BJÖRN SCHENKE - BROOKHAVEN NATIONAL LABORATORY AB-INTRO APPROACHES IN HEAVY ON COLLABORATORY

6/2/2022 EMMI Rapid Reaction Task Force Heidelberg

- Exactly match $T^{\mu\nu}$ when switching from one part to the next

2

BJÖRN SCHENKE

- Exactly match $T^{\mu\nu}$ when switching from one part to the next

OPTIONS FOR HEAVY ON INITIAL STATE CALCULATIONS

- High energy, weak coupling:
 - Color Glass Condensate, like used in IP-Glasma model (will focus on this) Mini jet (few-GeV particle) production, calculated from perturbative QCD (pQCD). EKRT model: Includes a saturation criterion which dominates the distribution of initial energy density K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and Kimmo Tuominen, Nucl. Phys. B, 570:379–389, 2000.
- Strong coupling:
 - Use duality between a conformal field theory (CFT) and gravity in Anti-de-Sitter (AdS) space (AdS/CFT)
- Purely geometry based models like Monte-Carlo Glauber models and Trento (not subject of this discussion)

Nucleon at high energy:

- Dilation of all internal time-scales of the nucleon
- Interactions among constituents now take place over time-scales longer than the
- characteristic time-scale of the probe -> The constituents behave as if they were free Many fluctuations live long enough to be seen by the probe. Nucleon appears denser at high energy (contains more gluons)
- Pre-existing fluctuations are totally frozen over the time-scale of the probe, and act as static sources of new partons

Figure from F. Gelis

At low energy, only valence quarks in the hadron wave function

- When energy increases, new partons are emitted
- The emission probability is with x the longitudinal mom

Gelis Figure from F.

$$\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln(1/x)$$

nentum fraction of the gluon

At small x (i.e. high energy), these logs need to be resummed

evolution is linear: The number of partons produced at a given step is proportional to the number of partons at the previous step (BFKL)

Balitsky-Fadin-Kuraev-Lipatov: L. N. Lipatov, Sov. J. Nucl. Phys. 23 (1976) 642; V. S. Fadin, E. A. Kuraev and L. N. Lipatov, Phys. Lett. B60 (1975) 50; Sov. Phys. JETP 44 (1976) 443; 45 (1977) 199; Ya. Ya. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822

Gelis Figure from

As long as the density of constituents remains small, the

- scale Q_{s})
- Then the evolution becomes non-linear: The number of partons created at a given step depends non-linearly on the number of partons present previously

Gelis -igure from

Eventually, the partons start overlapping in phase-space \rightarrow parton recombination (happens when gluon density $\sim 1/\alpha_s$; for gluons with a transverse momentum below a

Balitsky (1996), Kovchegov (1996,2000) Jalilian-Marian, Kovner, Leonidov, Weigert (1997,1999) Iancu, Leonidov, McLerran (2001)

FIRST PRINCIPLES CALCULATIONS. BUT

... approximations are necessary:

 $N_f = 0 \text{ - only gluons}$

- weak coupling limit - $\alpha_s(Q^2)$ is very small at some relevant scale Q^2

more approximations and inputs to come, but for now we have:

Gluon fields follow Yang-Mills equations of motion

$$[D_{\mu},F^{\mu\nu}] = J^{\nu}$$
 with $D_{\mu} = \partial_{\mu} + igA_{\mu}$ and $F_{\mu\nu} = \frac{1}{ig}[D_{\mu},D_{\nu}] = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu},A_{\nu}]$

INCOMING CURRENTS AND SOLUTIONS OF YM EQUATIONS

Use light cone coordinates $v^{\pm} = (v^0 \pm v^3)/\sqrt{2}$

Projectile and target currents are then

$$J_P^{\nu} = \delta^{\nu +} \rho_P^a(x^-, \mathbf{X}_{\perp}) t^a$$

assuming color sources ('valence quarks') are static in light cone time

Plug currents into Yang-Mills equations and solve in Lorenz gauge $\partial_{\mu}A^{\mu} = 0$ For projectile use ansatz $A^{\mu} = \delta^{\mu+}A^{\mu}_{a}(x^{-}, \mathbf{x}_{\perp})t^{a}$ one finds that A^{+} is independent of x^{+} because $\partial_+ A^+ = 0$

Then field strength tensor only has this component $F^{i+} = \partial^i A^+$

and
$$J_T^{\nu} = \delta^{\nu} \rho_T^a(x^+, \mathbf{X}_{\perp})t^a$$

INCOMING CURRENTS AND SOLUTIONS OF YM EQUATIONS

Then field strength tensor only has this component $F^{i+} = \partial^i A^+$

where
$$\Delta_{\perp} = \sum_{i} \partial_{i}^{2}$$
.

Formal solutions to this are

$$A_P^+(x^-, \mathbf{x}_{\perp}) = -\frac{\rho_P^a(x^-, \mathbf{x}_{\perp})t^a}{\Delta_{\perp}}, \text{ and } A_T^-(x^+, \mathbf{x}_{\perp}) = -\frac{\rho_T^a(x^+, \mathbf{x}_{\perp})t^a}{\Delta_{\perp}}$$

Now comes something not first principles: include an infrared regulator m....

plugged into YM equations yields $\partial_i \partial^i A^+ = J^+$, the Poisson equation in the transverse plane:

$$-\Delta_{\perp}A^{+}(x^{-},\mathbf{x}_{\perp}) = \rho^{a}(x^{-},\mathbf{x}_{\perp})t^{a}$$

INCOMING CURRENTS AND SOLUTIONS OF YM EQUATIONS

The infrared regulator *m* gets rid of Coulomb tails:

$$A_{P/T}^{\pm}(x^{\mp}, \mathbf{X}_{\perp})$$

This concludes the first principles calculation of the incoming gluon fields.

But, note that $\rho_{P/T}^a(x^{\mp}, \mathbf{X}_{\perp})$ has not been specified yet.

Doing so will not be "first principles" at all...

$$= -\frac{\rho_{P/T}^{a}(x^{\mp}, \mathbf{X}_{\perp})t^{a}}{\Delta_{\perp} - m^{2}}$$

Aside: BEYOND CLASSICAL FIELDS (NOT OFTEN USED IN HICS)

The gluon fields are defined at a certain momentum fraction *x*.

The *x*-dependence can be computed using the JIMWLK equations (functional renormalization group equations considering the non-linear evolution from large to small *x*)

Example on the right:

Wilson line

$$V^{\dagger}(x^{-}, \mathbf{x}_{\perp}) = \mathscr{P} \exp\left(-ig \int_{-\infty}^{x^{-}} dz^{-} A^{+}(z^{-}, \mathbf{x}_{\perp})\right)$$

correlator for constant color charge density and Gaussian distributed ρ^a

y[a]

Y = 0.0

-60 -40 -20 0 20 40 60 x[a]

100042 0000246

THE COLLS ON - LGHT CONE GAUGE

 $A^+ = 0$ for a right moving nucleus, $A^- = 0$ for a left moving nucleus

gauge transformation: $A_{\mu}(x) \rightarrow V(x)$

To achieve $A^+ = 0$ the Wilson line must fulfill $\partial_V^{\dagger}(x^-, \mathbf{x}_\perp) = -$

which is solved by $V^{\dagger}(x^{-}, \mathbf{x}_{+}) = \mathscr{P} \exp(\mathbf{x}_{+})$ Also $\partial_+ V^{\dagger} = 0$, so $A^- = 0$ as well.

Computing gluon fields after collision is more conveniently done in light cone gauge

$$\left(A_{\mu}(x) - \frac{i}{g}\partial_{\mu}\right)V^{\dagger}(x)$$

$$-igA^+(x^-,\mathbf{x}_\perp)V^{\dagger}(x^-,\mathbf{x}_\perp)$$

$$\left(-ig\int_{-\infty}^{x^{-}} dz^{-}A^{+}(z^{-},\mathbf{X}_{\perp})\right)$$

THE COLLSION - LIGHT CONE GAUGE

- The transverse components are not zero but pure gauge fields: $A^{i}(x^{-}, \mathbf{x}_{\perp}) = \frac{1}{ig} V(x^{-}, \mathbf{x}_{\perp}) \partial^{i} V^{\dagger}(x^{-}, \mathbf{x}_{\perp})$
- **Color current in light cone gauge is** $J_{\rm LC}^+(x^-, \mathbf{x}_{\perp}) = \rho_{\rm LC}(x^-, \mathbf{x}_{\perp})$
- Again, REALLY high energy approximation: $\rho(x^-, \mathbf{x}_+) = \delta(x^-)\rho(\mathbf{x}_+)$ (thin sheet) A^+ has the same support and Wilson line is only nontrivial if x^- integration limit is >0.

So $A^{i}(x^{-}, \mathbf{x}_{\perp}) = \theta(x^{-})\alpha^{i}(\mathbf{x}_{\perp})$ with $\alpha^{i}(\mathbf{x}_{\perp}) =$

$$= V(x^-, \mathbf{x}_{\perp})\rho(x^-, \mathbf{x}_{\perp})V^{\dagger}(x^-, \mathbf{x}_{\perp})$$

$$= \frac{1}{ig} V(\mathbf{x}_{\perp}) \partial^{i} V^{\dagger}(\mathbf{x}_{\perp}) \text{ and } V^{\dagger}(\mathbf{x}_{\perp}) = V^{\dagger}(x^{-} \to \infty, \mathbf{x}_{\perp})$$

Doing the same for the left moving nucleus and choosing the gauge field to be zero for the quadrant where $x^- < 0$ and $x^+ < 0$ one finds

$$A^{i}(\mathbf{x}_{\perp}) = \theta(x^{-})\theta(-x^{+})\alpha_{P}^{i}(\mathbf{x}_{\perp}) + \theta(x^{+})\theta(-x^{-})\alpha_{T}^{i}(\mathbf{x}_{\perp})$$
$$= \theta(x^{-})\theta(-x^{+})\frac{1}{ig}V_{P}(\mathbf{x}_{\perp})\partial^{i}V_{P}^{\dagger}(\mathbf{x}_{\perp}) + \theta(x^{+})\partial^{i}V_{P}^{\dagger}(\mathbf{x}_{\perp})$$

for the fields before the collision (all transverse)

Now for the forward light cone. We choose Fock-Schwinger gauge: $x^{+}A^{-} + x^{-}A^{+} = 0$

- (\mathbf{X}_{\perp}) $\partial (-x^{-}) \frac{1}{i\varrho} V_T(\mathbf{x}_{\perp}) \partial^i V_T^{\dagger}(\mathbf{x}_{\perp})$

At super high energy, currents are proportional to delta functions

 $J^{\nu} = \delta^{\nu +} \rho_P(\mathbf{x}_{\perp}) \delta(\mathbf{x}_{\perp}) \delta(\mathbf{x}_{\perp}$

In this case, the current, and the solutions for the gluon fields are invariant under longitudinal boosts ("boost invariant"), meaning invariant under

$$x^{\pm} \to x^{'\pm} = e^{\pm\beta} x^{\pm}$$
$$J^{\pm}(x) \to J^{'\pm}(x') = e^{\pm\beta} J^{\pm}(x)$$

with β the longitudinal boost parameter (no mixing, just rescaling!).

Current does not change its form: $J_{P/T}^{\pm}(x^{\mp}, \mathbf{x}_{\perp}) \rightarrow e^{\pm\beta}\delta(e^{\pm\beta}x'^{\mp})\rho_{P/T}(\mathbf{x}_{\perp}) = \delta(x'^{\mp})\rho_{P/T}(\mathbf{x}_{\perp})$

$$(x^{-}) + \delta^{\nu} \rho_T(\mathbf{X}_{\perp}) \delta(x^{+})$$

In the future light cone define $x^+ = \frac{\tau}{\sqrt{2}}e^{+\eta}$, and $x^- = \frac{\tau}{\sqrt{2}}e^{-\eta}$ or inverted $\tau = \sqrt{2x^+x^-}$, and $\eta = \frac{1}{2} \ln\left(\frac{x^+}{x^-}\right)$

The gauge field transforms as $A^{\prime\mu}(x^{\prime}) = \frac{\partial x^{\prime\mu}}{\partial x^{\nu}} A^{\nu}(x)$, leading to

$$A^{\tau} = \frac{1}{\tau}(x^{-}A^{+} + x^{+}A^{-}) = A_{\tau} \quad \text{and} \quad A^{\eta} = \frac{1}{\tau^{2}}(x^{-}A^{+} - x^{+}A^{-}) = -\frac{1}{\tau^{2}}A_{\eta}$$

All fields are independent of η

Finally, to find the solution in the forward light cone, write general expression $A^{\eta}(x) = \theta(x^{+})\theta(x^{-})\alpha^{\eta}(\tau, \mathbf{X}_{\perp})$

 $A^{\tau} = 0$, because we chose Fock-Schwinger gauge $x^{+}A^{-} + x^{-}A^{+} = 0$

from derivatives of θ -functions.

Requiring that the singularities vanish leads to the solutions

$$\alpha^i = \alpha_P^i + \alpha_T^i \qquad \alpha^\eta = -$$

- $A^{i}(x) = \theta(x^{+})\theta(x^{-})\alpha^{i}(\tau, \mathbf{x}_{\perp}) + \theta(x^{-})\theta(-x^{+})\alpha_{P}^{i}(\mathbf{x}_{\perp}) + \theta(x^{+})\theta(-x^{-})\alpha_{T}^{i}(\mathbf{x}_{\perp})$
- Plugging above ansatz into YM equations leads to singular terms on the boundary au o 0

$$\frac{ig}{2} \left[\alpha_{Pj}, \alpha_T^j \right]$$

$$\partial_{\tau} \alpha^{i} = 0$$
$$\partial_{\tau} \alpha^{\eta} = 0$$

INITIAL CONDITIONS FOR HEAVY ION COLLISIONS

From the gluon fields in the forward light cone compute the energy momentum tensor

$$T^{\mu\nu} = -g^{\mu\alpha}g^{\nu\beta}g^{\gamma\delta}F_{\alpha\gamma}F_{\beta\delta} + \frac{1}{4}g^{\mu\nu}g^{\alpha\gamma}g^{\beta\delta}F_{\alpha\beta}F_{\gamma\delta}$$

$$\Gamma^{\tau\tau} = \frac{1}{2} (E^{\eta})^2 + \frac{1}{2\tau^2} [(E^x)^2 + (E^y)^2] + \frac{1}{2} F_{xy} F_{xy} + \frac{1}{2\tau^2} (F_{x\eta}^2 + F_{y\eta}^2)$$

transverse electric field

- longitudinal electric field
 - longitudinal magnetic field

transverse magnetic field

INITAL ENERGY DENSITY - HOW DOES IT GO?

$\varepsilon_0 = \frac{1}{2} [(E^{\eta})^2 + (B^{\eta})^2] = -\frac{g^2}{2} (\delta^{ij} \delta^{kl} + \epsilon^{ij} \epsilon^{kl}) \left([\alpha_P^i, \alpha_T^j] [\alpha_P^k, \alpha_T^l] \right)$

 $=\frac{g^2}{2}f_{abe}f_{cde}(\delta^{ij}\delta^{kl}+\epsilon^{ij}\epsilon^{kl})\langle\alpha_P^{ai}\alpha_P^{ck}\rangle_{\rho_P}\langle\alpha_T^{bj}\alpha_T^{dl}\rangle_{\rho_T}$

 $\Rightarrow \varepsilon_0 \propto T_P T_T$

 $\propto g^2 \mu_P^2 \propto T_P \qquad \propto g^2 \mu_T^2 \propto T_T$

NOW FOR THE "NOT SOAR-INT O" PART

Remember, we have not defined $\rho_{P/T}^{a}(x^{\mp}, \mathbf{X}_{\perp})$ yet.

correlated: $\langle \rho^a(\mathbf{b}_{\perp})\rho^b(\mathbf{x}_{\perp})\rangle = g^2\mu^2(x,\mathbf{b}_{\perp})\delta^{ab}\delta^{(2)}(\mathbf{b}_{\perp}-\mathbf{x}_{\perp})$ and have zero mean.

That's the McLerran-Venugopalan model (originally with constant μ).

Here, $g^2 \mu(x, \mathbf{b})$ depends on the longitudinal momentum fraction x and the transverse position \mathbf{b}_{\perp} , both functional dependencies that need to be modeled.

by a Monte Carlo model for the fluctuating geometry of a nucleus or proton projectile

- Usually, one assumes a really large nucleus, where the color charges are locally Gaussian
- In the IP-Glasma model, that modeling is done in part by using the IPSat model and in part

- in the cloud: L. Frankfurt, A. Radyushkin, and M. Strikman, Phys. Rev. D55, 98 (1997)
 - $\sigma_{q\bar{q}} = \frac{\pi}{\Lambda}$
- where $xg(x, \mu^2)$ is the gluon density at some scale μ^2

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2(1 - \operatorname{Re}S(b)) = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_s(\mu^2)xg(x,\mu^2)T(b)\right)\right]$$

dependence) and DGLAP evolution in μ^2

The total cross section for a small dipole passing through a dilute gluon cloud is proportional to the dipole area, the strong coupling constant, and the number of gluons

$$\frac{t^2}{J_c} r^2 \alpha_s(\mu^2) xg(x,\mu^2)$$

From that we get the Glauber-Mueller dipole cross section in a dense gluon system

 $T(\mathbf{b})$ and $xg(x,\mu^2)$ are determined from fits to HERA DIS data (b, x, and initial scale μ_0^2

- The thickness function T(b) is modeled

- Usually B_G is assumed to be energy independent and fit yields ~ $4 {
 m GeV}^{-2}$
- It is related to the average squared gluonic radius $\langle b^2 \rangle = 2B_G$
- b is smaller than the charge radius: b=0.56 fm (c.f. R_p = 0.8751(61) fm)
- density distribution (e.g. a Woods-Saxon distribution)
- Sum all nucleon T(b) to get the total nuclear T(b)

For a nucleon use a Gaussian or a collection of smaller Gaussians (substructure)

$$T(b) = \frac{1}{2\pi B_G} \exp\left(\frac{-b^2}{2B_G}\right)$$

For a nucleus, do as in MC Glauber and sample nucleon positions from a nuclear

from Schenke, Shen, Tribedy, Phys.Rev.C 102 (2020) 4, 044905

$$\rho(r,\theta) = \frac{\rho_0}{1 + \exp[(r - R'(\theta))/a]}, \qquad (9)$$

with $R'(\theta) = R[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta)]$, and ρ_0 the nuclear density at the center of the nucleus. R is the radius parameter, a the skin depth.

Nucleus	$R \; [{ m fm}]$	$a [{ m fm}]$	β_2	eta_4
²³⁸ U	6.81	0.55	0.28	0.093
²⁰⁸ Pb	6.62	0.546	0	0
¹⁹⁷ Au	6.37	0.535	-0.13	-0.03
¹²⁹ Xe	5.42	0.57	0.162	-0.003
⁹⁶ Ru	5.085	0.46	0.158	0
96 Zr	5.02	0.46	0	0

9)

Smaller nuclei, such as ¹⁶O, and ³He are described using a variational Monte-Carlo method (VMC) using the Argonne v18 (AV18) two-nucleon potential +UIX interactions [63]. In practice we use the ³He and ¹⁶O configurations available in the PHOBOS Monte-Carlo Glauber distribution [64, 65].

For the results we will show involving the deuteron, we employ a simple Hulthen wave function of the form [66]

$$\phi(d_{\rm pn}) = \frac{\sqrt{a_H b_H (a_H + b_H)}}{b_H - a_H} \frac{e^{-a_H d_{\rm pn}} - e^{-b_H d_{\rm pn}}}{\sqrt{2\pi} d_{\rm pn}}, \quad (10)$$

where d_{pn} is the separation between the proton and the neutron, and the parameters are experimentally determined to be $a_H = 0.228 \,\text{fm}^{-1}$ and $b_H = 1.18 \,\text{fm}^{-1}$.

$$\frac{\pi^2}{N_c} r^2 \alpha_s(\mu^2) x g(x,\mu^2) T(b) \bigg) \bigg]$$

Dipole amplitude saturates at 1! Q_s is defined as the inverse scale where saturation effects begin

$$(x, x, b) = 1 - e^{-1/2}$$

= $2/R_s^2$

Then assume $g^2 \mu^2(x, \mathbf{b}) \propto Q_s^2(x, \mathbf{b})$ and use $\langle \rho^a(\mathbf{b}_{\perp})\rho^b(\mathbf{x}_{\perp})\rangle = g^2\mu^2(x,\mathbf{b}_{\perp})\delta^{ab}\delta^{(2)}(\mathbf{b}_{\perp}-\mathbf{x}_{\perp})$

SUMMARY OF HEPROHESS

- Incoming nuclei described within color glass condensate: large x d.o.f. are color sources, small x classical gluon fields
- Incoming currents need to be constructed first: \bullet
 - Sample nucleons from nuclear density distributions
 - Add the *T(b)* at every transverse position
 - Extract Q_s from the IPSat dipole amplitude
 - Obtain the color charge density: $g^4\mu^2 \sim (Q_s)^2$
 - Sample color charges ρ^{a} from local Gaussian distributions
- Gluon fields are determined from the Yang-Mills equations
- Solve for the gluon fields in the forward light cone
- Solve source-less YM equations forward in time
- Compute the energy momentum tensor this is your initial condition for hydrodynamics

• The color charges generate the eikonal color current that sources the small-x classical gluon fields

$T^{\tau\tau} = \frac{1}{2} (E^{\eta})^2 + \frac{1}{2\tau^2} [(E^{x})^2 + (E^{y})^2] + \frac{1}{2} F_{xy} F_{xy} + \frac{1}{2\tau^2} (F_{x\eta}^2 + F_{y\eta}^2)$

Solve the source free YM equations in time

 $\bullet \bullet \bullet$

- **Constrain color charge density better at moderate** *x*
 - Here input from nuclear structure calculations can be valuable
 - Sample more parameters from distributions? (e.g. β_2 etc.)
- Include non-Gaussian correlations for the color charges (important for small nuclei)
- Use small-*x* evolution to determine incoming Wilson lines
- Go beyond boost invariance (full 3D YM, initial conditions much harder to get)

Does it modify deformation? Should reduce it.

FIG. 2. over the entire range in rapidity.

BACKUP

SATURATION CRITERION

L.V. Gribov, E.M. Levin and M.G. Ryskin, Physics Reports 100, Nos. 1 & 2 (1983) 1-150

Number of gluons per area:

 $ho \sim$

- Recombination cross section:
- Recombination important when $\rho\sigma_{gg \rightarrow g} \gtrsim 1$, i.e. $Q^2 \lesssim Q_s^2$

with
$$Q_s^2 \sim \frac{\alpha_s x C}{m_s}$$

At saturation the phase-space density is:

$$\frac{xG(x, Q^2)}{\pi R^2}$$

 $\frac{G(x, Q_s^2)}{\pi R^2} \sim A^{1/3} x^{-0.3}$

$$\frac{\rho}{p_{\perp}} \sim \frac{\rho}{Q_s^2} \sim \frac{1}{\alpha_s}$$

IPSAT MODE

Kowalski, Teaney, Phys.Rev. D68 (2003) 114005

- $\sigma_{q\bar{q}}(x,r) = \text{Im}iA_{el}^{qq}(x,r,0)$
- Here S(b) is the S-matrix at
- The total cross section for a gluon cloud is proportional coupling constant, and the

L. Frankfurt, A. Radyushkin, and M. Strikman, Phys. Rev. D55, 98 (1997)

 $\sigma_{q\bar{q}} = \overline{N}$

$$P(b) = 1 - \frac{\pi^2}{N_c}r^2$$

$$= 2 \int [1 - \operatorname{Re}S(b)] d^2b$$

distance b from the center
small dipole to pass through a dilute
to the dipole area, the strong
number of gluons in the cloud

$$r^2 \alpha_s(\mu^2) xg(x,\mu^2)$$

where $xg(x, \mu^2)$ is the gluon density at some scale μ^2 • If the target is dense, the probability that the dipole does not scatter inelastically at impact parameter b is

$$\alpha_s(\mu^2)xg(x,\mu^2)\rho(b,z)dz$$

IPSAT MODEL total prob. for no inel. interaction

Kowalski, Teaney, Phys.Rev. D68 (2003) 114005

 $P(-L < z \le L) = \lim_{n \to \infty} \prod_{i=0}^{n-1} D_i^{n-1}$ $= \lim_{n \to \infty} \prod_{i=1}^{n-1}$ $n \rightarrow \infty$ $= \lim \Pi_{:=}^{n-1}$ $n \rightarrow \infty$

 $= \exp(- \lim_{n \to \infty} \frac{1}{n})$

 $= \exp$

$$\int_{0}^{1} P(z_{i} < z \leq z_{i+1})$$

$$\int_{0}^{1} (1 - \sigma_{q\bar{q}}\rho(b, z_{i} < z \leq z_{i+1})dz)$$

$$\int_{0}^{1} \exp(-\sigma_{q\bar{q}}\rho(b, z_{i} < z \leq z_{i+1})dz)$$

$$\inf_{m} \sum_{i=0}^{n-1} \sigma_{q\bar{q}}\rho(b, z_{i} < z \leq z_{i+1})dz)$$

$$\int_{-L}^{L} \sigma_{q\bar{q}}\rho(b, z)dz$$

 $= \exp(-\sigma_{q\bar{q}}T(b)) = P_{tot}(b)$

letting $L \rightarrow \infty$

IPSAT MODEL

Kowalski, Teaney, Phys.Rev. D68 (2003) 114005

passing through the entire target is:

$$|S(b)|^2 = P_{\text{tot}}(b) = \exp\left(-\frac{\pi^2}{N_c}r^2\alpha_s(\mu^2)xg(x,\mu^2)T(b)\right)$$

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2(1 - \operatorname{Re}S(b)) = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_s(\mu^2)xg(x,\mu^2)T(b)\right)\right]$$

- This is the Glauber-Mueller dipole cross section A.H. Mueller, Nucl. Phys. B335, 115 (1990)

So the probability for the dipole not to interact inelastically

Assuming the S-matrix element is predominantly real, we have

T(b) and $xg(x,\mu^2)$ are determined from fits to HERA DIS data (b, x, and initial scale (μ_0)² dependence) and DGLAP evolution in μ^2

IPSAT MODEL

Kowalski, Teaney, Phys.Rev. D68 (2003) 114005

assumed to be Gaussian:

$T(b) = \frac{1}{2\pi}$

 B_G is assumed to be energy independent and fit yields ~4 GeV⁻²

- b is smaller than the charge radius: b=0.56 fm $(c.f. R_p = 0.8751(61) fm)$
- this shape affect observables

• The impact parameter dependent function T(b) for a proton is

$$\frac{1}{B_G} \exp\left(\frac{-b^2}{2B_G}\right)$$

• It is related to the average squared gluonic radius $\langle b^2 \rangle = 2B_G$

• We will later discuss how additional sub-nucleonic fluctuations of