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Photoproduction of Kaons and Hyperons off Nucleons 

3. Figure adapted from: L. De Cruz, PhD Thesis, Ghent University 2012. 
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1. Motivation



● Why KΣ photoproduction?

● Quark models predict more resonances than observed 
in π-N scattering experiments (“missing” resonance problem).
Indications that these states may couple to KY (Y = Λ, Σ) channels

● E/M interaction very well understood

● Studied at several facilities: CEBAF, MAMI, ELSA, Spring-8, GRAAL

● New data on photon beam asymmetries from CLAS

● Isobar model: phenomenological models useful in bridging the gap between
fundamental theory and experiment

Motivation



Motivation

● No single resonance dominates in Elabγ ≈ 1-2 GeV, but many (>20), 
broad and overlapping

● extremely large number of possible combinations (models)

● large number of parameters → ordinary χ2 fitting: problematic 
similar minima, large variations in the parameter values

● Regularized χ2 fitting 4, 5 → penalty term constrains the number and magnitude 
of the parameters

● improves the quality of the fits

● + information criteria → selects the best subset of parameters (model)→ 
resonances evaluated as most “necessary” by the data

4. J. Landay et al., Phys. Rev. C 95, 015203 (2017)
5. J. Landay et al., Phys. Rev. D 99, 016001 (2019)
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2. The Isobar model
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General features of Isobar models

● interactions described by means of effective Lagrangians
● effective degrees of freedom: hadrons

● amplitude = sum of tree-level Feynman diagrams
● s-, t-, u- channels: exchange of nucleon, kaon, hyperon
● intermediate state: ground state hadron (Born), resonance (non-Born)

● single-channel: intermediate channels (rescattering in final states) not taken into 
account

● Saclay-Lyon, MAID & Kaon-MAID, Gent, BS1,2,36,7  models

6. D. Skoupil and P. Bydzovsky, Phys. Rev. C 93, 025204 (2016)
7. D. Skoupil and P. Bydzovsky, Phys. Rev. D 97, 025202 (2018)
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Tree-level contributions to n(γ,K+)Σ-
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Specific features of Isobar models

Hadronic form factors
● hadron internal structure
● mitigate Born terms’ contribution to cross sections

F d=
Λh
4

Λh
4+(x−mh

2)2

Decay widths
● finite lifetime of resonances
● decay widths introduced by hand in propagator denominators

Λh

x
mh

cutoff 
4-momentum^2
mass

of intermediate 
hadron h

P ∼ 1
q2−m2

q2=s s−mR
2→s−mR

2+im2ΓR
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Parameters and observables

Resonances
masses, widths: from PDG

Parameters to fit
( gKΣn )
coupling constants of resonances
(= products of E/M and strong c.c.)
hadron form factor cutoffs

674 data points from: CLAS, LEPS

Observables
differential cross sections
photon beam asymmetries

Minimization with: MINUIT Library

Isobar code available at:
 
http://www.ujf.cas.cz/en/departments/department-of-theoretical-physics/isobar-model.html
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3. Fitting procedure
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Ordinary Least Squares fitting

● Function: f (x ,w )

D={(x1 , y1),(x2 , y2) ,…(xN , yN)}

E=∑
i=1

N

[ y i−f (xi ,w ) ]2 χ2=∑
i=1

N [ y i−f (xi ,w )
σ i ]

2

● Goal: determine values of the parameters w* that minimize some error function

w=(w0 , w1 ,…wK )● Parameters:

x

y
f(x, w)

● set of data: pairs observations

x=E , y=dσ /dΩe.g.

[ this approach,however, is problematic → we may overfit the data ]
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The problem of overfitting though an example
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● fits the data very well, but
● poor description of the function that generated them Model fits the noise in 

the sample
Where do we stop?
What is the optimal complexity of our model?
Error minimization alone, does not guarantee the quality of the fitting

8. Figure adapted from:C. Bishop Pattern Recognition and Machine Learning, Springer 2006

y=sin(x )+ϵ

Create artificial data by adding 
Gaussian noise

Occam’s razor
Law of parsimony

fit the data with a polynomial
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Likelihood function

● each measurement is characterized by 
uncertainty σi

p ( y i∣x i ,w ,σ i)=N (μ= f (x i ,w) ,σ i
2)

● assume: y has a Gaussian distribution 
around some mean μ

● we want our model f(x, w) to estimate that 
mean

● for N independent, identically distributed observations:

X={x1 , x2 ,… xN }, Y={y1 , y2 ,… yN}

probability of the whole set Y of observations:

p(Y∣X ,w )=∏
i=1

N

p( y i∣x i ,w ,σ i) L(w )≡p(Y∣X ,w)

Likelihood function

xxi

yi = f(xi)

y f(x,w)

E(y|xi)
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Maximizing the log-likelihood

L(w )=∏
i=1

N 1
√2πσ i

2
e
−

( y i− f (x i ,w ))2

2σ i
2

L(w ) ∝ e−χ2
● since χ2=∑

i=1

N [ y i−f (xi ,w )
σ i ]

2

⇒ Likelihood:

ln (L(w ))∼−χ2● taking the logarithm:

Maximizing the log-likelihood* is equivalent to minimizing χ2

=> equally prone to overfitting 

● under the Normality assumption*
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Regularization: a remedy for over-fitting

w1

w2

w *

w2

w1

w *

q = 1 → L1 norm q = 2 → L2 norm

LASSO* Ridge

(χ2+λ∑ j=1
K |w j|

q)min
● introduction in χ2 of a term that 

penalizes large values of the 
parameters wj

∑
j=1

K

|w j|
q⩽η

● ~ minimize χ2,subject to constraint:

w* = optimum value for w under 
the constraint
● for q = 1 (LASSO) →some parameters 

become zero (w*
1= 0)

* Least Absolute Shrinkage and Selection Operator
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LASSO for variable selection

● LASSO forces some of the parameters to zero → selects a subset

● λ, regularization parameter → strength of the penalty term
smaller λ → more complex model

● λ: controls how many parameters are switched-off and how many remain
→ λ practically selects a model

● instead of taking a huge number of combinations of parameters,
run LASSO with several λ1, λ2,... values and choose the optimal λ based on:

either
● Validation
or
● Information criteria

● Akaike Information Criterion (AIC)
● Bayesian Information Criterion (BIC)
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Validation: Training & Test set errors
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● Fit model on the training set → Training Error

● Test the fitted model on the test set → Test Error

● Repeat while increasing complexity 
( Forward selection)
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Cross-validation

T r a i n i n gT e s titeration 1

iteration 2

iteration 3

iteration 4

e.g. 4-fold 
cross-validation

● to avoid selection bias in the choice of Training / Test sets

in general: n-fold cross-validation → average over n runs

● drawback: it’s computationally costly 
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Information Criteria (IC)

[both AIC and BIC give similar results, although BIC tends to penalize complexity more]

Akaike IC9:

Bayesian IC10:
N

: number of parameters    
  corresponding to model i 

: number of data points

Approach equivalent to validation

For a series of models i = 1, 2, ...m

Choose the model with the minimum AIC, BIC

In the case of LASSO: model i → λi Choose λi that results in the minimum IC

9. Akaike, IEEE Transactions on Automatic Control, 19 (6) 716 (1974)
10. G. Schwarz, Ann. Stat. 6(2), 461 (1978)
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Bayesian approach: data fitting through posterior maximization 

P(w∣D)=
P(D∣w )P(w)

P(D)

P(D)=∫P(D∣w )P (w )d w

Posterior probability:
how probable w is,
given the data D

Likelihood Prior

Evidence

~  Normalization factor

● in a fully Bayesian treatment we seek to maximize the Posterior P(w|D), 
instead of the Likelihood

● determine the most probable value of parameters wMP, given the data - no 
need for test runs

● is equivalent to minimizing regularized sum-of-squares error - 
Occam’s principle automatically incorporated

● but computationally costly

Maximum Posterior
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4. Numerical results
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Applying the Information Criteria

Forward selection: 
● start with the full model, all parameters initialized 

with random values and use some λmax

● perform LASSO χ2 minimization and compute AIC, BIC
● in each run progressively decrease λ and rerun LASSO 

using the fitted parameter values of the last run as 
starting values

● repeat until λmin is reached
● optimal λ occurs at the minimum of BIC, AIC
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Reduction in the number pf parameters

M
“full” fit

L
LASSO fit

no. of 
resonances

14 9

no. of 
parameters

25 17
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Results: differential cross sections

θΚc.m.: Kaon center-of-mass angle 

fit M: MINUIT
fit L: MINUIT + LASSO

Elabγ: incident photon energy 
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Results: differential cross sections

M: MINUIT fit
M fits w/o 
N3 = N (1535) 1/2 −
D1 = Δ(1900) 1/2 − 
N7 = N (1720) 3/2 +

L: MINUIT + LASSO
L fits w/o 
N7 = N (1720) 3/2 +
M4 = N (2060) 5/2 − 
K ∗ (892)
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Photon beam asymmetry Σ

Linearly polarized photons
M: MINUIT fit
M fits w/o 
D1 = Δ(1900) 1/2 − 
N7 = N (1720) 3/2 +

x

y z
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Photon beam asymmetry Σ

L: MINUIT + LASSO
L fits w/o 
N7 = N (1720) 3/2 +
M4 = N (2060) 5/2 − 
K ∗ (892)
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Summary and outlook

● We modeled K+ Σ- photoproduction with an Isobar model using regularization 
(LASSO) in combination with the Akaike and Bayesian information criteria.

● Regularization in a model with many parameters leads to more robust results, 
less prone to overfitting. 

● The combination of the LASSO method with Information Criteria provides a 
method to choose the best subset of parameters (model). 

● Future plans: 
● use Ridge regularization
● fit simultaneously all 4 channels of ΚΣ photoproduction → relate coupling 

constants by SU(2) (Isospin) symmetry

Thanks to:

P. Bydzovsky, A. Cieply, D. Skoupil and P. Vesely.
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