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Анотацiя

Лаворик О.С. "Вимiрювання К0
s мезонiв за допомогою машинного навчання в експери-

ментi CBM "
Квалiфiкацiйна робота магiстра, спецiальнiстю 104 Фiзика та астрономiя, освiтня про-
грама «Фiзика високих енергiй». — Київський нацiональний унiверситет iменi Тараса
Шевченка, фiзичний факультет, кафедра ядерної фiзики. — Київ — 2022
Науковий керiвник: кандидат фiз. – мат. наук, доцент Безшийко О.А (КНУ iм. Т.Шевченка,
Київ, Україна)
Спiвкерiвник: Dr. Ilya Selyuzhenkov (GSI, Germany)

Продуктивнiсть CBM для мультидиференцiйного вимiрювання врожайностi буде повi-
домлено про пiдтвердження дивного адрону K0

S. Описано реконструкцiю K0
S, вилучення

сигналу за допомогою алгоритму машинного навчання та процедуру обчислення вихидiв.

Ключовi слова: ефективнiсть, машинне навчання, CBM

Abstract

Lavoryk O.S. "CBM performance for K0
s meson measurement using Machine Learning"
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Physics. — Kyiv, 2020.
Research supervisor: Dr. Oleg Bezshyyko, TSKNU
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CBM performance for the multi-differential yield mea- surements of strange K0
S hadron will

be reported. Reconstruction K0
S, signal extraction via machine learning algorithm and yield

computation procedure is described.
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1 Introduction

The Compressed Baryonic Matter (CBM) experiment at FAIR will investigate the
QCD phase diagram at high net-baryon density (µB > 400 MeV ) in the energy
range of

√
sNN = 2.7-4.9 GeV . Precise determination of dense baryonic matter

properties requires multi-differential measurements of strange hadron yields, both
for most copiously produced kaons and Λ as well as for rare (multi- )strange
hyperons and their anti-particles.

In this presentation, the CBM performance for the multi-differential yield mea-
surements of strange K0

s hadron will be reported. The strange hadrons are re-
constructed via their weak decay topology using the Kalman Filter algorithm.
Machine Learning techniques, such as XGBoost, are used for non-linear multi-
parameter selection of weak decay topology, resulting in high signal purity and
efficient rejection of the combinatorial background. Yield extraction and extrapo-
lation to unmeasured phase space is implemented as a multi-step fitting procedure,
differentially in centrality, transverse momentum, and rapidity at different colli-
sion energies. Variation of the analysis parameters allows estimating systematic
uncertainties. A novel approach to study feed-down contribution to the primary
strange hadrons using Machine Learning algorithms will also be discussed.
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2 CBM experiment physics motivation

2.1 Investigation of the QCD phase diagram

The strong interaction between quarks and gluons is described by Qauntum Chro-
modynamics (QCD). Diagram of strongly-interacting matter is shown in Fig. 2.1.
At low temperature and moderate baryon chemical potential(µB) quarks and glu-
ons are bounded within hadrons and cannot be observed in the free state. This
phenomenon is called confinement. At high temperatures and baryon chemi-
cal potential quarks and gluons can be in unconfined state called Quark Gluon
Plasma(QGP). The lattice QCD describes transition between these two phases
at zero and low µB and temperature about 150 MeV. There are some challenges
how to extend this theory for higher µB [1]. The most interesting phenomena is
predicted at higher µB. Going along the phase-space trajectory towards higher
µB values one expects to observe first-order phase transition; for extreme values
of µB color superconductivity state is predicted.

There are some ways to investigate the properties of the strongly interacting
matter. Relativistic heavy ion collisions proved to be a useful tool for probing
above processes in the laboratory.

Figure 2.1: Sketch of the phase diagram for strongly-interacting matter [2]

2.2 Dynamics of heavy-ion collision

The heavy-ion collision evolves throw 4 stages:

• Initial state: two bunches approach each other at relativistic velocities
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• Energy stopping hard collisions: QGP formation. Heavy ions approach to
the distances of strong interaction. The system evolves while not reaching
the thermal equilibrium. At this stage, the first order phase transition takes
place.

• Hydrodynamic evolution: systems reaches the thermal equilibrium and ex-
pands.

• Hadron freez-out: system cools down and reaction products fly away to
hadrons after the reaching the critical temperature

The evolution of the system happens within few femtoseconds; thus, its stages
are indistinguishable time-wise for the observer: reaction products from all stages
of the ion collision are being registered at once.

Figure 2.2: The stages of the heavy-ion collision [3]

2.3 Strangeness production as an evidence of the deconfined state

Strangeness enhancement is one of the most important probes of new deconfined
state proposed in [4]. There are two main reasons for that: high temperatures at
higher densities in heavy-ion collision and additional enhancement at large baryon
densities.

The QCD Lagrangian has an approximate symmetry; in the limit of vanishing
quark masses (mq →0, where mq are the quark masses entering the Lagrangian,
i.e. the so-called “bare” or “current” masses), it reveals chiral symmetry.

At zero and low temperature the chiral symmetry is broken. With the rise of
the temperature chiral symmetry is tend to be restored.
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At low temperatures production of the strange quark is suppressed because of
the large dynamical mass value. After chiral symmetry restoration the effective
mass of the s quarks decreases, which leads to the strange hyperon production.

The second reason for the strangeness enhancement at energies 13-150 Gev
per nuclei in laboratory frame rises when there is large baryon stopping. At these
energies heavy-ion collision have large baryon density which corresponds to high
baryonic potential. Therefore, if the hadronic matter is deconfined during the
collision, the production of u and d quarks will be suppressed by Pauli blocking.
Then at these energies we expect a global increase of strangeness production.

Strangeness enhancement is an important evidence of the deconfined state.
Therefore strange hyperon precise reconstruction is important part of the CBM
physics analysis [5].

2.4 Motivation of K0
S yield measurement

This thesis is focused on the K0
S mesons. In the Lagrangian one can see that

the neutral K0 consists of d and s quarks and is a superposition of two weak
eigenstates: K0

S and K0
L with different lifetimes. K0

S has a mean lifetime 0.8954×
10 −10 s which corresponds to cτ = 2.6844 cm. K0

S has invariant mass 0.4976 GeV.
The most probable decay is K0

S → π+π− with branching ratio 69.20±0.05% [6].

Figure 2.3: Multistrange hyperons production at SIS-100 energies [7]

2.5 FAIR - Facility for Antiproton and Ion Research

The Facility for Antiproton and Ion Research (FAIR) is a future accelerator com-
plex at GSI, Darmstadt, which is designed to provide high-intensity heavy ion
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beams with the SIS-100 accelerator ring with magnetic rigidity of 100 Tm. The
beam kinetic energy range is 2–12A GeV for gold ions and 5–11 and 14–29 GeV
for protons. The schematic plan of the FAIR accelerator complex is shown in
Fig 2.4.

Figure 2.4: The schematic plan of the FAIR accelerator complex [8]

2.6 CBM experiment at FAIR

Compressed Baryonic Matter(CBM) is a future experiment at FAIR. CBM physics
program includes study QCD mater in extreme conditions (high net-baryon den-
sities, moderate temperatures), equation of state of nuclear matter at densities
similar to the densities in the core of neutron stars.

The major observables to be studied during the experiment operation:

• particles containing strange or charm quarks: (multi-)strange hyperons(K,
Λ, Σ, Ξ, Ω), J/ψ

• light mass vector mesons decaying via dilepton channel

• the excitation functions of yields, spectra, and collective flow of these parti-
cles;

• the in-medium mass alteration of low-mass vector mesons;
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• event-by-event fluctuations

CBM will operate with event rate up to the 107 Au+Au collisions per second
which will provide us with ample number of events containing the above phenom-
ena. This is a uniquely high rate in comparison to other experiments.

Figure 2.5: CBM event rate with respect to the collision energy in comparison
to other experiments [9]

2.7 CBM detector setup

CBM experiment is a single-arm forward spectrometer. There are several detec-
tors composing the CBM experimental setup: they provide information necessary
for the event building, tracking and vertex reconstruction and particle identifi-
cation. The tracking system in the volume of the superconductive 1Tm dipole
magnet provides charged particle tracking and momentum measurements. It con-
sists of 2 detectors: a Micro Vertex Detector (MVD) and a Silicon Tracking Sys-
tem (STS). To identify particles the PID setup is used along with tracking setup.
The PID system has 4 parts: Ring Imaging Cherenkov (RICH), Muon Chamber
(MuCh), Transition Radiation Detector (TRD) and Time-of-Flight wall (TOF).
Projectile Spectator Detector (PSD) is used for collision geometry characteriza-
tion.
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TOF

PSD

MVD+STS

TRD

RICH

MuCh

Figure 2.6: CBM detector subsystems [10]

• a superconducting dipole magnet

• MVD is a system for track position resolution of few microns in the target
region. It consists of four layers of silicon monolithic active pixel sensors.

• STS is a system for patricle trajectory and momentum determination. It is
based on double-sided silicon micro-strip sensors.

• MuCh is a system for muon identification consisting of a set of gaseous
micro-pattern chambers sandwiched between hadron absorber plates made
of graphite and iron.

• RICH is a system for dedicated to the electron/pion discrimination. It is a
detector comprising a CO2 radiator and a UV photon detector realized with
multianode photomultipliers for electron identification.

• TRD is a system for pion suppression, particle tracking, and identification
using specific energy loss.

• TOF is a system for hadron identification. It is based on Multi-Gap Resistive
Plate Chambers (MRPC) with low-resistivity glass.

• a Projectile Spectator Detector (PSD) is a system for centrality and reaction
plane angle measurement. It is a hadron calorimeter with 44 modules.
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TOF and STS are the most important detector components for short-lived
particles reconstruction, because identification of charged particles is performed
using Time-of-Flight technique, and STS provides information about particle’s
momentum.

2.8 (Multi-)strange analysis workflow

(Multi-)strange hyperon analysis is one of the most important analyses on the
CBM experiment.

The first step includes track and event reconstruction from Monte Carlo sim-
ulated data of the particles interaction with the tracking system. Then one can
reconstruct decays using and computing variables which describe decay’s kine-
matic. After that one can select candidates with the use of machine learning
techniques. This process comes with configuring of the machine learning model.
One needs to estimate a quality assurance(to check if the model is not overfitted
and able to generalize predictions) of the selection, as well as the efficiency. After
the proper selection advanced analysis such as yields and flows computation takes
place. Fig. 2.7 demonstrates the (multi-)strange analysis is performed in the CBM
experiment.

reconstructed
tracks and events

data / MC

decays reconstruc-
tion PFSimple

E, p, χ2, α,DCA,
m

candidates
selection with

Machine Learning
(hipe4ML)

signal extraction
(yield, flow)

• efficiency
extraction

• ML configu-
ration

• QA distribu-
tions

Figure 2.7: The scheme of the CBM (Multi-)strange analysis workflow
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3 Short-lived particles reconstruction in CBM experiment

3.1 PFSimple reconstruction

Short-lived particles can’t be reconstructed directly. However, they can be recon-
structed indirectly from their stable long-lived decay products. Stable particles
trajectories are reconstructed in the tracking system and following parameters are
measured: coordinates and momentum projections (x, y, z, px, py, pz).

For example, for K0
S reconstruction, positive and negative charged pions are

reconstructed in MVD and STS and identified using TOF. Then, every pion-pion
pair is considered as K0

S candidate. For this a point of the closest approach be-
tween daughter particles trajectories is found by numerical methods and parame-
ters of the particles are extrapolated to this point. Then the obtained momentum
and energy of daughters are summed up [11].

To perform this reconstruction efficient and fast tool KFParticle Finder was
developed based on KF Particle package [12, 11].

The Particle Finder Simple package is simplified version of the KFPartice
Finder package based on its mathematical apparatus. It is developed for the
complete reconstruction of short-lived particles with their momentum, energy,
mass, lifetime, decay length, rapidity, etc [13]. It takes input information about
daughter particles(including track parameters, track charge, covariance matrix of
track parameters etc) and returns as an output kinematics information and topo-
logical variables, matching with MC-true information for mother and daughter
particles.

Fig. 3.1 shows the distributions of K0
S baryon selection variables that were

obtained from PFSimple reconstruction.
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Figure 3.1: K0
S baryon selection variables that were obtained from PFSimple

reconstruction

To provide highest accuracy for further analysis we need to be sure that some
daughter pair belongs to the signal, not background. For instance, in K0

S → π+π−

case signal is denoted as π+π− pair that originates from K0
S decay. Other π+π−

pairs are denoted as background.
KFParticle Finder is fast and more powerful online tool, while PFSimple has

the same functional with more flexibility for physics analysis.
PFSimple provides manual optimization of selection criteria to distinguish sig-

nal from background. Unlike the current implementation, the selection criteria
based on Machine Learning (ML) algorithms can be adjusted multi-dimensionally
by the algorithm for different input data sets.

3.2 Selection variables

PFSimple returns selection variables. For K0
S → π+π− decay these variables are:

• χ2
prim - squared distance ∆r between the daughter track and the primary

vertex (PV) divided by its error covariance matrix
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• DCA - distance of closest approach between π+ and π− tracks

• χ2
geo - squared distance ∆r between daughter tracks divided by its error

covariance matrix

• cosinepos - cosine of the angle between P⃗K0
S

and P⃗π+

• cosineneg - cosine of the angle between P⃗K0
S

and P⃗π−

• L/∆L - distance between PV and secondary vertex, the point of lambda
decay, divided over its error

• χ2
topo - squared distance ∆r between candidate trajectory and the PV divided

by its error covariance matrix

• cosine topological - cosine of the angle between PV and point of K0
S origin

• issignal - target binary variable which defines type of event (signal or back-
ground)

Figure 3.2: K0
S selection variables. (a):variables associated with the decay

tracks of K0
S candidates. (b): variables associated with angles between P⃗K0

S
, P⃗π+

and P⃗π−

These variables need to be optimized, so wee need an algorithm to find the
minimum of the cost function in this multidimensional space.
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3.3 Quality assurance cuts

Prior to the application of machine learning a data set needs to be cleaned. Clean-
ing refers to removing nan values, infinite and numerical artifacts. Nan( numeric
data type used to represent any value that is undefined or unpresentable) and
infinite entries are dropped from the data and the numerical artifacts which don’t
have physical meaning and come from the mistakes of reconstruction are elimi-
nated by applying the following selection criteria on the data:

• χ2
prim, χ2

geo, χ2
topo >0, since χ2 > 0

• χ2
prim < 3×108, χ2

geo < 103, χ2
geo < 3×105 to reduce amount of data

• invariant mass > 0.28 GeV; conservation of mass imposes that the mass of
the K0

S should be greater than the sum of the rest masses of π+(0.139 GeV)
and π−(0.139 GeV)

• invariant mass < 1 GeV to reduce amount of data

• -5 <L <80 cm - Decay kinematics require that the distance between sec-
ondary vertex and PV should be equal or greater than 0, however, some
candidates have negative L values. To reconstruct the track of a charged
particle, the particle has to register hits in three stations of the tracking
system, but the last two stations of the tracking setup are above 80 cm.
Therefore, any candidate decaying above 80 cm will not be reconstructed

• -25 < L/∆L < 15000

• -1 < z < 80 cm for the same reason

• DCA > 0 cm; distance between two distinct points is always positive, there-
fore, proton and pion tracks for which distance of closest approach is negative
will be discarded

• DCA <100 cm; the largest station of the tracking setup i.e. the 8th station
of STS has a surface area smaller than 100 cm2, therefore, two tracks which
have DCA greater than 100 are discarded [14].

• |x|, |y| < 50 cm restriction comes from the size of STS

12



• pz>0, pT>0, p>0 because detector has a fixed target geometry

• p<20 GeV, pT<3 GeV to reduce amount of data

• 1 < η < 6.5 because STS covers polar angle from 2.5◦ to 25◦, where
η = -ln tan(θ2), θ is a polar angle and magnetic field has an impact on
pseudorapidity

The results of cuts application could be found here [15].

3.4 Data simulation

Data simulation for CBM experiment physics analysis is based on two Monte
Carlo simulation packages for heavy-ion collision simulations: Ultra relativistic
Quantum Molecular Dynamics(UrQMD) and Dubna Cascade Model and Statis-
tical Multifragmentation Model(DCM-QGSM-SMM) [16, 17, 18, 19]. Both treat
the production of new particles via formation and fragmentation of specific col-
ored objects, strings. The differences between the models arise on different stages
of a string formation and fragmentation [20].

UrQMD/DCM-QGSM-SMM simulated dataset containing ≈3.6 M events with
Au+Au collisions at pbeam = 12A GeV/c is analyzed in this study.

Simulation of interaction of these products with different parts of the detector
was performed using GEANT4 [21, 22]. From hits tracks are reconstructed and
put to the special data format AnalysisTree [23] or the ROOT format.

All pion tracks (MC PID is used) are combined into K0
S candidates. Pion pair

coming from a KS
0 decay is termed as signal (MC=1). Pion pair not originating

from a K0
S decay is considered as background (MC=0).
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4 Machine learning framework for analysis of particle de-

cays

4.1 Machine learning methology

Machine learning (ML) is a complex of computer algorithms that learn to perform
a specific task by learning from data. ML algorithms make predictions based on
previously analysed information. It is widely-used in a wide range of applications:
beam adjustment in accelerators, track finding and fitting, and data analysis in
physics performance studies

A ML model is a mathematical model that has found patterns in the data and
can now make predictions based on that. The part of making a model in which
an ML algorithm learns from the data is referred to as training while the making
predictions part is called as testing.

There are three ways to a train model: supervised, unsupervised and reinforce-
ment learning.

Supervised learning is a way to teach model using previously labeled training
dataset. Then during the testing stage the trained model is applied to unlabeled
dataset.

This supervised machine learning approach can be also used to classify particle
candidates.

4.2 Machine learning advantages

Machine learning approach has some advantages in comparison with manual se-
lection. Existing KFPF particle based selection criteria optimization maximizes
signal to background ratio for a certain collision energy and a heavy-ion event
generator. The selection criteria depend on the collision energy and centrality,
decay channel and detector configuration. Machine learning provides efficient
multidimensional, automatized optimization of selection criteria.

4.3 Hipe4ml

Hipe4ml is selection optimization tool developed in ALICE Collaboration, mini-
mal heavy ion physics environment for machine learning [24]. It provides simple

14



and efficient functional for physics analysis, such as:

• Data selection

• Quality assurance of input data

• Finds Search for the best parameters for model to be trained(hyperparameters
tunning)

• Model training and testing

• Model application to the user’s specified data

Despite the hipe4ml basic analysis toolkit, some extended options are in need:

• Plot (non-)linear correlations

• Check results after selection

– confusion matrix

– possibility to visualize the selection

– pT -rapidity distributions

– variables distributions before and after ML cut (signal and background)

• Save model as C++ library

Integration with already existing hipe4ml is a solution of this problem [25].

4.4 Input data for the ML algorithm

Machine learning algorithm requires some selection of the input data except the
quality cuts.

The dataset consists of background samples generated from URQMD model
and signal samples generated from DCM-QGSM-SMM model. We take signal
samples within 5σ range from K0

S invariant mass peak(0.4976 GeV). We cut from
background samples region within 5σ range fromK0

S invariant mass peak. Fig. 4.1
shows how the dataset was created.
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(a) (b)

(c)

Figure 4.1: Data selection for train and test dataset

The ranges of signal and background invariant masses respectively:

• 0.4349 GeV < minv < 0.5614 GeV

• 0.28 GeV < minv< 0.4349 GeV and 0.5614 GeV < minv < 1 GeV

That was done to eliminate the bias of the algorithm, because it’s not known
if the area under the peak has some signal or not.

4.5 Correlation studies

Correlation study is an important aspect of training variables selection. If two
variables have strong correlation, one of them should be excluded from the analysis
to make the learning algorithm faster and decrease bias. If one of the variables
has strong correlation with invariant mass it should be eliminated, as well, to
exclude model’s bias.

Correlation between invariant mass and all the variables is checked to make
sure that certain variable could be included to the analysis. Firstly, Pearson
correlation coefficient ρX,Y = corr(X, Y ) = cov(X,Y )

σXσY
is calculated for all variables

with invariant mass and the matrix is shown in Fig 4.2
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Cov(X,Y) = E[(X-E[X])(Y-E[Y])], where E[X] is expected value known as the
mean of X, σX is standard deviation, σX =

√
E[X2]− E[X]2 .

(a) (b)

Figure 4.2: Pearson coefficient correlation matrix after applying quality cuts.
(a): signal. (b): background

Standard error of the mean (SEM), σ√
n
. Correlations of all variables with

invariant mass along with SEM are shown in Fig. 4.3.

Figure 4.3: Correlations of all the variables with invariant mass

Since Pearson correlation coefficient only shows linear correlation between two
variables, therefore, a different approach is also followed. The variable to be
checked for correlation is taken and its data is divided into 25 bins. Similarly, the
distribution of invariant mass variable is also divided into 25 bins. Fig. 4.4 shows
the correlations for χ2

geo variable.
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Figure 4.4: Mean of each bin with the SEM of χ2
geo bin versus mass. Bin center

of invariant mass plotted versus the bin center of invariant mass. The error bars
represent the SEM of each bin and the red line shows the mean of the K0

S peak
according to PDG value. (a): signal. (b): background.

One can build 2D correlation plot between variables and invariant mass to
detect suspicious structures.
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Figure 4.5: Example of correlation between variable and invariant mass plot

4.6 Training variables

Correlation studies showed that the following variables are the most suitable for
the model training: χ2

prim, χ2
geo, DCA, L/∆L. These variables do not strongly

correlate neither with invariant mass nor with each other.
The one can easily check the distribution of each variable before and after

XGBoost selection(Fig. 4.6).
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Figure 4.6: Distribution of the χ2
geo variable before and after XGBoost selection

4.7 ML framework configuration with TOML

At the beginning of the work user specifies input data (signal and background
path, candicate mass etc) to configuration file in TOML format. TOML for-
mat[26] is a minimal configuration file format that’s easy to read due to obvious
semantics. It was designed to map unambiguously to a hash table and is easy to
parse into data structures in a wide variety of languages.

Figure 4.7: Implemented for CBM: User can specify parameters via configura-
tion files
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4.8 ROC curve and BDT threshold optimization

Receiver operating characteristic(ROC) curve is the plot that illustrates binary
classifier performance as its discrimination threshold is varied.

Any classifier isn’t able to separate signal samples from background. Some of
them anyway will be classified as background. After classification all the sam-
ples are compared with their Monte Carlo label. If the sample’s MC label is
signal(MC=1) and it was classified as signal it is denoted as true positive. If
the sample’s MC label is background(MC=0) and it was classified as signal it is
denoted as false positive.

ROC curves typically feature true positive rate on the Y axis, and false positive
rate on the X axis. This means that the top left corner of the plot is the “ideal”
point - a false positive rate of zero, and a true positive rate of one. This is not very
realistic, but it does mean that a larger area under the curve (AUC) is usually
better.

ROC curves are typically used in binary classification to study the output of
a classifier [27].

There are two ways to choose optimal BDT cut. The first approach requires
to check BDT outputs distribution Fig.4.8 and choose the optimal value.

Figure 4.8: BDT outputs distribution

The second one requires to choose an optimal threshold with respect to the
metric optimization. In this work it was decided to use the Approximate Median
Significance(AMS) [28] which was used for The Higgs Machine Learning Chal-
lenge.
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AMS=
√
2(tpr + fpr) ln (1 + fpr

tpr )− tpr

Fig. 4.9 demonstrates roc curve with the optimal threshold with respect to
AMS maximum.

Figure 4.9: Receiver operating characteristic

4.9 Confusion matrix

Confusion matrix is the matrix that describes binary classifier performance. It
shows how many real(Monte Carlo=1) signal samples were classified as signal and
how many as background. Main diagonal consists of samples with predicted label
the same as Monte Carlo label. Side diagonal consists of samples with MC label
doesn’t coincide with prediction. Fig. 4.10 shows the confusion matrix for BDT
cut >0.95 for training and testing datasets.
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(a) (b)

Figure 4.10: Confusion matrix of training(a) and testing(b) dataset

4.10 Variables importance

XGBoost provides features importance rank that allows to estimate how useful or
valuable each feature was in the construction of the boosted decision trees within
the model [29].

Fig. 4.11 shows the feature importance which was done during the training of
the machine learning algorithm.

Figure 4.11: XGBoost variables importance

4.11 pT-rapidity distribution

Input for selection efficiency determination is implemented. Efficiency is deter-
mined as ϵ = Nrec

Nall
, whereNrec is number of reconstructed samples, Nall - number of

reconstructable (the samples reconstructed while no selection is applied) samples.
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(a)

(b)

Figure 4.12: pT -rapidity differential selection and reconstruction efficiency train-
ing(a) and testing(b) dataset

The one can see that BDT cut saves approximately 90.8% of the signal samples.
These plots could show the potential bias of the model. If the tails of the pT -
rapidity distribution are cut non-uniformly, then the model is biased. In Fig. 4.12
once can observe no bias.

4.12 XGBoost model

This framework is based on the XGBoost machine learning algorithm. XGBoost
is a decision tree ensemble based on gradient boosting designed to be highly
scale-able. XGBoost builds an additive expansion of the objective function by
minimizing a loss function. XGBoost provides efficient and fast performance, so
it was decided to use it for the current study.

This algorithm’s advantages include:

• Boosting combines weak learners (error rate <50%) to make a strong learner
(error rate <25%)

• Decision trees (weak learners) are combined together to make a Gradient
Boost algorithm
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• In each step a new tree is used to improve the previous prediction

The example of the decision tree for K0
S candidates selection is shown in

the Fig. 4.13 using XGBoost optimized selection criteria. This selection
criteria was optimized for small dataset with 1000 signal candidates and
3000 background candidates, so the structure of the tree is simplified in
comparison with bigger datasets.

Candida tes_ch i2_pr im_f i r s t<44 .1233292

Cand ida tes_ch i2_pr im_f i r s t<22 .9966431

yes ,  miss ing

Cand ida t e s_ch i2_geo<10 .9026318

n o

l e a f = - 1 . 0 1 5 4 8 8 6 2

yes ,  miss ing

lea f=-0

n o

Cand ida t e s_ch i2_pr im_second<3 .8624053

yes ,  miss ing

l e a f = - 0 . 1 4 3 8 5 8 2 9 9

n o

lea f=-0

yes ,  miss ing

l e a f = 1 . 0 9 0 8 2 1 6 2

n o

Figure 4.13: The example of the decision tree using XGBoost optimized selection
criteria. This optimization was performed on 1000 signal and 3000 background
candidates.

The optimal XGBoost parameters were optimized via Bayesian Optimiza-
tion [30] as following:

– max_depth(optimized value = 8): maximum depth of a tree. Increasing
this value will make the model more complex and more likely to overfit.

– gamma (optimized value = 0.975): minimum loss reduction required to
make a further partition on a leaf node of the tree.

– alpha(optimized value = 16) L1 regularization term on weights.

– learning_rate(optimized value = 0.732): step size shrinkage used in up-
date to prevents overfitting.

Model had 2 training epochs. Dataset includes 1000000 signal samples(MC=1)
and 3000000 background samples(MC=0).
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4.13 Model performance analysis

One can precisely optimize selection criteria with using XGBoost algorithm. Fig. 4.14
shows the K0

S candidates invariant mass distribution before and after XGB op-
timized selection criteria application. This dataset consists of 10000 events with
reconstructable 16113794 K0

S candidates. With the BDT cut>0.989 we have ratio
reconstructable K0

S / reconstructed K0
S = 0.915.

Figure 4.14: K0
S candidates invariant mass distribution before and after XGB

optimized selection criteria application

The number of the reconstructed candidates depends on the BDT cut. Tighter
cut rejects more background while rejection more signal candidates. The impact
of the BDT cut is shown in the Fig. 4.15.
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Figure 4.15: K0
S candidates invariant mass distribution with respect to BDT

cuts

Fig. 4.16 shows how the application of the BDT cut transforms background
shape and make it linear.

Tab. 1 shows how many signal candidates are reconstructed and how many
background is rejected with respect to the BDT cut.
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BDT cut reconstructable/reconstructed background rejection
0.8 94.95% 99.66 %
0.96 90.65% 99.89 %
0.989 85.15% 99.95%

Table 1: Ratio between reconstructable/reconstructed K0
S sigbal candidates;

background rejection - ratio between candidates which were classified as back-
ground and false true(MC=0) candidates. Both values are with respect to the
BDT cut.

(a) (b)

(c)

Figure 4.16: K0
S candidates invarians mass distribution with respect to BDT

cuts. The red peak shows XGBoost selected K0
S, while blue shape shows false

positive samples which are classified as signal while being background

Machine learning algorithms select signal more efficiently in comparison with
manual tools(Fig. 4.17). Existing KFPF package selection criteria optimization
is based on the maximization signal to the background ratio. The default KFPF-
optimized selection criteria:

• L∆L > 5
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• DCA < 1 cm

• χ2
geo < 3

• χ2
prim > 18.4

Figure 4.17: Comparison between KFPF selection criteria and XGB
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5 Yields extraction

5.1 Yield extraction procedure

For differential analysis the kinematic phase space is divided in transverse mo-
mentum (pT ) intervals of 0.5 GeV/c wide and laboratory rapidity (yLAB) intervals
of 0.5 step size(shown in Fig. 5.1).

The yield extraction is implemented as a three stage fitting procedure on
URQMD to each pT -yLAB interval [31].

Figure 5.1

In stage one, the invariant mass distribution of the background, K0
S candidates

outside the 5σ region from the K0
S peak at 0.498 GeV/c2, is fitted with a second

order polynomial (pol2). In the second stage, the invariant mass distribution is
fitted in full range with a sum of a Double Gaussian (A/(1-B) exp[((x - µ)/σ1)2/2]
+ B exp[((x - µ)/σ2)2/2]) and pol2 functions. For this fit the mean (µ) and
standard deviations (σ1, σ2) of the Gaussian function are fixed to µ = 0.498
GeV/c2 and σ1 = 0.004 GeV/c2, σ2 = 0.007 GeV/c2 while the initial values of the
pol2 are taken from the fit at stage one. In the final stage, all parameters of the
Gaussian and pol2 are released with their initial values set to the result of the fit
at stage two. Fig. 5.2 shows three stage fitting procedure.

The corrected K0
S yield for each pT-ylab interval is extracted by dividing the

signal yield from the fitting procedure with the efficiency correction factor ob-
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tained from DSM-QGSM-SMM Model. In Fig. 5.3 reconstructed K0
S acceptance

and efficiency, corrected K0
S yield, and corrected K0

S yield and true K0
S yield are

shown.
In Fig. 5.4 efficiency and acceptance correctedK0

S yields on the yLAB projection
are shown. They are in the agreement with the simulated ones.
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Figure 5.2: Three stage fitting procedure implementation: (a): Exclude signal
region and fit background with pol2, (b) Use background fit parameters as initial
values for next iteration, where signal (double Gaussian) fit function has fixed
parameters, , (c) Use fit parameters as initial values for unconstrained fit to the
whole inv. mass range
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(a) (b)

(c)

Figure 5.3: (a) reconstructed K0
S acceptance and efficiency, (b) corrected K0

S

yield, (c) corrected K0
S yield and true K0

S yield
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Figure 5.4: Efficiency and acceptance corrected K0
S yields as a function of yLAB
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6 Summary

Strangeness enhancement is one of the most important signatures of the decon-
fined state called quark gluon plasma. That’s why (multi-)strange hadron recon-
struction is crucial for the CBM experiment.

The CBM performance for the K0
S mesons reconstruction via its decay to π+

and π− is presented.
Machine learning XGBoost is powerful and robust tool for signal selection. The

core of machine learning framework for physics analysis environment for
(multi-)strange, hypernuclei, and other decays was written. Integration with al-
ready existing hipe4ML package developed for ALICE was implemented. It pro-
vides easy and user-friendly tool for physics analysis: input data quality assurance,
variables selection, model training and testing, model’s performance checking.
The framework was used in this analysis for the signal selection.
K0

S yield extraction procedure was performed for two different heavy ion colli-
sion generators DSM-QGSM-SMM and URQMD. The yields of the both genera-
tors are withing the agreement.

The result of this analysis were presented on the 38th CBM collaboration meet-
ing [32], the proceeding to the The 19th International Conference of Strangeness
in Quark Matter (SQM 2021) was published [31] which includes the author of the
thesis as the co-author. Author will present the current results in the FAIRness
2022 - the workshop for the yound scientists [33].
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