Ab initio Projected Generator Coordinate Method

Benjamin Bally

EMMI RRTF - Heidelberg - 02/06/2022

Progress in ab initio methods

Progress in ab initio methods

- Since 1980s
\diamond Factorial/exponential scaling with A
\diamond Configuration Interaction
\diamond Quantum Monte Carlo

Progress in ab initio methods

- Since 1980s
\diamond Factorial/exponential scaling with A
\diamond Configuration Interaction
\diamond Quantum Monte Carlo
- Since 2000s
\diamond Gentler (\approx polynomial) scaling with A
\diamond Bogoliubov Coupled Cluster
\diamond Self-consistent Gorkov-Green's Functions
\diamond Bogoliubov In-Medium Similarity Renormalization Group
\diamond Bogoliubov Many-Body Perturbation Theory
\diamond Nuclear Lattice Effective Field Theory \rightarrow Dean Lee's talk
\diamond
\diamond

Progress in ab initio methods

- Since 1980s
\diamond Factorial/exponential scaling with A
\diamond Configuration Interaction
\diamond Quantum Monte Carlo
- Since 2000s
\diamond Gentler (\approx polynomial) scaling with A
\diamond Bogoliubov Coupled Cluster
\diamond Self-consistent Gorkov-Green's Functions
\diamond Bogoliubov In-Medium Similarity Renormalization Group
\diamond Bogoliubov Many-Body Perturbation Theory
\diamond Nuclear Lattice Effective Field Theory \rightarrow Dean Lee's talk
\diamond Valence-Space In-Medium Similarity Renormalization Group
\diamond Projected Generator Coordinate Method + Perturbation Theory
- Projected Generator Coordinate Method \equiv PGCM
- Projected Generator Coordinate Method \equiv PGCM
- Initially: method designed to study fission

Hill and Wheeler, PR 89, 1102 (1953)
Griffin and Wheeler, PR 108, 311 (1957)

- Projected Generator Coordinate Method \equiv PGCM
- Initially: method designed to study fission

Hill and Wheeler, PR 89, 1102 (1953)
Griffin and Wheeler, PR 108, 311 (1957)

- Over the past decades: applications based on energy density functionals \rightarrow see talks by Luis, Tomás, Wouter, Tamara, Jean-Paul
- Projected Generator Coordinate Method \equiv PGCM
- Initially: method designed to study fission

Hill and Wheeler, PR 89, 1102 (1953)
Griffin and Wheeler, PR 108, 311 (1957)

- Over the past decades: applications based on energy density functionals \rightarrow see talks by Luis, Tomás, Wouter, Tamara, Jean-Paul
- Nowadays: new developments within the ab initio context
\diamond Use of chiral-EFT Hamiltonians

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$
\rightarrow achieved through symmetry projection

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$
\rightarrow achieved through symmetry projection
- Multi-reference approach: $\left|\Psi_{\mu}\right\rangle \equiv \sum_{i} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle$

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$
\rightarrow achieved through symmetry projection
- Multi-reference approach: $\left|\Psi_{\mu}\right\rangle \equiv \sum_{i} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle$
$\rightarrow f_{\mu}\left(q_{i}\right)$ obtained variationally

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$
\rightarrow achieved through symmetry projection
- Multi-reference approach: $\left|\Psi_{\mu}\right\rangle \equiv \sum_{i} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle$
$\rightarrow f_{\mu}\left(q_{i}\right)$ obtained variationally
\rightarrow spectrum of states $\{\mu\}$

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$
\rightarrow achieved through symmetry projection
- Multi-reference approach: $\left|\Psi_{\mu}\right\rangle \equiv \sum_{i} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle$
$\rightarrow f_{\mu}\left(q_{i}\right)$ obtained variationally
\rightarrow spectrum of states $\{\mu\}$
$\rightarrow\left|\Phi\left(q_{i}\right)\right\rangle$ built exploring (set of) collective variable(s) q_{i}

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$
\rightarrow achieved through symmetry projection
- Multi-reference approach: $\left|\Psi_{\mu}\right\rangle \equiv \sum_{i} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle$
$\rightarrow f_{\mu}\left(q_{i}\right)$ obtained variationally
\rightarrow spectrum of states $\{\mu\}$
$\rightarrow\left|\Phi\left(q_{i}\right)\right\rangle$ built exploring (set of) collective variable(s) q_{i}
- Allows one to include important collective correlations in $|\Psi\rangle$

PGCM: main principles

- Respects the symmetries of $\hat{H}:|\Psi\rangle \equiv\left|\Psi^{N Z J M \pi}\right\rangle$
\rightarrow achieved through symmetry projection
- Multi-reference approach: $\left|\Psi_{\mu}\right\rangle \equiv \sum_{i} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle$
$\rightarrow f_{\mu}\left(q_{i}\right)$ obtained variationally
\rightarrow spectrum of states $\{\mu\}$
$\rightarrow\left|\Phi\left(q_{i}\right)\right\rangle$ built exploring (set of) collective variable(s) q_{i}
- Allows one to include important collective correlations in $|\Psi\rangle$
- Allows one to deal with the diversity of emerging phenomena in nuclei

Symmetry group of nuclear Hamiltonian \hat{H}

- Low-energy nuclear physics: $\forall g \in G,[\hat{H}, \hat{R}(g)]=0$

Symmetry group of nuclear Hamiltonian \hat{H}

- Low-energy nuclear physics: $\forall g \in G,[\hat{H}, \hat{R}(g)]=0$

Physical symmetry	Group	Quant. numb.
Particle-number inv.	$U(1)_{Z} \times U(1)_{N}$	N, Z
Rotational inv.	$S U(2)_{A}$	J, M_{J}
Parity inv.	$Z_{2 A}$	π
Translational inv.	T_{A}^{3}	\vec{P}
Exchange of particles	$S_{Z} \times S_{N}$	$-1,-1$
Isospin	$S U(2)_{A}$	T, M_{T}

Symmetry group of nuclear Hamiltonian \hat{H}

- Low-energy nuclear physics: $\forall g \in G,[\hat{H}, \hat{R}(g)]=0$

Physical symmetry	Group	Quant. numb.
Particle-number inv.	$U(1)_{Z} \times U(1)_{N}$	N, Z
Rotational inv.	$S U(2)_{A}$	J, M_{J}
Parity inv.	$Z_{2 A}$	π
Translational inv.	T_{A}^{3}	\vec{P}
Exchange of particles	$S_{Z} \times S_{N}$	$-1,-1$
Isospin	$S U(2)_{A}$	T, M_{T}

- Eigenstates of \hat{H} can be characterized: $\left|\Theta_{\epsilon}^{N Z J M \pi}\right\rangle$

Symmetry-breaking solutions

- Mean-field calculations: $\delta\left\langle\Phi\left(q_{i}\right)\right| \hat{H}\left|\Phi\left(q_{i}\right)\right\rangle=0$ $\left|\Phi\left(q_{i}\right)\right\rangle \equiv$ Product states (simple wave functions)

Symmetry-breaking solutions

- Mean-field calculations: $\delta\left\langle\Phi\left(q_{i}\right)\right| \hat{H}\left|\Phi\left(q_{i}\right)\right\rangle=0$

$$
\left|\Phi\left(q_{i}\right)\right\rangle \equiv \text { Product states (simple wave functions) }
$$

- Symmetry-unrestricted MF calculations favor "deformed" solutions
- Examples: pairing, quadrupole and octupole deformations, ...

Symmetry-breaking solutions

- Mean-field calculations: $\delta\left\langle\Phi\left(q_{i}\right)\right| \hat{H}\left|\Phi\left(q_{i}\right)\right\rangle=0$ $\left|\Phi\left(q_{i}\right)\right\rangle \equiv$ Product states (simple wave functions)
- Symmetry-unrestricted MF calculations favor "deformed" solutions
- Examples: pairing, quadrupole and octupole deformations, ...
- Problem: deformed solutions break the symmetries of \hat{H}

$$
\begin{aligned}
\left|\Phi\left(q_{i}\right)\right\rangle & =\sum_{N Z J M \pi} \sum_{\epsilon} c_{\epsilon}^{N Z J M \pi}\left|\Psi_{\epsilon}^{N Z J M \pi}\left(q_{i}\right)\right\rangle \\
& \Rightarrow \text { unphysical in nuclei }
\end{aligned}
$$

Symmetry dilemma

- "Symmetry dilemma" of Löwdin

Lykos and Pratt, Rev. Mod. Phys. 35, 496 (1963)
\diamond MF ansatz respects the symmetries of \hat{H} but is variationally limited
\diamond MF ansatz is variationally general but breaks the symmetries of \hat{H}

Symmetry dilemma

- "Symmetry dilemma" of Löwdin

```
Lykos and Pratt, Rev. Mod. Phys. 35, 496 (1963)
```

\diamond MF ansatz respects the symmetries of \hat{H} but is variationally limited
\diamond MF ansatz is variationally general but breaks the symmetries of \hat{H}

- Examples:

Physical symmetry	Group	Quant. numb.	Correlations
Particle-number inv.	$U(1)_{Z} \times U(1)_{N}$	N, Z	Pairing, Finite temp.
Rotational inv.	$S U(2)_{A}$	J, M_{J}	Deformation (any)
Parity inv.	$Z_{2 A}$	π	Deformation (odd)
Translational inv.	T_{A}^{3}	\vec{P}	Localization
Isospin	$S U(2)_{A}$	T, M_{T}	Pairing n-p

Solution: restoring the symmetries

- Symmetry-breaking MF $\xrightarrow{\text { reference states }}$ Symmetry-restored BMF (BMF \equiv beyond mean field)

Solution: restoring the symmetries

- Symmetry-breaking MF $\xrightarrow{\text { reference states }}$ Symmetry-restored BMF (BMF \equiv beyond mean field)
- Projected HFB

Peierls and Yoccoz et al., Proc. Phys. Soc. A 73, 381 (1957)

- Projected BCC \& BMBPT

Duguet et al., JPG 42, 025107 (2015)
Duguet and Signoracci et al., JPG 44, 015103 (2017)

Symmetry projection: method

- Projection operators

$$
\begin{aligned}
\hat{P}_{M K}^{J} & =\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}{ }^{*}(\alpha, \beta, \gamma) \hat{R}(\alpha, \beta, \gamma) \\
\hat{P}^{N Z} & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} d \phi_{N} \int_{0}^{2 \pi} d \phi_{Z} e^{i \phi_{N}(\hat{N}-N)} e^{i \phi_{Z}(\hat{Z}-Z)} \\
\hat{P}^{\pi} & =\frac{1}{2}(1+\pi \hat{\Pi})
\end{aligned}
$$

Symmetry projection: method

- Projection operators

$$
\begin{aligned}
\hat{P}_{M K}^{J} & =\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}(\alpha, \beta, \gamma) \hat{R}(\alpha, \beta, \gamma) \\
\hat{P}^{N Z} & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} d \phi_{N} \int_{0}^{2 \pi} d \phi_{Z} e^{i \phi_{N}(\hat{N}-N)} e^{i \phi_{Z}(\hat{Z}-Z)} \\
\hat{P}^{\pi} & =\frac{1}{2}(1+\pi \hat{\Pi})
\end{aligned}
$$

- Extraction of the components

$$
\underbrace{\hat{P}_{M K}^{J} \hat{P}^{\pi} \hat{P}^{Z N}}\left|\Phi\left(q_{i}\right)\right\rangle \xrightarrow{\text { projects }}\left\{\sum_{\varepsilon} c^{N Z J K \pi}\left|\Psi_{\varepsilon}^{N Z J M \pi}\left(q_{i}\right)\right\rangle, K\right\} \xrightarrow{\text { diag. } \hat{H}}\left\{\left|\Psi_{\varepsilon}^{N Z J M \pi}\left(q_{i}\right)\right\rangle, \varepsilon\right\}
$$

projection
operators

Symmetry projection: method

- Projection operators

$$
\begin{aligned}
\hat{P}_{M K}^{J} & =\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}(\alpha, \beta, \gamma) \hat{R}(\alpha, \beta, \gamma) \\
\hat{P}^{N Z} & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} d \phi_{N} \int_{0}^{2 \pi} d \phi_{Z} e^{i \phi_{N}(\hat{N}-N)} e^{i \phi_{Z}(\hat{Z}-Z)} \\
\hat{P}^{\pi} & =\frac{1}{2}(1+\pi \hat{\Pi})
\end{aligned}
$$

- Extraction of the components

$$
\underbrace{\hat{P}_{M K}^{J} \hat{P}^{\pi} \hat{P}^{Z N}}\left|\Phi\left(q_{i}\right)\right\rangle \xrightarrow{\text { projects }}\left\{\sum_{\varepsilon} c^{N Z J K \pi}\left|\Psi_{\varepsilon}^{N Z J M \pi}\left(q_{i}\right)\right\rangle, K\right\} \xrightarrow{\text { diag. } \hat{H}}\left\{\left|\Psi_{\varepsilon}^{N Z J M \pi}\left(q_{i}\right)\right\rangle, \varepsilon\right\}
$$

projection
operators

- Projected states

$$
\left|\Psi_{\varepsilon}^{N Z J M \pi}\left(q_{i}\right)\right\rangle=\sum_{K} f_{\varepsilon K}^{N Z J M \pi}\left(q_{i}\right) \hat{P}_{M K}^{J} \hat{P}^{\pi} \hat{P}^{Z N}\left|\Phi\left(q_{i}\right)\right\rangle
$$

Symmetry projection: illustration

- Projection operator (angular momentum)

$$
\hat{P}_{M K}^{J}=\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}(\alpha, \beta, \gamma) \hat{R}(\alpha, \beta, \gamma)
$$

Symmetry projection: example with ${ }^{38} \mathrm{Mg}$

Symmetry projection: example with ${ }^{38} \mathrm{Mg}$

GCM: definition

- Trial wave function depends on continuous variables $q \equiv\left(p_{1}, \ldots, p_{m}\right)$

$$
|\Psi\rangle=\int d q f(q)|\Phi(q)\rangle
$$

GCM: definition

- Trial wave function depends on continuous variables $q \equiv\left(p_{1}, \ldots, p_{m}\right)$

$$
|\Psi\rangle=\int d q f(q)|\Phi(q)\rangle
$$

- The weights $f(q)$ are determined minimizing the energy of $|\Psi\rangle$

$$
\frac{\delta}{\delta f^{*}(q)}\left(\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}\right)=0
$$

GCM: definition

- Trial wave function depends on continuous variables $q \equiv\left(p_{1}, \ldots, p_{m}\right)$

$$
|\Psi\rangle=\int d q f(q)|\Phi(q)\rangle
$$

- The weights $f(q)$ are determined minimizing the energy of $|\Psi\rangle$

$$
\frac{\delta}{\delta f^{*}(q)}\left(\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}\right)=0
$$

- In practice, the integral is discretized $q \in\left\{q_{1}, \ldots, q_{n}\right\}$, i.e.

$$
\left|\Psi_{\mu}\right\rangle=\sum_{i=1}^{n} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle
$$

GCM: definition

- Trial wave function depends on continuous variables $q \equiv\left(p_{1}, \ldots, p_{m}\right)$

$$
|\Psi\rangle=\int d q f(q)|\Phi(q)\rangle
$$

- The weights $f(q)$ are determined minimizing the energy of $|\Psi\rangle$

$$
\frac{\delta}{\delta f^{*}(q)}\left(\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}\right)=0
$$

- In practice, the integral is discretized $q \in\left\{q_{1}, \ldots, q_{n}\right\}$, i.e.

$$
\left|\Psi_{\mu}\right\rangle=\sum_{i=1}^{n} f_{\mu}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle
$$

- It translates into solving the generalized eigenvalue problem (GEP)

$$
H f=E N f \quad \text { with } \quad \begin{aligned}
& H_{i j}=\left\langle\Phi\left(q_{i}\right)\right| \hat{\mid}\left|\Phi\left(q_{j}\right)\right\rangle \\
& N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle
\end{aligned}
$$

GCM: illustration

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\mu}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Psi_{\mu}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\mu}\left(q_{j}\right)
$$

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\mu}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Psi_{\mu}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\mu}\left(q_{j}\right)
$$

- The closest we have are the so-called collective wave functions

$$
H f=E N f \Leftrightarrow \underbrace{N^{-1 / 2} H N^{-1 / 2}}_{\tilde{H}} \underbrace{N^{+1 / 2} f}_{g}=E N^{+1 / 2} f \Leftrightarrow \tilde{H} g=E g
$$

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\mu}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Psi_{\mu}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\mu}\left(q_{j}\right)
$$

- The closest we have are the so-called collective wave functions

$$
\begin{aligned}
& H f=E N f \Leftrightarrow \underbrace{N^{-1 / 2} H N^{-1 / 2}}_{\tilde{H}} \underbrace{N^{+1 / 2} f}_{g}=E N^{+1 / 2} f \Leftrightarrow \tilde{H} g=E g \\
& g_{\mu}\left(q_{i}\right)=\sum_{j} N_{i j}^{1 / 2} f_{\mu}\left(q_{j}\right) \text { with } \sum_{i} g_{\mu}\left(q_{i}\right) g_{\mu^{\prime}}\left(q_{i}\right)=\delta_{\mu \mu^{\prime}}
\end{aligned}
$$

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\mu}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Psi_{\mu}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\mu}\left(q_{j}\right)
$$

- The closest we have are the so-called collective wave functions

$$
\begin{gathered}
H f=E N f \Leftrightarrow \underbrace{N^{-1 / 2} H N^{-1 / 2}}_{\tilde{H}} \underbrace{N^{+1 / 2} f}_{g}=E N^{+1 / 2} f \Leftrightarrow \tilde{H} g=E g \\
g_{\mu}\left(q_{i}\right)=\sum_{j} N_{i j}^{1 / 2} f_{\mu}\left(q_{j}\right) \text { with } \sum_{i} g_{\mu}\left(q_{i}\right) g_{\mu^{\prime}}\left(q_{i}\right)=\delta_{\mu \mu^{\prime}} \\
\operatorname{But}\left\langle\Phi\left(q_{i}\right) \mid \Psi_{\mu}\right\rangle=\sum_{j=1}^{n} N_{i j}^{1 / 2} g_{\mu}\left(q_{j}\right)
\end{gathered}
$$

PGCM: unified picture

- Order parameter: $\boldsymbol{q}=|q| e^{\operatorname{iarg}(q)}$

PGCM: unified picture

- Order parameter: $q=|q| e^{\operatorname{iarg}(q)}$
- Example: quadrupole deformations $|q| \equiv$ average def. $\langle\Phi(q)| \hat{Q}|\Phi(q)\rangle$ $\arg (q) \equiv$ Euler angles (α, β, γ)

PGCM: unified picture

- Order parameter: $q=|q| e^{\operatorname{iarg}(q)}$
- Example: quadrupole deformations $|q| \equiv$ average def. $\langle\Phi(q)| \hat{Q}|\Phi(q)\rangle$ $\arg (q) \equiv$ Euler angles (α, β, γ)

- General ansatz

$$
\left|\Psi_{\mu}^{N Z J M \pi}\right\rangle \equiv \sum_{\left|q_{i}\right|, K} \tilde{f}_{\mu}^{N Z J M \pi}\left(\left|q_{i}\right|, K\right) \hat{P}_{M K}^{J} \hat{P}^{\pi} \hat{P}^{Z N}\left|\Phi\left(\left|q_{i}\right|\right)\right\rangle
$$

Nuclear Hamiltonian

$$
H=h^{(0)}+\sum_{i j} h_{i j}^{(1)} c_{i}^{\dagger} c_{j}+\frac{1}{(2!)^{2}} \sum_{i j k l} \bar{h}_{i j k l}^{(2)} c_{i}^{\dagger} c_{j}^{\dagger} c_{l} c_{k}+\frac{1}{(3!)^{2}} \sum_{i j k l m n} \bar{h}_{i j k l m n}^{(3)} c_{i}^{\dagger} c_{j}^{\dagger} c_{k}^{\dagger} c_{n} c_{m} c_{l}
$$

Nuclear Hamiltonian

$$
H=h^{(0)}+\sum_{i j} h_{i j}^{(1)} c_{i}^{\dagger} c_{j}+\frac{1}{(2!)^{2}} \sum_{i j k l} \bar{h}_{i j k l}^{(2)} c_{i}^{\dagger} c_{j}^{\dagger} c_{l} c_{k}+\frac{1}{(3!)^{2}} \sum_{i j k l m n} \bar{h}_{i j k l m n}^{(3)} c_{i}^{\dagger} c_{j}^{\dagger} c_{k}^{\dagger} c_{n} c_{m} c_{l}
$$

- "Full" Hamiltonian

$$
\begin{aligned}
& h^{(0)}=0 \\
& h^{(1)}=T^{(1)} \\
& \bar{h}^{(2)}=V^{(2)} \\
& \bar{h}^{(3)}=W^{(3)}
\end{aligned}
$$

Nuclear Hamiltonian

$$
H=h^{(0)}+\sum_{i j} h_{i j}^{(1)} c_{i}^{\dagger} c_{j}+\frac{1}{(2!)^{2}} \sum_{i j k l} \bar{h}_{i j k l}^{(2)} c_{i}^{\dagger} c_{j}^{\dagger} c_{l} c_{k}
$$

- In-medium 2-body reduction

```
Frosini et al., EPJA 58, }63\mathrm{ (2022)
```

$$
\begin{aligned}
& h^{(0)}=\frac{1}{3!} W^{(3)} \cdot \rho^{\otimes(3)} \\
& h^{(1)}=T^{(1)}-\frac{1}{2!} W^{(3)} \cdot \rho^{\otimes(2)} \\
& \bar{h}^{(2)}=V^{(2)}+W^{(3)} \cdot \rho \\
& \bar{h}^{(3)}=0
\end{aligned}
$$

- Error i 3\% excitation energies

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle$ with $m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket$ and $m_{t_{a}} \in \llbracket-t_{a}, t_{a} \rrbracket$

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle$ with $m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket$ and $m_{t_{a}} \in \llbracket-t_{a}, t_{a} \rrbracket$
- Principal quantum number: $e_{a}=2 n_{a}+l_{a}$

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle$ with $m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket$ and $m_{t_{a}} \in \llbracket-t_{a}, t_{a} \rrbracket$
- Principal quantum number: $e_{a}=2 n_{a}+l_{a}$
- Limit for single-particle states $|a\rangle: \forall a, e_{a} \leq e_{\max }$

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle$ with $m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket$ and $m_{t_{a}} \in \llbracket-t_{a}, t_{a} \rrbracket$
- Principal quantum number: $e_{a}=2 n_{a}+l_{a}$
- Limit for single-particle states $|a\rangle: \forall a, e_{a} \leq e_{\max }$
- Limit for two-particle states $|a b\rangle: \forall a, b, e_{a}+e_{b} \leq e_{2 \text { max }}=2 e_{\text {max }}$ generally
\Rightarrow all elements $V_{a b c d}=\langle a b| V^{(2)}|c d\rangle$ taken into account

Choice of basis: Spherical Harmonic Oscillator

- SHO basis: $|a\rangle \equiv\left|n_{a}, l_{a}, s_{a}=\frac{1}{2}, j_{a}, m_{j_{a}}, t_{a}=\frac{1}{2}, m_{t_{a}}\right\rangle$ with $m_{j_{a}} \in \llbracket-j_{a}, j_{a} \rrbracket$ and $m_{t_{a}} \in \llbracket-t_{a}, t_{a} \rrbracket$
- Principal quantum number: $e_{a}=2 n_{a}+l_{a}$
- Limit for single-particle states $|a\rangle: \forall a, e_{a} \leq e_{\max }$
- Limit for two-particle states $|a b\rangle: \forall a, b, e_{a}+e_{b} \leq e_{2 \text { max }} \underbrace{=2 e_{\text {max }}}_{\text {generally }}$
\Rightarrow all elements $V_{a b c d}=\langle a b| V^{(2)}|c d\rangle$ taken into account
- Limit for three-particle states $|a b c\rangle: \forall a, b, c, e_{a}+e_{b}+e_{c} \leq e_{3 \max } \underbrace{<3 e_{\max }}_{\text {generally }}$ \Rightarrow not all elements $W_{a b c d e f}=\langle a b c| W^{(3)}|d e f\rangle$ taken into account

Scaling of $V_{i j k l}$ with the basis size

- 4 octets/matrix element

$\mathrm{N}_{\text {SHO }}$	$\mathrm{N}_{\text {sp }}$
1	4
2	16
3	40
4	80
5	140
6	224
7	336
8	480
9	660
10	880
11	1144
12	1456
13	1820
14	2240
15	2720
16	3264
17	3876
18	4560
19	5320

Scaling of $W_{i j k l m n}$ with the basis size

- 4 octets/matrix element

$\mathrm{N}_{\text {SHO }}$	$\mathrm{N}_{\text {sp }}$
1	4
2	16
3	40
4	80
5	140
6	224
7	336
8	480
9	660
10	880
11	1144
12	1456
13	1820
14	2240
15	2720
16	3264
17	3876
18	4560
19	5320

Example of ${ }^{20} \mathrm{Ne}$: parameters of the calculation

- Chiral-EFT Hamiltonian with NN and NNN interacations
\rightarrow NNN reduced to an effective NN
Frosini et al., EPJA 57, 151 (2021)
- Single-particle basis: spherical HO with $e_{\max }=10, e_{3 \max }=14$
- Collective degrees of freedom explored: $\beta_{20}, \beta_{30},\left(\beta_{22}\right)$
- Publication: Frosini et al., EPJA 58, 63 (2022)

Example of ${ }^{20} \mathrm{Ne}$: energy surface

Example of ${ }^{20} \mathrm{Ne}$: charge density

Example of ${ }^{20} \mathrm{Ne}$: energy spectrum

- PGCM-2D: β_{20}, β_{30}
- IM-NCSM: quasi-exact diagonalization

Example of ${ }^{20} \mathrm{Ne}$: collective wave functions

Example of ${ }^{20} \mathrm{Ne}$: spatial one-body density

Binding energies of Ne isotopes

New developments beyond PGCM

- PGCM efficiently captures collective/static correlations

New developments beyond PGCM

- PGCM efficiently captures collective/static correlations
- PGCM does not efficiently capture dynamic correlations

New developments beyond PGCM

- PGCM efficiently captures collective/static correlations
- PGCM does not efficiently capture dynamic correlations
- PGCM is variational but not systematically improvable towards exact solution

New developments beyond PGCM

- PGCM efficiently captures collective/static correlations
- PGCM does not efficiently capture dynamic correlations
- PGCM is variational but not systematically improvable towards exact solution
- Include missing correlations in the Hamiltonian: $\hat{H}(s)=\hat{U}(s) \hat{H}(0) \hat{U}^{\dagger}(s)$
\rightarrow IM-GCM
Yao et al. , PRL 124, 232501 (2020)

New developments beyond PGCM

- PGCM efficiently captures collective/static correlations
- PGCM does not efficiently capture dynamic correlations
- PGCM is variational but not systematically improvable towards exact solution
- Include missing correlations in the Hamiltonian: $\hat{H}(s)=\hat{U}(s) \hat{H}(0) \hat{U}^{\dagger}(s)$
\rightarrow IM-GCM
Yao et al., PRL 124, 232501 (2020)
- Include missing correlations on top of PGCM wave function
\rightarrow PGCM-PT
Frosini et al., EPJA 58, 62 (2022)
Frosini et al., EPJA 58, 63 (2022)
Frosini et al., EPJA 58, 64 (2022)

Conclusions and outlook

- PGCM is a powerful many-body method
- New developments to use it within the $a b$ initio context

Conclusions and outlook

- PGCM is a powerful many-body method
- New developments to use it within the $a b$ initio context
- Recent applications for light- and medium-mass nuclei

```
Yao et al., PRL 124, 232501 (2020)
```

Yao et al., arXiv:2204.12971 (2022)
Frosini et al., EPJA 58, 62 (2022)
Frosini et al., EPJA 58, 63 (2022)
Frosini et al., EPJA 58, 64 (2022)

Conclusions and outlook

- PGCM is a powerful many-body method
- New developments to use it within the $a b$ initio context
- Recent applications for light- and medium-mass nuclei

```
Yao et al., PRL 124, 232501 (2020)
Yao et al., arXiv:2204.12971 (2022)
Frosini et al., EPJA 58, }62\mathrm{ (2022)
Frosini et al., EPJA 58, }63\mathrm{ (2022)
Frosini et al., EPJA 58, }64\mathrm{ (2022)
```

- Calculation of ${ }^{96} \mathrm{Ru}$ and ${ }^{96} \mathrm{Zr}$
\diamond Possible at the mean-field level but challenging
\diamond Not impossible at the PGCM level but very challenging

Additional slides

IMSRG: schematic illustration

Adapted from H. Hergert

Effects of IMSRG/PT

Bogoliubov quasiparticle states: decomposition

