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Experimental determination of

nuclear deformation
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Observations of deformation
observations:

electric quadrupole moments and quadrupole transition rates are orders of
magnitude larger than single-particle estimates (quantum transition of a single
proton)
→ interpretation as collective excitations

already deuteron has non-zero quadrupole moment→ nuclear force
non-spherical

sequence of low-energy states J(J + 1)
→ quantum mechanical rotations
→ breaking of spherical symmetry and deformation

many physical observables can be interpreted as signs of deformation

usually some degree of model dependence is involved in the analysis

all nuclei are somewhat deformed, for 208Pb β2 = 0.055
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Rotational model

R(θ ,φ) = R0

(
∞

∑
λ=0

λ

∑
µ=−λ

αλ µ Yλ µ (θ ,φ)

)

incompresibility of nuclear matter→ volume conservation

dipole term (λ = 1) just a shift of center of mass→ quadrupole term (λ = 2) first important one

triaxial degrees of freedom:

α02 = β cosγ

α22 = α2−2 =
1√
2

β sinγ

β is the axial elongation, γ asymmetry from an axial shape

β =
4
3

√
π

5

(
c−a

R

)
oblate β < 0, prolate β > 0
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Rotational model
measuring β or γ is not possible
need to use nuclear models to estimate the deformation from the data
rotational model:

E(J) =
h̄2

2I
(J(J + 1) + K (K + 1))

with moment of inertia for an ellipsoid
(rigid, first order)

Irigid =
2
5

AMR2
0 (1 + 0.31β )

increasing deformation β

→ smaller energy spacing

assumption: constant I along band

superposition of vibrational excitations
below the pairing gap
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K = 0 gs band with 2/2I = 14.4 keV

K = 2  band with 
2/2I = 13.9 keV

K = 0  band with
2/2I = 11.0 keV

Kathrin Wimmer Nuclear physics confronts relativistic collisions of isobars 6



Rotational model
experimental moments of inertia are intermediate between a rigid body and irrotational flow
→ nuclear superfluidity due to the pairing force

rigid body with deformation β

Irigid =
2
5

AMR2
0 (1 + 0.31β )

irrotational flow

Iirr =
9

8π
MR2

0β
2

experimental data approximated by

Iexp =
h̄2β 2A7/3

400[MeV]

rigid body

irrotational flow

ℑR

ℑexp

ℑF

>

>
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Rotational model

spectroscopy of first few excited states

low E(2+
1 ) indicates collective nature

energy ratio R4/2 =
E(4+1 )

E(2+1 )
, for vibrational R4/2 = 2, for rotational R4/2 = 3.333
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Charge radii

detailed spectroscopy of the atomic
spectrum allows to draw conclusions on the
nuclear size

mean square radius of a deformed nucleus:

〈r2〉=
3
5

(
R0A1/3

)2

︸ ︷︷ ︸
spherical, liquid drop

+
3

4π

(
R0A1/3

)2
β

2︸ ︷︷ ︸
deformation

smooth increase with mass

δ 〈r2〉sph

δA
=

2
5

R2
0A−1/3∼ 0.1 fm2 for A∼ 200
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Po, Z = 84
Pb, Z = 82
Hg, Z = 80

β is the charge deformation

experimentally determined from isotope shifts (difference in optical transition frequency of two isotopes)

for stable isotopes with electron scattering

matter radii from interaction cross section measurements
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Quadrupole moments
electric quadrupole moment

eQ0 =
∫ (

3z2− r2)
ρ(r ,θ ,φ)d3r =

√
16π

5

∫
r2Y20(θ ,φ)ρ(r ,θ ,φ)d3r

intrinsic quadrupole moment

Q0 = ZR2
0

3√
5π

(
β2 +

2
7

√
5
π

β
2
2 + · · ·

)
spectroscopic quadrupole moment (observed in the lab)

Qs =
3K 2− I(I + 1)

(I + 1)(2I + 3)
Q0, implies Qs = 0, for I = 0 or 1/2

hyperfine splitting depends on magnetic dipole and electric quadrupole coupling of electrons to the
nuclear moments

E(F) =
1
2

AC + B
3/4C(C + 1)− I(I + 1)J(J + 1)

2I(2I−1)J(2J−1)
, with C = F(F + 1)− I(I + 1)− J(J + 1)

I nuclear angular momentum, J electron angular momentum, F total angular momentum
A = µIBe(0)/(IJ) and B = eQsVzz(0)
Be(0) magnetic field and Vzz(0) electric field gradient of the electron at the nucleus
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Quadrupole moments

Failure of the nuclear shell model to give correct
quadrupole moments is in contrast to the situation with
nuclear magnetic moments, which can all be
accounted for by a suitable admixture of states of a
single nucleon. In the shell model approximation,
these large quadrupole moments must represent a
considerable contribution from the protons in the
closed shells. The polarization of this core would
presumably require a sharing of angular momentum
between the protons of the incomplete shell and those
of the closed shells. The magnitude of the polarization,
however, and the resulting large asymmetry of the
nucleon distribution is hardly consistent with the single
particle-central field quantization which is the basis of
the shell structure model.

C. H. Townes, H. M. Foley, and W. Low, Phys. Rev. 76 (1949) 1415.
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Transition strength
reduced transition probability

B(Πλ ) =
|〈If||Πλ ||Ii〉|

2Ii + 1
large B(E2) values indicate similar structure of states
is related to the intrinsic quadrupole moment

eQ0 =

√
16π

5
〈If||E2||Ii〉√

2Ii + 1〈IiK 20|If0〉

B(E2; Ii→ If) =
5

16π
(eQ0)2 〈IiK 20|If0〉2

in rotational model

B(E2; 0+
1 → 2+

1 ) =

(
3

4π
ZeR2

β2

)2

reduced transition probability and lifetime are related:

B(E2) =
8.177 ·10−10

τE5
γ

1
1 + α

E in keV, τ (partial) lifetime in s, B(E2) in e2fm4, α conversion coefficient
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Transition strength
B(E2) can be obtained from lifetimes of excited states

102 1 10-2 10-4 10-6 10-8

Γ (eV)

10-18 10-16 10-14 10-12 10-10 10-8 10-6

as fs ps ns μs

τ (s)

particle resonance spectroscopy

resonance fluorescence

(e,e')

Coulomb excitation

blocking

X-ray coincidences

DSAM

RDM

electronic timing

indirect
methods

direct 
methods
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Transition strengths over the nuclear chart
extraction of the B(E2) values of require some modeling
energies are a good indicator of nuclear structure

B(E2; 0+
1 → 2+

1 ) = (124±41)
Z 2

E(2+
1 )A L. Grodzins, Phys. Lett. 2 (1962) 88.

energies not sensitive to the details of the wave function
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Transition strengths over the nuclear chart
Weisskopf units, single-particle estimate, how many nucleons participate in the excitation
assuming axial symmetry, deformation can be extracted from B(E2) values

β2 =
4π

3eZR2

√
B(E2; 0+

1 → 2+
1 )

β = 0.3 for well-deformed rare-earth and super-heavy nuclei
outliers with very large β → limitations of the approximations made
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Coulomb excitation

probe of collective shape degrees of freedom

excitation of the nucleus in the electromagnetic field of the target V (t)(
dσ

dΩ

)
i→f

=

(
dσ

dΩ

)
Ruth
|ai→f |2

perturbation theory

ai→f =
1
i h̄

∫
∞

−∞

dt eiω t 〈f |V (t)|i〉

multipole expansion

σ(πλ )i→f ∝ B(πλ ; Ii → If )

θ

b

a

θ scattering angle
b impact parameter
a distance of closest approach

other processes contribute to the excitation

for pure Coulomb excitation, the contribution from nuclear processes has to be eliminated
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Coulomb excitation
at high beam energies, above Coulomb barrier, main uncertainties come from nuclear
excitations and reaction modeling, few percent for B(E2)

excitation is limited to 2+ states which can feed the state of interest

σ(πλ )i→f ∝ B(πλ ; Ii → If )

at Coulomb barrier energies, longer interaction times allow for multi-step processes
→ excitation of 4+, 2+

2 , 0+
2 , etc states

in addition the cross section becomes sensitive to the static quadrupole moment through the
re-orientation effect
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Coulomb excitation

full two-dimensional χ2 surface for 〈2+
1 ||E2||0+

1 〉 and
〈2+

1 ||E2||2+
1 〉 shows the correlation of the two values

combination with other observable, here τ from direct
lifetime measurement allows for determination of sign
and magnitude of the matrix elements

M. Zielinska et al., Eur. Phys. J. A 52 (2016) 99.

remember: quadrupole moments from hyperfine
studies are only for J > 1/2 and ground or long-lived
states

only way to access the quadrupole moments of excited
states

sensitivity depends on the complexity of the level
scheme and statistics

Coulomb excitation also provides access to E3
moments
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Quadrupole invariants
quadrupole rotationally invariant sum rules provide a more model independent measure of the shape

K. Kumar, Phys. Rev. Lett. 28 (1972) 249, D. Cline, Annu. Rev. Nucl. Part. Sci. 36 (1986) 681.

J. Henderson, Phys. Rev. C 102 (2020) 054306.

charge distribution E(λ ,µ) in the intrinsic frame:

E(2,0) = Q cos(δ),E(2,±1) = 0,E(2,±2) =
1√
2

Q sin(δ)

invariants

〈Q2〉=
√

5
2Is +1 ∑

i
〈s||E2||i〉〈i||E2||s〉

{
2 2 0
Is Is Ii

}

〈Q3cos(3δ )〉=−
√

35
2

1
2Is+1 ×

∑
i,j
〈s||E2||i〉〈i||E2||j〉〈j||E2||s〉

{
2 2 2
Is Ij Ii

}
relates to deformation parameter

〈Q2〉=
(

3
4π

ZR3
0

)2

〈β 2〉, δ = γ
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Quadrupole invariants
higher order products give also access to the fluctuations of Q and δ

σ(Q2) =
√
〈Q4〉−〈Q2〉2 and σ(cos(3δ )) =

√
〈Q6 cos2(3δ )〉
〈Q6〉

−
(
〈Q cos(3δ )〉
〈Q2〉3/2

)2

experimentally challenging as many matrix elements, with sign, have to be measured
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Deformation in the A∼ 100 region
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Bulk properties, masses and radii
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two-neutrons separation energy S2n drops at sub-shell closures N = 56,58, but rises at N = 60
→ additional binding from deformation

jump in charge radius at N = 60→ sudden increase in apparent size arises from deformation

similar features observed in neighboring isotopic chains

but not in Kr or Mo→ island of deformation

data on isomeric states suggests shape coexistence
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Spectroscopy of excited states
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gradual transition to deformation for Mo and Kr

R4/2 ratio consistent with deformed rotor at and beyond N = 60
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Shape coexistence
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Shape coexistence
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K. Heyde, J. L. Wood, Rev. Mod. Phys. 83 (2011) 1467.
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Shape coexistence
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at N = 58 excited strongly deformed band R4/2 ∼ 3

large electric monopole transitions (large difference in deformation)

at N = 60, ground state is
deformed

R4/2 = 3.0 for 98Sr

large B(E2) values

K. Heyde, J. L. Wood, Rev. Mod. Phys. 83 (2011) 1467.
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Shape coexistence in Sr nuclei
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deformed 0+ state becomes ground state in 98Sr
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Federman-Pittel Mechanism

Z=28

π0f5/2

π1p3/2

π1p1/2

π0g9/2

N=50

ν1d5/2

ν2s1/2

ν1d3/2

ν0g7/2 90Zr spherical, closed-shell Z = 40, N = 50

microscopic, shell model description of
deformation

P. Federman and S. Pittel,
Phys. Lett. B 69 (1977) 385, Phys. Rev. C 20 (1979) 820.

excitations to the neutron 0g7/2 orbital→ residual p−n interaction lowers proton 0g9/2 orbital
increased occupation of the π0g9/2 orbital→ p−n correlations dominate over pairing correlations
deformed excited configurations at high excitation energy Edef� Esph
100Zr: drop in excitation energy, deformed ground state
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Large-scale shell model calculations

extended model space:
(π1f5/2, 2p1/2, 2p3/2, 1g9/2)
(ν2d5/2, 3s1/2, 2d3/2, 1g7/2, 1h11/2)

good description of low-lying states
also in even-odd Zr
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K. Sieja et al., Phys. Rev. C 79 (2009) 064310.

5/2+ 0

1/2+
1.021

7/2
+

1.482

11/2- 2.039

3/2+ 1.285

9/2+ 1.857

5/2
+ 1.613

SM, Ref. [11]

5/2+ 0

1/2
+

0.954

(7/2+,9/2+) 1.676

(9/2+,11/2- ) 1.792

7/2+,9/2+ 2.250

3/2+,5/2+ 1.140

11/2- 2.022

3/2
+

,5/2
+

1.324

Exp.

5/2+ 0

3/2+
1.498

9/2+
2.206

1/2
+ 1.103

5/2+ 1.693

11/2
-

2.322

7/2+ 1.738

SM, this work

95
Zr

1/2+ 0
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2.356
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SM, Ref. [11]
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9/2+
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SM, this work

97Zr

0f5/2 1p3/2 1p1/2 0g9/2 1d5/2 2s1/2 0g7/2 1d3/2 0h11/2

0+1 5.64 3.68 1.76 0.90 5.26 0.12 0.17 0.16 0.27
0+2 5.43 3.31 1.13 2.11 4.10 0.63 0.45 0.49 0.32

mixed configuration of excited configuration

octupole 3− state underestimated
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Monte-Carlo shell model calculations

microscopic description of shapes change as a function of proton
or neutron number

proton-neutron interaction changes the ordering and spacing of
levels

(near-) degeneracy triggers symmetry breaking and deformation

calculations reproduce the abrupt shape change in Zr

talk by Y. Tsunoda tomorrow

T. Togashi et al., Phys. Rev. Lett. 117 (2016) 172502. -8
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The case of 96Ru and 96Zr
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Properties of 96Zr

0 + 0.0

2 + 1750.5
3 1897.2

5 3119.9

7 4234.7

0 + 1581.6

2 + 2225.8

4 + 2857.4

6 + 3483.4

8 + 4389.5

10 + 4906.9

B(E2) in W.u.

ρ2(E0) in 10-3

2.3 57

56

36

7.5

proton and neutron removal transfer reactions:
ground state configuration π(1p1/2)2ν(1d5/2)6

closed shell configuration with N = 56 and Z = 40

high 2+
1 state, with small β = 0.062(3) from

B(E2; 0+
1 → 2+

1 ) = 2.3(3) W.u. G. Kumbartzki et al., Phys. Lett. B 562 (2003) 193.
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Properties of 96Zr

only one measurement for B(E2; 0+
1 → 2+

1 ) but compilations also cite a publication for 1965 “Coulomb
Excitation of the First 2+ Levels of 90Zr and 96Zr” with an almost two times larger B(E2)

S. Raman et al., At. Data Nucl. Data Tables 78 (2001) 1, Y. P. Gangrskii, I. K. Lemberg, Yadern. Fiz. 1 (1965) 1025.

quadrupole moment and branch ratio to 0+
2 unknown

2+
2 state populated using electron scattering

B(E2; 0+
1 → 2+

2 ) can be extracted relative to the
B(E2; 0+

1 → 2+
1 ) value

known decay branching ratios of 2+
2 allow to extract

B(E2; 2+
2 → 0+

2 ) = 36(11) W.u.

collective, similar deformation for 2+
2 and 0+

2 ,
assuming rigid axial rotor β = 0.24

two decoupled configurations with different deformation

supported by calculations and two-state mixing model

shape coexistence

C. Kremer et al., Phys. Rev. Lett. 117 (2016) 172503.
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Octupole deformation of 96Zr
octupole correlations are dominant in regions where ∆l = ∆j = 3 orbitals are close to the Fermi surface

proton 1p3/2−0g9/2 and 1d5/2−0h11/2 excitations across Z = 40 and N = 56

large B(E3; 3−1 → 0+
1 ) values from lifetime measurements and proton inelastic scattering

direct lifetime measurement following 96Y
β decay yields 65(10) W.u.

H. Mach et al., Phys. Rev. C 42 (1990) 811.

Doppler-shift lifetime measurement:
B(E3) = (47.1±4.7) W. u.

D. J. Horen et al., Phys. Rev. C 48 (1993) R2131.

large uncertainties, yet the most enhanced
one-phonon 0+

1 → 3−1 transition observed

axial symmetry

β3 =
4π

3eZR3

√
B(E2; 0+

1 → 3−1 )

yields β3 ∼ 0.25
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Structure of 96Ru

0+ 0.0

2+ 832.6

4+ 1518.1

6+ 2149.7

8+ 2950.4

10+ 3817.2

12+ 4418.3

14+ 5680.7

16+ 6441.6

18+ 8205.7

5 2588.4

7 3291.5

9 3951.1

11 4798.7

13 5750.2

15 6754.1

0+ 2148.7 2+ 1931.1

18

22 0.4

H. Klein et al., Phys. Rev. C 65 (2002) 044315.

B(E2; 0+
1 → 2+

1 ) = 18.2 W.u.

c.f. 2.3 W.u. for 96Zr

β2 = 0.154

moderately deformed ground
state band

Q =−0.13(9) prolate,
but with very large uncertainty

S. Landsberger et al., Phys. Rev. C 21 (1980) 588.

excited 0+ state known

many lifetimes known

transfer reactions (p,d) shows
distribution of strength over
several levels
→ consistent with deformation
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Summary

96Ru and
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0 + 0.0

2 + 1750.5
3 1897.2

5 3119.9
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0 + 1581.6

2 + 2225.8

4 + 2857.4

6 + 3483.4

8 + 4389.5

10 + 4906.9

B(E2) in W.u.

ρ2(E0) in 10-3

2.3 57
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36

7.5

are two very different nuclei

Thank you for your attention
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