true positive rate of one. This is not very
realistic, but it does mean that a larger area under the curve (AUC) is usually
better.

ROC curves are typically used in binary classification to study the output of
a classifier |27].

There are two ways to choose optimal BDT cut. The first approach requires
to check BDT outputs distribution Fig/d.§ and choose the optimal value.

102 i,
m background pdf Training Set

signal pdf Training Set
10t # background pdf Test Set
# signal pdf Test Set

AL LR Rr. L

10°

107t

10~

0.0 0.2 0.4 0.6 0.8 1.0
BDT outout

Figure 4.8: BDT outputs distribution

The second one requires to choose an optimal threshold with respect to the

metric optimization. In this work it was decided to use the Approximate Median
Significance(AMS) [28] which was used for The Higgs Machine Learning Chal-

lenge.
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AMS= \/Q(tpr + fpr)In (1 + %) — tpr
Fig. demonstrates roc curve with the optimal threshold with respect to

AMS maximum.
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Figure 4.9: Receiver operating characteristic

4.9 Confusion matrix

Confusion matrix is the matrix that describes binary classifier performance. It
shows how many real(Monte Carlo=1) signal samples were classified as signal and
how many as background. Main diagonal consists of samples with predicted label
the same as Monte Carlo label. Side diagonal consists of samples with MC label
doesn’t coincide with prediction. Fig. [£.10] shows the confusion matrix for BDT
cut >0.95 for training and testing datasets.
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Train Dataset Confusion Matrix for cut >43.9500 Test Dataset Confusion Matrix for cut >189500
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True label
True label

684

background background

(b)
Figure 4.10: Confusion matrix of training(a) and testing(b) dataset

4.10 Variables importance

XGBoost provides features importance rank that allows to estimate how useful or

valuable each feature was in the construction of the boosted decision trees within

the model .

Fig. shows the feature importance which was done during the training of

the machine learning algorithm.

Feature importance

Candidates_chi2_prim_second 1 /00
»  Candidates_chi2_prim_first m——— ]/ 80
% Candidates_|_over_dl 1618
= Candidates_distance == ]507
Candidates chi2z_geo =448

0 500 1000 1500
F score

Figure 4.11: XGBoost variables importance

4.11 pT-rapidity distribution

Input for selection efficiency determination is implemented. Efficiency is deter-

mined as € = ]Xf—”, where N,.. is number of reconstructed samples, N, - number of
a

reconstructable (the samples reconstructed while no selection is applied) samples.
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Figure 4.12: pp-rapidity differential selection and reconstruction efficiency train-
ing(a) and testing(b) dataset

The one can see that BDT cut saves approximately 90.8% of the signal samples.
These plots could show the potential bias of the model. If the tails of the pp-
rapidity distribution are cut non-uniformly, then the model is biased. In Fig.

once can observe no bias.

4.12 XGBoost model

This framework is based on the XGBoost machine learning algorithm. XGBoost
is a decision tree ensemble based on gradient boosting designed to be highly
scale-able. XGBoost builds an additive expansion of the objective function by
minimizing a loss function. XGBoost provides efficient and fast performance, so
it was decided to use it for the current study.

This algorithm’s advantages include:

e Boosting combines weak learners (error rate <50%) to make a strong learner

(error rate <25%)

e Decision trees (weak learners) are combined together to make a Gradient

Boost algorithm
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e In each step a new tree is used to improve the previous prediction

The example of the decision tree for K2 candidates selection is shown in
the Fig. [4.13] using XGBoost optimized selection criteria. This selection
criteria was optimized for small dataset with 1000 signal candidates and
3000 background candidates, so the structure of the tree is simplified in

comparison with bigger datasets.

Candidates_chi2_prim_{first<44.1233292

yes, missing no
Candidates_chi2_prim_first<22.9966431 Candidates_chi2_geo0<10.9026318
yes, missing no

yes, missing \no
@chﬂ_prim_second<3.8624053

leaf=-1.01548862
yes, missing \no
@ leaf=1.09082162

Figure 4.13: The example of the decision tree using XGBoost optimized selection
criteria. This optimization was performed on 1000 signal and 3000 background
candidates.

leaf=-0.143858299

The optimal XGBoost parameters were optimized via Bayesian Optimiza-

tion [30] as following:
— max__depth(optimized value = 8): maximum depth of a tree. Increasing
this value will make the model more complex and more likely to overfit.

— gamma (optimized value = 0.975): minimum loss reduction required to

make a further partition on a leaf node of the tree.
— alpha(optimized value = 16) L1 regularization term on weights.

— learning_rate(optimized value = 0.732): step size shrinkage used in up-

date to prevents overfitting.

Model had 2 training epochs. Dataset includes 1000000 signal samples(MC=1)
and 3000000 background samples(MC=0).
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4.13 Model performance analysis

One can precisely optimize selection <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>