Determination of the neutron skin of atomic nuclei

Xavier Roca Maza Università degli studi di Milano & INFN

Nuclear physics confronts relativistic collisions of isobars

Heidelberg, May 30th to June 3rd, 2022

Table of contents

How we can <u>directly</u> measure the point neutron and proton density distributions <u>model independently</u>?

Elastic electron scattering and parity violating electron scattering; access to the isotope shift in charge radii also via laser spectroscopy.

Implications for nuclear structure from precision neutron skin measurements (or indirect measurements of the neutron skin)

Atomic parity violation and BSM, Dipole polarizability, Giant Dipole and Quadrupole resonances and their low lying strength, Isobaric Analog State, Charge radii in mirror nuclei, Spin Dipole Resonance ...

Implications for nuclear astrophysics from precision neutron skin measurements.

Nuclear Equation of State, Mass-Radius relation and deformability of a (light) neutron star, Composition of the crust of a neutron star ...

Nuclear Equation of State

-Isovector properties not well determined in current EDFs

Nuclear Equation of State

Towards understanding astrophysical effects of nuclear symmetry energy Bao-An Li, Plamen G. Krastev, De-Hua Wen & Nai-Bo Zhang EPJ A 55, 117 (2019)

Neutron skin thickness

Physics Today 72, 7, 30 (2019)

X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda Phys. Rev. Lett. **106**, 252501 (2011) - Published 21 June 2011

Elastic electron scattering: $\rho_{ch} \rightarrow \rho_{P}$

$$E_{\rm beam} \sim \frac{2\pi \hbar c}{\lambda_{\rm nuclear}} \sim 10^2 {\rm MeV}$$

The scattering of relativistic electrons by the **Coulomb field** V(r) is completely **described** by the direct scattering amplitude, $f(\theta)$, and the spin-flip scattering amplitude, $g(\theta)$.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left| f(\theta) \right|^2 + \left| g(\theta) \right|^2$$

 $f(\theta)$ and $g(\theta)$ determined from the **solutions of the Dirac equation** for the central potential V(r)

$$V_{\rm nucl.elec.} = 4\pi Z_0 e^2 \left\{ \frac{1}{r} \int_0^r \rho_{\rm ch}(u) u^2 du + \int_r^\infty \rho_{\rm ch}(u) u du \right\}$$

Elastic electron scattering: $\rho_{ch} \rightarrow \rho_{P}$

Experimentally one can access the nuclear **charge form factor** dividing by the differential cross section of a point nucleus with charge Z

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left| F(q) \right|^2$$

The low momentum transfer behavior of the form factor determines the **charge radius**

$$F_{ch}(q) = Z\left(1 + \frac{q^2 \langle r_{ch}^2 \rangle}{3!} + [O]q^4\right)$$

The Fourier transform of $F_{ch}(q)$ gives access to $\rho_{ch}(r)$.

Parity Violating electron elastic scattering: $\rho_w \rightarrow \rho_n$

- **Electrons** interact by exchanging a γ or a Z_0 boson.
- While **protons** couple basically to γ , **neutrons** do it to Z_0 .
- Ultra-relativistic electrons, depending on their helicity, interact with the nucleons $V_{\pm} = V_{\text{Coulomb}} \pm V_{\text{Weak}}$.
- ► Ultra-relativistic electrons moving under the effect of V_± where Coulomb distortions are important ⇒ solution of the Dirac equation via the Distorted Wave Born Approximation (DWBA).
- Input for the calculation: ρ_n and ρ_p

(as well as nucleon electromagnetic and weak form factors)

$$\mathbf{A}_{\mathbf{pv}} = \left(\frac{d\sigma_{+}}{d\Omega} - \frac{d\sigma_{-}}{d\Omega}\right) \middle/ \left(\frac{d\sigma_{+}}{d\Omega} + \frac{d\sigma_{-}}{d\Omega}\right)$$

Parity Violating electron elastic scattering: Apv at the PREx kinematics

Current situation (208Pb)

While $\rho_{ch}(r)$ has been **determined** in **different nuclei**, $\rho_{W}(r)$ has **not** been **determined** since A_{PV} has only been measured at a **single q** for ²⁰⁸Pb and ⁴⁸Ca

 $A_{pv} \approx$

 $10^{7} A_{PV}$

7.0

6.8

In PWBA for small momentum transfer:

0.2

 Δr_{np}

0.25

(fm)

 $\frac{G_F q^2}{\sqrt{2}}$

0.15

nucleus	206Pb	208 P b
rms [fm]	5.490	5.503(2)
i	R _i Q _i	R _i Q _i
1	0.6 0.010615	0.1 0.003845
2	1.1 0.021108	0.7 0.009724
3	2.1 0.000060	1.6 0.033093
4	2.6 0.102206	2.1 0.000120
5	3.1 0.023476	2.7 0.083107
6	3.8 0.065884	3.5 0.080869
7	4.4 0.226032	4.2 0.139957
8	5.0 0.000005	5.1 0.260892
9	5.7 0.459690	6.0 0.336013
10	6.8 0.086351	6.6 0.033637
11	7.2 0.004589	7.6 0.018729
12	8.6 0.000011	8.7 0.000020
ref.	Fr83	Fr77a
q-range [fm ⁻¹]	0.51- 2.99	0.44- 3.70
data-	Eu78,Fr83	He69,Ni69,
sets	μ	Eu76a,Fr77a
RP [fm]	1.70	μ 1.70

0.3

Linear Fit, r = 0.995Nonrelativistic models Relativistic models From strong probes

Laser spectroscopy: hyperfine structure

→ Atomic energy levels are split by the interaction of atomic electrons with the nuclear magnetic dipole moment and by nuclear electric quadrupole moment

→ **Isotope shifts** give changes in mean square charge radii $\delta < r_{ch}^2 >$

B K Sahoo et al 2020 New J. Phys. 22 012001

Implications for nuclear structure from precision neutron skin measurements

- \rightarrow Atomic pairty non conservation (Qw and Rw)
- → Neutrino coherent [F(q→0)→1] elastic scattering (Qw and Rw)
- \rightarrow Dipole polarizabilty (J, Δr_{np})
- \rightarrow Isobaric Analog State (V_{ISB}, Δr_{np})
- → Spin Dipole Resonance (Δr_{np} , ...)
- \rightarrow Charge radii in mirror nuclei (Δr_{np}) [?]
- \rightarrow Giant Dipole and Quadrupole resonances ($\Delta r_{np}, ...$)
- \rightarrow Among other observables !!

Atomic parity non conservation

Neutron density!!

RMP 90, 025008 (2018)

Coherent neutrino nucleus elastic scattering

Taken form a presentation by **Kate Scholberg,** Duke University

Dipole polarizability (α_D)

Phys. Rev. Lett. 107, 062502 - Published 3 August 2011

Dipole polarizability (α_D): SIMPLE MODEL

The dielectric theorem establishes that the m_{-1} moment can be computed from the expectation value of the Hamiltonian in the constrained ground state $\mathcal{H}' = \mathcal{H} + \lambda \mathcal{D}$.

Adopting the Droplet Model ($m_{-1} \propto \alpha_D$):

$$\mathfrak{m}_{-1} \approx \frac{A\langle r^2 \rangle^{1/2}}{48J} \left(1 + \frac{15}{4}\frac{J}{Q}A^{-1/3}\right)$$

Bulk - First derived by Migdal

Surface correction - first derived by J. Meyer, P. Quentin, and B. Jennings, Nucl. Phys. A 385, 269 (1982) within the same model, connection with the neutron skin thickness:

$$\alpha_{\rm D} \approx \frac{A\langle r^2 \rangle}{12J} \left[1 + \frac{5}{2} \frac{\Delta r_{\rm np} + \sqrt{\frac{3}{5} \frac{e^2 Z}{70J}} - \Delta r_{\rm np}^{\rm surface}}{\langle r^2 \rangle^{1/2} (I - I_{\rm C})} \right]$$

Dipole polarizability (α_D): EDFs

Dipole polarizability: microscopic results <u>HF+RPA</u>

X. Roca-Maza, et al., Phys. Rev. C 88, 024316 (2013).

$\alpha_D J$ is linearly correlated with Δr_{np} and no α_D alone within EDFs

Dipole polarizability (α_D): ab initio

wave in np scattering

- (a) SRG evolved EM $\Lambda=500$
- (b) SRG evolved EM $\Lambda = 600$
- (c) SRG evolved CD-BONN
- (d) Vlow-k evolved CD-BONN potentials
- (e) Vlow-k -evolved AV18

(f) refer to calculations that include 3NF: The large one is from NNLOsat

Isobaric Analog State

19

Isobaric Analog State: SIMPLE MODEL

 \bullet Assuming indepentent particle model and good isospin for $|0\rangle$ ((0|T_+T_-|0\rangle = 2T_0 = N - Z)

$$E_{\text{IAS}} \approx E_{\text{IAS}}^{\text{C,direct}} = \frac{1}{N-Z} \int \left[\rho_n(\vec{r}) - \rho_p(\vec{r}) \right] U_{\text{C}}^{\text{direct}}(\vec{r}) d\vec{r}$$

where
$$U_{C}^{direct}(\vec{r}) = \int \frac{e^2}{|\vec{r}_1 - \vec{r}|} \rho_{ch}(\vec{r}_1) d\vec{r}_1$$

• Assuming also a uniform neutron and proton distributions of radius R_n and R_p respectively, and $\rho_{ch} \approx \rho_p$ one can find

$$E_{\rm IAS} \approx E_{\rm IAS}^{\rm C, direct} \approx \frac{6}{5} \frac{Ze^2}{R_p} \left(1 - \sqrt{\frac{5}{12}} \frac{N}{N - Z} \frac{\Delta r_{\rm np}}{R_p} \right)$$

One may expect: the larger the Δr_{np} the smallest E_{IAS}

Isobaric Analog State: EDFs

Spin-Dipole Resonance: sum rule

Excitation operator:

$$\hat{O}_{\text{SDR}} = \sum_{i=1}^{A} \sum_{M} \tau_{\pm}(i) r_i^L [Y_L(\hat{r}_i) \otimes \sigma(i)]_{JM}.$$

Non energy weighted sum rule:

$$\begin{split} \int & [R_{SD^{-}}(E) - R_{SD^{+}}(E)] dE = \frac{9}{4\pi} (N \langle r_{n}^{2} \rangle - Z \langle r_{p}^{2} \rangle) \\ &\approx (N - Z) \langle r_{p}^{2} \rangle \left(1 + \frac{2N}{N - Z} \frac{\Delta r_{np}}{\langle r_{p}^{2} \rangle^{1/2}} \right) \end{split}$$

• Experimental NEWSR in ²⁰⁸Pb is 1004^{+24}_{-23} fm²; SAMi is 1224 fm²; and SAMi-T 1260± 10 fm² (some strength is missing in the experimental measurement ? $\Delta r_{np} \approx 0.05$ fm). • Experimental NEWSR in ⁹⁰Zr is 148 ± 12 fm²; SAMi is 150 fm²; and SAMi-T 147 ± 1 fm² \Rightarrow neutron skin should be properly determined by SAMi and SAMi-T

> Shihang Shen (申时行), Gianluca Colò, and Xavier Roca-Maza Phys. Rev. C **99**, 034322 – Published 20 March 2019

Charge radii in mirror nuclei

Isovector giant resonances

- → In isovector giant resonances neutrons and protons "oscillate" out of phase
- $\label{eq:solution} \rightarrow \mbox{ Isovector resonances will depend on oscillations of the density $\rho_{iv} \equiv \rho_n \rho_p \Rightarrow S(\rho)$ will drive such "oscillations" }$
- \rightarrow The excitation energy (E_x) within a Harmonic Oscillator approach is expected to depend on the symmetry energy:

$$\omega = \sqrt{\frac{1}{m} \frac{d^2 U}{dx^2}} \propto \sqrt{k} \to \mathsf{E}_{\mathbf{x}} \sim \sqrt{\frac{\delta^2 e}{\delta \beta^2}} \propto \sqrt{\mathsf{S}(\rho)}$$

where $\beta = (\rho_n - \rho_p)/(\rho_n + \rho_p)$

Giant Dipole Resonance

 $(\underline{E_x} \approx f(0.1) \propto \sqrt{S(0.1 \text{fm}^{-3})})$

The larger the symmetry energy at an average density of a finite heavy nucleus, the larger the excitation energy of the Giant Dipole Resonance (GDR).

Giant Quadrupole Resonance

X. Roca-Maza, M. Brenna, B. K. Agrawal, P. F. Bortignon, G. Colò, Li-Gang Cao, N. Paar, and D. Vretenar Phys. Rev. C 87, 034301 – Published 1 March 2013

The larger the neutron skin in ²⁰⁸Pb, the smallest the difference between the IS and IV excitation energies in GQRs.

Implications for nuclear astrophysics from precision neutron skin measurements

- \rightarrow Composition of the crust of a neutron star
- → Mass-Radius relation of a neutron star
- → Deformability of a neutron star
- → Among other neutron star properties and astrophysical processes ...

Outer crust of a neutron star (subsaturation densities relevant)

- → span 7 orders of magnitude in denisty (from ionization ~ 10⁴ g/cm to the neutron drip ~ 10¹¹ g/cm)
- → it is organized into a Coulomb lattice of neutron-rich nuclei (ions) embedded in a relativistic uniform electron gas
- \rightarrow T ~ 10⁶ K ~ 0.1 keV \rightarrow one can treat nuclei and electrons at T = 0 K
- \rightarrow At the lowest densities, the electronic contribution is negligible so the Coulomb lattice is populated by ⁵⁶Fe nuclei.
- → As the density increases, the electronic contribution becomes important, it is energetically advantageous to lower its electron fraction by $e^- + (N, Z) \rightarrow (N + 1, Z 1) + \nu_e$ and therefore $Z \downarrow$ with constant (approx) number of N
- → As the density continues to increase, penalty energy from the symmetry energy due to the neutron excess changes the composition to a dif ferent N-plateau

$$\frac{Z}{A} \approx \frac{Z_0}{A_0} - \frac{p_{F_e}}{8a_{sym}} \text{ where } (A_0, Z_0) = {}^{56}\text{Fe}_{26}$$

 $\label{eq:constraint} \begin{array}{l} \rightarrow & \mbox{The Coulomb lattice is made of more and more} \\ & \mbox{neutron-rich nuclei until the critical neutron-drip} \\ & \mbox{density is reached (} \mu_{drip} = m_n \mbox{)}. \\ & \mbox{[} \mathcal{M}(N,Z) + m_n < \mathcal{M}(N+1,Z) \mbox{]} \end{array}$

The larger the neutron skin of 208 Pb (L \uparrow), the more exotic the composition of the outer crust.

Mass-Radius relation and deformability of a Neutron Star

GW170817 from the binary neutron star merger → **constraint** neutron star **radius** and, thus, the **nuclear EoS**

Neutron Skins and Neutron Stars in the Multimessenger Era F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz Phys. Rev. Lett. 120, 172702 (2018)

Tidal deformability (Λ) is

a quadrupole deformation inferred from **GW signal** → proportional to **restoring force.** Hence, sensitive to the **nuclear EoS**

Radius of a Neutron Star

J. Carriere et al 2003 ApJ 593 463

Crust-core interface

FIG. 1.—Transition density ρ_c at which uniform matter becomes unstable to density oscillations as a function of the neutron skin in ²⁰⁸Pb. The solid curve is for the Z271 parameter set with $\Lambda_v \neq 0$ while the dashed curve uses Z271 with $\Lambda_s \neq 0$. The dotted curve is for the S271 set and the dot-dashed curve for NL3, both of these with $\Lambda_v \neq 0$.

J. Carriere et al 2003 ApJ 593 463

THANK YOU!