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Abstract

There is a large scientific interest to explore the phase diagram of strongly interacting matter. The Com-
pressed Baryonic Matter (CBM) experiment at the FAIR facility is devoted to study the phase diagram
of strongly interacting matter at high net baryon density and low temperature where critical point and
first-order phase transition from hadronic matter to deconfined matter is expected. For the precise mea-
surement of the properties of this deconfined QCD matter, the multi-differential yield measurement of the
strange hadrons is required. The enhanced production of the strange hadrons such as K0

S is an important
probe of the new deconfined state of the QCD matter. Here in this study, the CBM performance for the
reconstruction of the K0

S particle by its decay to π+ and π− are presented. Decay topology reconstruction is
furnished by Particle-Finder Simple(PFSimple) package with Machine Learning algorithm for efficient decay
reconstruction and to obtain a high signal-to-background ratio. The implemented yield extraction procedure
is used for the yield extraction of K0

S double differentially(pT - yLAB).
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Chapter 1

Introduction/motivation

1.1 Matter under extreme conditions

Humans are always curious about the questions like, what is the fundamental constituent of the matter?
What is the interaction between them?, etc. After numerous discoveries by various scientists today we
know that the fundamental particles are quarks, leptons, and bosons. Everyday matter which we see in
nature is mostly made up of up and down quarks and electrons. The bosons are the force carrier particles.
The four known forces of nature i.e., strong force, weak force, electromagnetic force, and gravitational force
describe the interaction of the know particles of the universe with each other. In everyday matter, the strong
force is seen in the confinement of the quarks and gluons inside the nucleon and binding of the nucleons
by the residual strong force to form a nucleus. The strong force is explained with the help of quantum
chromodynamics (QCD) theory. QCD tells about the interaction between the quarks and gluons, which are
the constituent part of the hadron. There are three main features of QCD [1][2] 1) Asymptotic freedom -
The strength of the coupling constant αS becomes large for large distances and small for small distances. 2)
Colour confinement - No free quark and/or gluon can be found in nature [3]. 3) Chiral symmetry breaking
- It is the spontaneous symmetry breaking that gives the mass to a hadron.

In normal nuclear matter, quarks are confined in the hadrons and cannot be seen as free in nature.
Asymptotic freedom suggests that quarks behave freely when they come very close to each other. The
quarks can be brought close by different methods - 1) By increasing the temperature, the rate of random
excitation of the hadrons in the QCD vacuum increases. After some critical temperature Tc they start to
overlap and the system is formed where quarks and gluons are free. 2) If the baryons are kept in the box and
they are pressed adiabatically they will start to overlap after some critical pressure ρc. After pressing further
the quarks will come so close that they will move freely. The system formed in both of the cases under these
extreme conditions is called the deconfined state of the strongly interacting matter. If this deconfined state
is in thermal equilibrium it is called the quark-gluon plasma (QGP).

1.2 Phase diagram of the strongly interacting matter

The different phases of the strongly interacting matter can be seen from the figure 1.1.
The normal nuclear matter exists at low temperatures and moderate baryon chemical potential (≈ 938

MeV), where baryon chemical potential (µB) means the difference between the baryon and the anti-baryon in
MeV. When the temperature and/or density is increased the hadronic matter transforms into the deconfined
state of the QCD matter. According to Lattice QCD (LQCD), the phase transition is expected around 160
MeV temperature [4] from hadronic matter to deconfined matter. These LQCD calculations were done at
low µB . The color super-conductor phase of the strongly interacting matter is expected at very high µB and
low temperature. Another phase of strongly interacting matter is predicted which has the properties of both
the dense baryonic matter and the quark matter [5][6]. This phase is called quarkyonic matter.

In nature, the QGP state of strongly interacting matter can be accessed using different ways. It is
expected that during the early stages of the universe, it was in a QGP state at a very high temperature and
zero µB . In the current universe, neutron stars are the candidate where high µB and low temperature is
expected. In the interior of the neutron star, the deconfined state of the QCD matter might exist. Another
way to produce a QGP is through the heavy ion collision experiments. The LHC and RHIC experiments
trace the QCD phase diagram at low µB and very high temperature. At these conditions, a second-order
phase transition is expected. In the year 2000, the QGP was first detected at the CERN [8].

The QGP is produced in the laboratory by colliding heavy ion nuclei at very high speed. The different
stages of the strongly interacting matter in the heavy ion collision are depicted in the figure 1.2
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Figure 1.1: QCD phase diagram [7]

Figure 1.2: Evolution of strongly interacting matter in heavy ion collision [9]

• Initial phase: Two Lorentz-contracted heavy ion nuclei collide with each other at relativistic speed.

• QGP: The deconfined state of matter is formed at the central region where the energy density is highest.
If the local thermal equilibrium is reached it is called QGP. In the QGP the quarks and gluons interact
with each other.

• Hydrodynamic evolution: The created fireball expands almost at the speed of light and cools down
thereafter quarks combine into hadrons.

• Detection: After some critical temperature the interaction between hadrons freezes out and they fly
toward the detector.

The formation time of the QGP is predicted as 1 fm/c. At the end of the heavy-ion collision, hadrons
and other particles are registered in the detector. By using the information of these registered particles
the properties of the fireball created in the heavy-ion collision can be investigated. Some of the probes of
the dense strongly interacting matter produced in the collision reaction are strangeness enhancement, J/ψ
suppression, jet quenching, etc.

The compressed baryonic matter (CBM) experiment at the faculty for anti-proton and ion research
(FAIR) is devoted to find the properties of the strongly interacting matter at high µB and low temperature.
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At such extreme conditions, the 1st order phase transition is expected from the hadronic matter to the
deconfined state of the QCD matter. The future CBM experiment will be able to find the answers to the
following questions [10] -

1. What is the equation of state of the strongly interacting matter at high µB and what are the relevant
degree of freedom for these densities?

2. Does the quarkyonic state of QCD matter exist?

3. What is the property of the highly dense baryonic matter? Are the indications of the chiral symmetry
restoration accessible?

4. What is the limit of the nuclei chart towards the third dimension (strangeness) by producing single
and double strange hypernuclei?

1.3 Strangeness a probe of the new deconfined state of QCD mat-
ter

The new deconfined state of strongly interacting matter is produced in the collision of two heavy ion nuclei.
The strangeness enhancement is one of the important probe of this new state of matter [11]. In normal
nuclear matter, strange quarks are not present. A hadron containing strange quarks will decay weakly into
other stable particles. Strange quarks/anti-quarks found in the experiments are made during the heavy ion
collision reaction. The yield of the strange particles depends on the density of the deconfined matter formed
in the collision.

There are different mechanisms for the production of strangeness [12]. Hadron-hadron collision can
produce some strange particles at high collision energies (

√
sNN=700 MeV), ex.,

p+ p→ p+ Λ+K+ (1.1)

π + π → K + K̄ (1.2)

While in the case of the deconfined state of matter strange particles can be produced at
√
sNN= 300 MeV

by the following mechanism
g + g → s+ s̄ (1.3)

q + q → s+ s̄ (1.4)

The equation 1.3 is the dominant production mechanism of the strange quark in quark matter. The
strangeness density in the new state of matter is 0.3 fm−3 while in the case of hadron gas it is 0.1 fm−3

[12]. These predictions suggest that strangeness enhancement is an important probe of the new state of
strongly interacting matter.

1.4 K0
S particle

The figure 1.3 shows the yield the hadrons for Ar+KCl collison at
√
sNN = 2.61GeV .

Here K0
S is the 3rd most abundant strange particle produced in the heavy ion collision reaction. Therefore

it is worth studying the K0
S particle.

The main decay channels of the K0
S particle are as follows [14] -

K0
S → π+ + π−(69.20± 0.05%) (1.5)

K0
S → π0 + π0(30.69± 0.05%) (1.6)

The eqation 1.5 decay channel will be studied here. The mean lifetime of the K0
S is 8.594 × 10−11 s that

corresponds to ct 2.68 cm. The invariant mass of the K0
S is 0.4976 GeV . Λ is the most abundant strange

particle produced by the fireball. Different from the Λ decay, the K0
S decays symmetrically into two soft

pions, which allows an additional probe performance of the tracking for the secondary reconstruction.
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Figure 1.3: Yield of hadrons in Ar+KCl collision at
√
sNN = 2.61GeV [13]

9



Chapter 2

The CBM experiment

2.1 CBM experiment

The FAIR is envisaged by the international science community and GSI laboratory. The goals of the FAIR
is to do a multifaceted science program, with beams from stable and unstable nuclei as well as antiproton
at wide range of intensities and energies [15]. The skecth for the FAIR facility and GSI laboratry is shown
in figure 2.1.

Figure 2.1: FAIR together with existing GSI facilities [16]

FAIR comprises of a synchrotron (SIS 100), different rings for collecting and storage of the beams,
different experiments for nuclear physics, Astrophysics, Plasma physics, and Atomic physics purpose [17].

The CBM experiment is designed to investigate the strongly interacting matter at very high baryonic
densities. Such a densities are expected to exist in the core of the neutron stars [10]. The goal of the CBM
experiment is to measure the yield, spectra, collective flow, event-by-event fluctuation, and correlation of
the different hadrons, electrons, and muons produced in the heavy-ion collision at FAIR beam energy range
with the unprecedented precision and statistics for different collision scenarios (i.e., A + A, A + p, p + p
collisions) [18].
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2.2 CBM detectors

For the diagnosis of the rare probes of the deconfined matter, the CBM experiment will operate with the event
rates up to 107 Au+Au collisions per second to gather enough statistics. Therefore for the measurements
fast and radiation hard detectors are required [17]. The figure 2.2 shows the different detectors of the CBM
experiment.

Figure 2.2: The detector setup of the CBM experiment [16]

• Dipole magnet - The tracking detectors will be placed inside a superconductive 1 Tm dipole magnet.

• Micro-Vertex Detector (MVD) - It will be used for the track reconstruction of the different particles.
One of the possible application of MVD is the identification of the D mesons with the high vertex
resolution (50 - 100 µm) and to reduce the combinatorial background in the case of electron measure-
ments. The MVD will be placed inside the dipole magnet. The MVD uses monolithic active pixel
sensors (MAPS). 3-4 layers of the MAPS will be placed downstream of the target up to 20 cm.

• Silicon Tracking System (STS) - It will be used for the track reconstruction and momentum determi-
nation of the particles. For this purpose, it will be placed inside the dipole magnet. In the current
version, STS consists of 8 different silicon detector layers. They will be located downstream of the
target from 30 cm to 100 cm.

• Ring Imaging CHerenkov detector (RICH) - It detects the electron using the Cherenkov radiation
technique. It will also be used for the suppression of the pions of momentum less than 8 GeV/c2.

• Muon Chamber system (MuCh) - MuCh is used for the detection of muons.

• Transition Radiation Detector (TRD) - TRD will be used for the tracking and identification of the
electron and positron. It consists of 3 detector layers which will be situated at 5 m, 7.2 m, and 9.5 m
downstream of the target.

• Time of flight (TOF) detector - It is used for the identification of the hadrons using TOF information.
It is located 10 m downstream of the target.
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• Electromagnetic CALorimeter (ECAL) - It is a ”shashlik” type of calorimeter that will be used for the
measurement of the direct and indirect photons produced in the heavy ion collison reaction.

• Projectile Spectator Detector(PSD) - It will be used for the detection of the centrality and the orien-
tation of the reaction plane.

The TOF, STS and MVD are the important detectors for the short-lived particles. The tracks of the
daughter particle is reconstructed using the MVD and STS detectors. The particle momentum is calculated
using the STS information and identified using the TOF detector.
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Chapter 3

Reconstruction of K0
S using PFSimple

package

3.1 Data simulation

Transport theory describes the microscopic dynamics description of heavy ion collisions. UrQMD [19] is a
microscopic transport model which is based on phase space description of the heavy ion collision reaction.
DCM-QGSM-SMM [20] is another transport model which can simulate the product of heavy ion collision
reaction from the hundred MeV to hundred GeV energy range.

For the analysis in this study, the data is simulated from Au+Au collision containing ≈ 2M events for
UrQMD and ≈ 5M events for DCM-QGSM-SMM model at pbeam=12 AGeV (

√
sNN= 4.93 GeV ), minimum

bias. The Au+Au collision produces different particles, these particles are passed through the CBM detector
setup using GEANT4 [21] transport engine to register the response of each detector to these particles. The
produced charge particles generate hits in the tracking detector along the trajectory of the particle. Cellular
Automaton (CA) [22] track finder is used to reconstruct the trajectories (tracks) of the charged particles.
The CA method produces tracklets using the hits in the neighboring detectors and links them to build the
track candidates.

Here in this study, the DCM-QGSM-SMM model is taken as pure signal therefore simulated data. By
excluding the signal in the 5σ range of invariant mass of the K0

S particle the UrQMD model data can be
treated as background for further study.

3.2 Reconstruction of K0
S using PFSimple package

K0
S is a short-lived particle, which means it decays before or short within the tracking detector. The decay

length of the K0
S particle is 2.68 cm [14]. Therefore K0

S can be reconstructed only indirectly using its decay
products. The main decay channel of the K0

S is shown in the equation 3.1

K0
S → π+ + π− (69.20± 0.05%) (3.1)

The negative and positive pion from K0
S decay produces tracks in MVD and STS detectors. All negative

and positive charged particle tracks are combined to make the candidate for the K0
S . Reconstructed and

Monte Carlo tracks are matched using the matching algorithm (in GEANT4 [21] simulation). Only those
K0

S candidates which come from true K0
S decay (by applying the cut, MC = 1 ) are termed as a signal and

other candidates are called background (by applying the cut, MC = 0 ).
Figure 3.1 shows the cartoon of topological variables.
There are mainly two types of tracks - 1) Primary track - These tracks are made by the particles produced

during the collision of two heavy ion nuclei at relativistic speed. 2) Secondary tracks - The secondary particles
are the decay products of the primary particles. Secondary tracks are made by secondary particles. Primary
tracks overlap with the primary vertex (PV) within the errors while the secondary tracks do not. Therefore
to distinguish primary tracks and secondary tracks χ2 criterion is used [23]. Where χ2 is the distance between
two tracks or a track and a vertex normalized on their total errors.

KF Particle package [24] uses the Kalman Filter method for the complete reconstruction of short-lived
particles. PFSimple package [25] is the simplified version of the KF Particle package based on KF Particle
mathematics. PFSimple package takes track information as input and outputs candidates kinematics and
topological variables.

The topological variables given by PFSimple are as follows -
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Figure 3.1: Pion tracks in tracking detector a) Variables associated with the decay tracks of K0
S candidate.

b) Variables associated with the momentum vector

• Distance of the Closest Aproach (DCA) - The DCA (cm) between π+ and π− track candidates

• χ2
geo - Squared distance between daughter tracks divided by its error

• χ2
primπ+ - Squared distance between PV (collison point) and π+ track divided by its error

• χ2
primπ− - Squared distance between PV and π− track divided by its error

• L - Distance between PV and secondary vertex (SV)

• L/∆L - L divided by its error

• χ2
topo - Squared distance between PV and the extrapolated trajectory of K0

S divided by its error

• cosine second - cosine of the angle between
−→
P K0

S
and

−→
P π+

• cosine first - cosine of the angle between
−→
P K0

S
and

−→
P π−

• cosine topological - cosine of the angle between
−→
P K0

S
and the line joining PV to SV

PFSimple uses manual selection criteria for maximizing the signal-to-background ratio which is dependent
on the collision energy, decay channel, and detector configuration. While with the help of a machine learning
model, the selection can be done in a non-linear fashion for multi-dimensional phase space in an automatized
way and different data scenarios i.e., different collision energies, pT , y, etc.

3.3 Selection of variables for training the model

A set of preselection criteria for topological variables is used to remove the numerical artifacts from K0
S

candidates. The numerical values of the preselection criteria of the topological variables are shown in the
table 3.1

Parameter χ2
geo χ2

topo χ2
prim L/∆L DCA(cm)

Selection criterion 0− 103 0− 3× 105 0− 3× 108 (-25) - 15000 0 - 100

Table 3.1: PFSimple Quality assurance cuts for K0
S candidate

The Pearson correlation coefficient describes the linear correlation between the two variables [26]. It is
the ratio of the covariance between two variables and the product of their standard deviations. The Pearson
correlation coefficient has a value between -1 to 1, where +1 suggests that there is a linear dependency
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between the two variables when the value of X increases the value of Y also increases, and vice versa for -1.
The formula for the Pearson correlation coefficient is given in the equation 3.2

ρX,Y =
cov(X,Y )

σXσY
(3.2)

The Pearson correlation for all the variable of K0
S is shown in figure 3.2.

(a) DCM-QGSM-SMM

(b) UrQMD

Figure 3.2: Pearson correlation coefficient plot
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Figure 3.3: Distribution of m2 versus charge times momentum for Au+Au collison at pbeam = 10 AGeV/c
[16]

All negative and positive charge particle tracks are combined to build the K0
S candidates. The m2

variable information is important in differentiating between the candidates as seen from the figure 3.3, the
m2 value for π is less than the other major charge particles. m2

π+ is the m2 of the positive charge particle
and considered as π+ particle while m2

π− is the m2 of the negative charged particle and it is considered as
π− particle. The m2 variable is calculated using the TOF information. Where p is calculated using track of
the particle and β is calculated using TOF information. The formula for m2 is as follows -

m2 = p2
(

1

β2
− 1

)
(3.3)

Here the goal is to reconstruct the K0
S candidates properly and therefore plot the invariant mass spectra

of K0
S candidates at the end. When the K0

S mass variable is added in the training of the machine learning
algorithm, it greedily picks this variable and mostly uses it for the prediction of the particular K0

S candidates,
so the model gets biased and produces the false peaks under the K0

S invariant mass peak . Therefore the
topological variables which have an insignificant correlation with the mass variable of K0

S candidates are
chosen to train the model. The variables used for training the model are - DCA, χ2

geo, χ
2
primπ+ , χ2

primπ− ,

L/∆L, m2
π+ , m2

π− .
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Chapter 4

Optimization of selection criteria for
K0

S using machine learning

4.1 Introduction to machine learning

Different topological and kinematical variables are associated with the daughter track of the K0
S particle.

The optimization of the selection criteria is required for the suppression of the combinatorial background.
Conventionally the selection is done linearly using the box cuts on the different variables of the daughter
track. These box cuts depend on the collision energy, multiplicity, centrality, etc., therefore the conventional
optimization of selection criteria is computationally expensive and manually laborious work. Machines are
thought to be the best solution to solve this cognitive problem. Machine learning algorithms can learn
hidden patterns in the data and therefore optimization of the selection criteria can be done in a non-linear
fashion by an automatized way on multi-dimensional phase space. Machine learning (ML) is the subfield
of computer science that gives the computer the capability to learn from the data without being explicitly
programmed. Therefore different models can be built using ML algorithms for various data scenarios such
as multiplicity, centrality, collision energy, etc., to optimize the selection criteria of K0

S and the work can
be done smartly. ML algorithms are used in various fields such as email filtering, image detection, language
translator, etc.

There are three main types of machine learning [27]. 1) Supervised machine learning - In a supervised
machine learning algorithm, the sample data is given to the machine that contains various features (variables
represented as X) and the correct output value (represented as y). The algorithm then learns the pattern
and rules in the data. After learning the patterns and the rules it produces the model that predicts the
output value. As the features and the correct output value is known to the machine, the sample dataset in
supervised machine learning is called a labeled dataset. The different types of supervised machine learning
are regression, decision trees, k-nearest neighbors, etc. Supervised machine learning is then subdivided into
two types a) Classification - Where the model predicts the type/class of the target variable. b) Regression
- Where the model predicts a continuous value or a number. 2) Unsupervised Machine learning - In the
case of unsupervised machine learning, an unlabeled dataset is given to the machine. Here the primary
goal is to discover the hidden patterns in the dataset. One example of unsupervised machine learning is
k-means clustering. In k-means clustering the data points are clustered to find the new labels (features)
in the dataset. 3) Reinforcement machine learning - In supervised and unsupervised machine learning
algorithms, an undetermined endpoint is reached after generating the model with training and test data. In
the reinforcement machine learning algorithm, the model is fixed to train by continuous learning. Positive
or negative feedback improves the model in each iteration of continuous training. Q-learning is an example
of reinforcement machine learning.

Various types of ML algorithms can be used both for regression and classification. A decision tree
(DT) algorithm is one of them. DT is the sequential model that unites the basic logical tests efficiently
and cohesively, where a numerical attribute is compared to the threshold value in each test [28][29]. The
advantage of the DT over ”black-box” models such as neural networks is its lucidity. The logical rules in
the DT are much easier to understand than the numerical weight given to a connection of each node in the
neural networks. DT uses greedy search through all possible combinations of the logical rules to find the best
split to divide the instances into a separate class, forming a tree. Entropy is the measure of the randomness
or the impurity of the dataset. The best split is chosen to get the greatest gain/minimum entropy at the
particular node.
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4.2 XGBoost

The learning algorithms whose performance we wish to boost are called weak learners [30]. Boosting is the
ensemble technique where weak learners are joined together consecutively to produce a strong learner. The
single DT can perform well than the random guess but its performance can be enhanced using the boosting
technique. In gradient boosting machine (GBM) algorithm the strong learner is built by back-fitting and non-
parametric regeression [31]. The functions which are used to minimize the difference between the predicted
value (by model) and the actual value (data) are called loss functions. GBM exploits the gradient descent
method to minimize the loss function of the initial model and thus a more precise model is built. The
eXtreme Gradient Boosting (XGBoost) [32] is the advanced version of gradient boosting where it not only
uses the gradient of the loss function but its second-order derivative is used for the better estimation of the
steps towards the minimum of the loss function.

XGBoost is a highly scalable end-to-end tree-boosting system, which means it can be used for smaller
as well as larger datasets in distributed processing frameworks. It uses a gradient tree-boosting machine-
learning algorithm. XGBoost was used by many machine learning competition-winning teams. XGBoost
uses decision trees in a sequential manner. The decison trees in XGBoost are called as boosted decision tree
(BDT). Various regularizing parameters (i.e., alpha, gamma, lambda, etc.) are used in XGBoost to avoid
overfitting. Regularizing parameters are applied to each BDT, therefore each BDT learns a small portion of
the pattern in the data and gives the prediction. The wrong prediction of BDT is corrected by successive
BDTs.

There are various advantages of using XGBoost such as: 1) It uses the sparsity-aware algorithm. This
algorithm learns the preferred direction of sparse data (missing value entries) during BDT learning. 2) It is
scalable, and portable and also works on distributed processing frameworks 3) It has package implementation
for Python, R, C++, Java, Scala, Julia, and Perl 4) It uses exact greedy algorithm, which tries to find the
best split on all features by enumerating over all the possible splits.

The XGBoost model is chosen for the reconstruction of K0
S candidates in this study. The K0

S candidate
is either signal or background therefore the classification is binary.

4.3 Hipe4ml

Hipe4ml [33] is the minimal Heavy ion physics environment for machine learning. It has different classes.
ModelHandler class is used to handle the ML classifier, build the model, dump the model, etc. TreeHandler
class is used for storing and managing the data i.e., .root file, Pandas Dataframe, etc. Other classes are used
for analysis and plotting purposes. Here in this study Hipe4ml package is used.

The Optuna is the next generation optimization softeware [34]. Optuna package is used for the optimiza-
tion of the hyperparameters of the XGBoost model in the hipe4ml environment.

4.4 Selection of the data for training and testing the model

The UrQMD model for 1M events of Au+Au collision, produces some ten thousand of the K0
S candidates

and only ≈ 6,000 of them were detected by the CBM detector setup. The K0
S particles produced in the real

data are very less compared to the combinatorial background and therefore the signal is under-represented
in this data sample. Therefore to train and test the XGBoost model the data is oversampled by increasing
the signal-to-background ratio. Signal is taken from DCM-QGSM-SMM model data in the 5σ region of the
invariant mass of K0

S i.e., 0.44 < invariant mass < 0.54 (in Gev/c2). UrQMD model data can be treated as
background by applying MC = 0 cut and excluding the candidates in the 5σ region of the invariant mass of
K0

S .
The decay channels of the K0

S particle is very well known therefore microscopic transport models can
describe the K0

S signal to a very good accuracy but the combinatorial background is a random process
and therefore hard to simulate using the transport models. When the real data will come from the CBM
experiment, the background will be taken from it, but as currently no real data is available the UrQMD
model is treated as real data (signal+background). The background is taken from the UrQMD model to
train the XGBoost model. As the combinatorial background is taken from the real data the ML optimization
procedure is partially dependent on the simulated data rather than fully dependent.

The invariant mass spectra of DCM-QGSM-SMM, UrQMD, and train-test data is shown in figure 4.1
After selecting the data (figure 4.1c) for training the XGBoost model, it is divided into two samples, 50% of
the candidates are used for training the XGBoost model and 50% of the candidates are used for testing the
XGBoost model.
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(a) DCM-QGSM-SMM (b) UrQMD

(c) train-test data

Figure 4.1: Invariant mass spectra for Au+Au at pbeam = 12 AGeV a) Only true K0
S candidates produced

by DCM-QGSM-SMM model b) All K0
S candidates produced by UrQMD model c) K0

S candidates chosen
from DCM-QGSM-SMM and UrQMD model for training and testing the XGBoost model.

4.5 Evaluation of models performance

The XGBoost model is trained using the train data and the training variables. To check the bias and variance
of the XGBoost model different evaluation methods are used, some of them are BDT output distribution,
and ROC-AUC. The feature importance of the XGBoost model is shown using the SHAP plots.

4.5.1 Evaluation using BDT output distribution

In the XGBoost model, the final prediction for a particular candidate is given by the vote from all the BDTs.
The average of all the votes is called as BDT output score. A candidate is given a score between 0 and 1
dependent on its feature values. Candidates which are more signal-like are placed near 1 and the candidates
which are more background-like will be placed near 0. The trained XGBoost model is applied on the train
and test data. Figure 4.2 shows the BDT output distribution for the train and test data sample. The red
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Figure 4.2: Trained XGBoost model applied on train and test data

color in the figure shows the pdf of the true signal candidates while the blue color shows the pdf of the true
background candidates. Two peaks are seen at 0 and 1. The K0

S candidates which peak at 0 are mostly
background candidates and the K0

S candidates that peak at 1 are mostly signal candidates. This shows that
the XGBoost model can successfully classify most of the signal candidates.

(a) DCA distribution for different bdt samples (b) L distribution for different bdt samples

Figure 4.3: Topological variable distribution plot for different bdt samples

Some signal candidates peak at 0, which is investigated using the following procedure. The train test
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data is divided into three data samples according to their BDT output score and MC information - a) Low
bdt signal - this data sample contains all signal candidates (MC = 1) in BDT output range 0 - 0.1 b) High
bdt signal - this data sample contains all signal candidates (MC = 1) in BDT output range 0.9 - 1 c) Low
bdt background - this data sample contains all background candidates (MC = 0) in the BDT output range
0 - 0.1. These three data samples are taken for further investigation. The plots of DCA and L variables for
these three data samples are shown in figure 4.3. Figure 4.3b shows that the distance between PV and SV
is low for the low bdt signal candidates, which means low bdt signal candidates decay near the PV. As the
low bdt signal candidate decay near the PV, its daughters will bend more in the magnetic field and have
higher DCA. Therefore low bdt signal candidates have high DCA than the high bdt signal candidates as
seen from figure 4.3a. This confirms that some K0

S candidates decay near PV and therefore their SV cannot
be resolved properly, hence the XGBoost model predict these low bdt signal candidates as background i.e.,
near to 0 BDT output score. The plots of the other topological variables for these three bdt-based data
samples are given in appendix A.

4.5.2 Evaluation using ROC-AUC

Receiver Operating Characteristics Area Under the Curve(ROC-AUC) [35] is used for the performance
assessment of the ML model. The ROC plot is a two-dimensional plot of the true positive rate (TPR) versus
the false positive rate (FPR). The TPR and FPR rate can be defined as:

True Positive Rate =
S classified as S

S classified as S + S classified as B
(4.1)

False Positive Rate =
B classified as S

B classified as S + B classified as B
(4.2)

Here, S: signal and B: background. The TPR tells how many true signal candidates are classified a signal

Figure 4.4: ROC plot for train and test data

candidate (based on a selection on a particular BDT ouput score) by the XGBoost model among all the
true signal candidates. And FPR tells about how many true background candidates are classified as a signal
(based on a selection on a particular BDT ouput score) by the XGBoost model among all the true background
candidates. The ROC plot is plotted for all thresholds (i.e., 0 to 1 BDT output score). The ROC-AUC is the

21



aggregate measure of the performance of the model for all thresholds therefore it is threshold independent.
Different models/algorithms performance can be evaluated using ROC-AUC. An ideal model will have TPR
= 1 and FPR = 0.

The ROC plot of the trained XGBoost model applied on the train and test data samples is shown in the
figure 4.4. The ROC-AUC is 0.9971 for both the train and test data samples, which shows that the XGBoost
model is not over-trained on the train data as it performs the same on the test data. The random guess
line is seen in the figure, which tells about the 50% - 50% probability of a given candidate being signal or
background.

4.5.3 Evaluation using SHAP plot

XGBoost model is a complex model containing hundreds of BDTs. The prediction for a particular candidate
given by BDTs cannot be interpreted easily by looking at the structure of the XGBoost model. SHAP
(SHapley Additive exPlanations) [36] plots give insight into how the model was built, and which variables
were most used in building the XGBoost model. In the SHAP technique, an explanatory model is built,
which is the simplification of the original complex model. The prediction of the explanatory model should
match the prediction of the original model. The SHAP value is the contribution of the individual variable in
the prediction by the XGBoost model. SHAP value is a unified measure of the feature (variable) importance.

The figure 4.5 shows the feature importance plot for the trained XGBoost model. The variables are
ranked according to their contribution to the prediction of the result by the XGBoost model. The highest
ranked variable is placed at the top in the SHAP plot, which is χ2

primπ+. The blue dots are the low value and

the red dots are the high values in the respective variable. The χ2
prim criterion tells if a particular candidate

overlaps with the PV within the errors or not, therefore the tracks of the secondary particles will have a high
χ2
prim value. Hence in figure 4.5, the red points of χ2

primπ+ are given the high positive SHAP value which
contributes to the signal. Sometimes color can be misleading as some outlier candidates can have very high
or very small feature values relative to the normal distribution of the feature values as seen from appendix
D. The two bolbs for the χ2

primπ+ variable int the SHAP plots are explained in the appendix E.

Figure 4.5: SHAP plot of the XGBoost model

For the reconstruction of the K0
S all positive and negative tracks are combined in the mass range 0.28
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GeV to 1 GeV . The positive charge particles in the given mass range are π+, K+, and proton, which can
be seen from figure A.1b. The π+ have the lowest mass among all of these positive charge particle particles.
Therefore in figure 4.5 the low values of the mass2π+ are given positive SHAP value which contributes to the
signal and vice versa for the high values of mass2π+ variable. The gray dots(and violet due to convolution of
colour) for m2 variable in SHAP plot 4.5 are the NaN value candidates.

Some soft pions cannot reach the TOF detector and therefore the m2 variable information is not available
for them. When the m2 information is not available NaN value is assigned to the m2 variable of those
particular K0

S candidates. For the purpose of statistics and the ability of the XGBoost to handle the missing
values, these m2 NaN value candidates (along with the non-NaN values candidates) are used for training
and testing the XGBoost model. For investigation, a data sample containing only NaN values of the m2

variables is chosen and SHAP plot is produced. The effect of these m2 NaN values on BDTs prediction is
investigated using the following SHAP plot figure 4.6. From figure 4.6 it is seen that the least importance
is given to the m2 variable when it has the NaN value. The NaN values of the m2

π+ variable are given zero
SHAP value, while a very small negative SHAP value is given to the NaN values of the m2

π− variable. After
further investigation, it was found that most of the candidates having NaN value for m2

π− variable are the
true background candidates. Therefore the BDTs learn this information and a very small negative SHAP
value is given to such candidates.

The other plots for the NaN and/or non-NaN data samples are shown in appendix B.

Figure 4.6: SHAP plot of the XGBoost model for m2 NaN value data sample

4.6 Reconstruciton of K0
S using XGBoost model

After training, testing, and evaluating the performance of the XGBoost model is applied to the real event-like
case, the UrQMD model which contains a signal as an under-represented class in the data. Figure 4.7 shows
the invariant mass distribution of the UrQMD data (signal + background).

The >0.99 BDT output score cut is applied to the UrQMD data. The >0.99 BDT output score cut is
chosen as it has high signal-to-background ratio which can be seen from the figure 4.2. In figure 4.7, the
peak is seen at the mass of K0

S , which shows that the XGBoost model can reconstruct the K0
S candidates

23



Figure 4.7: XGBoost model applied on UrQMD data at >0.99 BDT output score

successfully. The >0.99 BDT output score selection preserved 76.12% of the true K0
S candidates. The lost

K0
S candidates due to the BDT output score selection are corrected using the yield correction procedure in

the next chapter. Using XGBoost method and >0.99 BDT output score critereion, signal to background
ratio 2.39 is achieved (within the 3σ region, 0.46 < mass < 0.52).

Figure 4.7 without log scale is shown in appendix C.
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Chapter 5

Double differential yield extraction of
K0

S

5.1 Procedure used for yield extraction

After reconstruction and selection of the K0
S candidates using the XGBoost model, yield can be estimated

using a multi-step fitting routine. Figure 5.1 shows the CBM acceptance for K0
S signal candidates generated

using the DCM-QGSM-SMM model. From figure 5.1 it is seen that most of the K0
S candidates are produced

Figure 5.1: CBM acceptance for K0
S , Au+Au at pbeam = 12 AGeV

near the mid-rapidity region. For the differential study, pT is divided into 200 MeV/c bins from 0 to 2 and
yLAB is divided into 0.3 bins from 0 to 3.

The signal distribution will be approximated by a double gaussian (DG) function and the background
distribution by a 6th-order polynomial function. The multi-step fitting procedure is used in the following
steps -

1. Step 1 - Fit a double gaussian function on the invariant mass spectra of DCM-QGSM-SMM generated
K0

S signal only candidates in 4σ region around the peak mass value of K0
S . The yield is estimated as

the integral of the signal function and true signal candidates are calculated using the MC cut in the
code. Figure 5.2a shows that yield to MC ratio is around 1 within the uncertainties, which confirms
that the signal function and its integral work well.
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(a) Step 1

(b) Step 2

Figure 5.2: Step involved in double differential yield extraction
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(c) step 3

Figure 5.2: Step involved in double differential yield extraction

2. Step 2 - Take the invariant mass spectra of the UrQMD data in the 0.35 - 0.7 (GeV/c2) range. Exclude
the signal in the 4σ region ( m > 0.4542 & m < 0.5398) and fit the background with a polynomial of
6th order (Pol6). The pol6 extended in K0

S peak region is shown in figure 5.2b.

3. Step 3 - A combination of DG and pol6 is taken to fit the full invariant mass distribution of the UrQMD
data and the initialization of the parameters is performed with parameters obtained during the first
two steps. Step 3 is shown in figure 5.2c.

For the fitting procedure AliHFInvMassFitter [37] class is used. For showing the step 1, 2 and 3, the
rapidity = [1.2, 1.5] and pT = [0.2, 0.4] bin is chosen as it have the maximum yield, with the selection of
>0.9 BDT output score.

The DG function is given in equation 5.1 and pol6 function in equation 5.2. In equation 5.1, m is the
mass of each K0

S candidate, A is the integral of the signal function, µ is the mean of the signal function, B
is the fraction of the second gaussian, and σ1, σ2 are the two variance of the DG function having same µ.

DG(m,A, µ, σ1, B, σ2) = A

[
(1−B)√
2π/σ1

e
−(m−µ)2

2σ2
1 +

(B)√
2π/σ2

e
−(m−µ)2

2σ2
2

]
(5.1)

pol6 = p0 +

6∑
i=1

pi
Ci

i!
(5.2)

In figure 5.2, the yield is calculated as the integral of the signal only fit function and the MC true signal
candidates are counted as well. For step 1 in figure 5.2a the yield to MC ratio is around 1 within the error
bars. The yield-to-MC ratio for the UrQMD data (figure 5.2c) is greater than 1. The reason for it will be
discussed in the following subsection 5.1.1.
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5.1.1 Description of the high yield

The yield to MC ratio in figure 5.2c is greater than 1, investigation revealed that by default the MVD
detector was not added in the Reco-to-MC matching, therefore if the reconstructed tracks had several hits
in the MVD detector but do not have enough hits in the STS detector (at least 2), then this track did
not match to any MC track, so the mismatch happened in the matching algorithm. Due to this mismatch,
a small fraction of the true K0

S decays are labeled as the background. The invariant mass spectra of the
background-only candidates of the UrQMD data is shown in figure 5.3. The peak is observed at the mass of
K0

S .

Figure 5.3: UrQMD data background only candidates

The yield from figure 5.3 is then subtracted from the yield in figure 5.2c and called Mismatch removed
yield. Now, the ratio of mismatch removed yield to MC in figure 5.2c matches with 1 within the error bars.

The double differential yield extraction is done for all pT and yLAB bins.

5.2 Efficiency correction

A Au + Au collision at pbeam = 12 AGeV/c simulated by a collision simulator produces x number of
K0

S particles. These K0
S particles then decay due to the weak interaction and produces their daughters

π++ π− with a branching ratio of 69% [14]. So out of the total K0
S candidates around 69% percent can

be reconstructed by this particular decay channel. Due to the detector’s coverage angle x − y some K0
S

daughters will pass through it while others will be lost and the term acceptance encapsulates this. Similarly,
the reconstruction algorithm will also select some candidates and others will be lost and the term efficiency
takes this into account. The yield after the reconstruction of the K0

S candidates is called a reconstructed
yield, if no selection is applied. The selection of K0

S candidates through ML selection also has efficiency
and the total efficiency will now also contain this factor. The simulated yield can be reproduced from the
reconstructed yield using a correction number which is simply the total efficiency × acceptance.
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Here in this study, DCM-QGSM-SMM data is taken as simulated data, and UrQMD data is taken as
real data. The original simulated yield as well as the reconstructed yield of both the DCM-QGSM-SMM
and UrQMD models can be accessed from the data. With the help of the DCM-QGSM-SMM model, the
corrected (simulated) yield of the UrQMD model can be estimated. This corrected yield is then compared
with the original simulated yield of the UrQMD yield in all pT - yLAB bins using the following procedure -

1. The correction number is calculated for each (pT - yLAB) bin of the DCM-QGSM-SMM model by
dividing the reconstructed yield of the DCM-QGSM-SMM model by the simulated yield of the DCM-
QGSM-SMM model.

2. The corrected yield of the UrQMD model is found by dividing the reconstructed yield of the UrQMD
model with the correction number for each pT - yLAB bin.

3. The ratio of the corrected yield to the original simulated yield of the UrQMD model shows that the
original simulated yield of the real data can be obtained using this yield correction procedure.

The figures for the DCM simulated and reconstructed yield, UrQMD simulated yield are included in the
appendix F.

Figure 5.4c shows the corrected yield of the UrQMD model at >0.9 BDT output selection. Figure 5.4d

(a) (b)

(c) (d)

Figure 5.4: a) UrQMD reconstructed yield b) Correction number (Acceptance × total efficiency) c) Corrected
yield of the UrQMD d) Corrected yield / Simulated yield of the UrQMD

shows the ratio of the corrected yield to the original simulated yield of the UrQMD model. The fitting
procedure fails in the low statistical bins therefore some bins are empty. As seen from the figure 5.4d most
of the K0

S candidates are retrieved using the fitting and yield extraction procedure. From figure 5.4c it is
seen that most of the bins have an efficiency of around 1 within the statistical uncertainties. Therefore the
reconstruction of the K0

S using the XGBoost model and yield extraction using the fitting procedure works
very well.
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Chapter 6

Summary

The CBM experiment will investigate the unexplored region of the phase diagram of QCD matter at high
µB , therefore reconstruction of the (multi-)strange hadrons is important. The strangeness enhancement is an
important probe of the deconfined matter. The CBM performance for the K0

S meson via its decay to π+ and
π− is presented. Neutral kaons (K0

S) selection is implemented in the CBM experiment at the FAIR facility
using a machine learning technique. The optimization of selection criteria of K0

S is done using the XGBoost
ensemble method. By using the BDT output score selection high signal purity, background rejection, and
high efficiency are achieved. Double differential(pT - yLAB) yield extraction of K0

S is performed. The
correction of the mismatch is done by extracting and then subtracting the signal (labeled as background
due to the matching algorithm) from the background of the UrQMD data. The corrected yield is consistent
with the original yield within the statistical uncertainties.

This study can be extended to different pT , yLAB , multiplicity, and different collision energies. The BDTs
training and selection can be done for different pT , y, and multiplicity bins.
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Appendix A

Signal peak at low BDT output score

The plots for topological variables for low bdt signal, high bdt signal and low bdt background are shown
below.

(a) m2
π− distribution for different bdt sample (b) m2

π+ distribution for different bdt sample

Figure A.1: Topological variable distribution plot for different bdt samples
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(c) L/∆L distribution for different bdt sample (d) χ2
geo distribution for different bdt sample

(e) χ2
topo distribution for different bdt sample (f) ∆L distribution for different bdt sample

Figure A.1: Topological variable distribution plot for different bdt samples
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(g) χ2
primπ− distribution for different bdt sample (h) χ2

primπ+ distribution for different bdt sample

Figure A.1: Topological variable distribution plot for different bdt samples
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Appendix B

SHAP plot for NaN and/or non-NaN
data samples

(a) SHAP plot for Non-nan m2 data sample (b) SHAP plot for m2
π− Nan and m2

π+ Non-nan data sample

(c) SHAP plot for m2
π− Non-nan m2

π+ Nan data sample (d) SHAP plot for a single K0
S candidate having Nan value for

both m2
π− variable

Figure B.0: SHAP plots

From figure B.0d it is seen that m2
π− variables are at the last rank(as they have nan value) and they do

not have a large SHAP value therefore in the total sum of the SHAP value of all the variables for the K0
S

candidate, m2
π− variable does not any significant role.
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Appendix C

BDT’s applied on UrQMD data
invariant mass plot

Here the plot for the XGBoost model applied on Real data at >0.99 BDT output score for invariant mass
is shown(without log scale on y axis).

Figure C.1: The XGBoost model applied on UrQMD data at >0.99 BDT output score without log scale

35



Appendix D

χ2
primπ+ distribution plot

This is the plot for the χ2
primπ+ variable.

Figure D.1: χ2
primπ+ distribution plot for train data
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Appendix E

SHAP plot structure of the χ2
primπ+

variable

Figure E.1: structure description of the χ2
primπ+ variable is SHAP plot 4.5

Here chi2 prim second is χ2
primπ+. As seen from the figure 4.5 there are two blobs for the χ2

primπ+

variable. These are the candidates having low χ2
primπ+ value and near to the -2 SHAP value as seen from

the figure E.1
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Appendix F

K0
S yield for DCM and UrQMD

model

(a) (b)

(c)

Figure F.1: a)K0
S (simulated) yield generated by DCM-QGSM-SMMmodel before passing through the CBM

detector b) K0
S (simulated) yield generated by UrQMD model before passing through the CBM detector c)

K0
S (reconstructed) yield generated by DCM-QGSM-SMM model after passing through the CBM detector
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Appendix G

m2 importance for the XGBoost
model

Figure G.1: ROC plot for the XGBoost model train without the m2 variables

Figure G.1 show the performance of the XGBoost model trained without the m2 variables. Figure G.1
have the ROC-AUC value less than the ROC-AUC value in figure 4.4, which shows that there is a slight
improvement in the performance when the m2 variable is added for the training of the XGBoost model.
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