
WOUTER RYSSENS

The **Skyrme** EDF: the view from Brussels

May 31th 2022

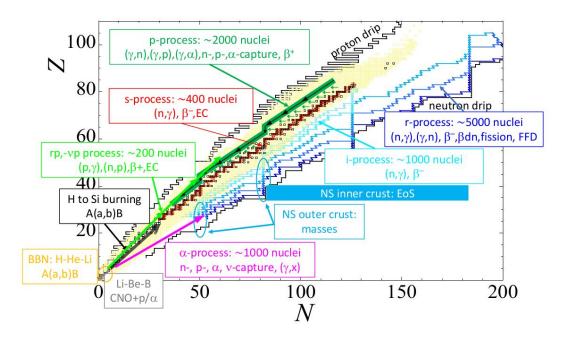
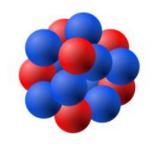


Table of contents

- I. The call of astrophysics
- II. The Skyrme EDF: some generalities
- III. Modelspace: mean-field and the concept of deformation
- IV. The view from Brussels
- V. Some Ru's, Rh's, Pd's and A~96
- VI. Conclusion & outlook

. The call of astrophysics

I. The call of astrophysics: a video!



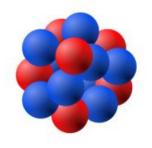
Animation by J.-F. Lemaître (CEA)

Modelling challenge

- predictions for thousands of nuclei
- ... for many different observables
- ... in a **unified** fashion
- ... founded in **microscopic** physics
- ... despite enormous extrapolations

II. The Skyrme EDF: so you want to describe nuclei?

$$\hat{H}|\Psi\rangle = E|\Psi\rangle$$
.


Interaction?

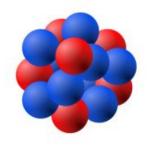
- Look at QCD, n-n scattering?
- Phenomenological?
- Global or local?

Model space?

- Include all nucleons?
- Numerical representation?
- Local or global?

II. The Skyrme EDF: so you want to describe nuclei?

$$\hat{H}|\Psi\rangle = E|\Psi\rangle$$
.


Interaction?

- Look at QCD, n-n scattering?
- Phenomenological?
- Global or local?

Model space?

- Include all nucleons?
- Include all kinds of correlations?
- Numerical representation?
- Local or global?

II. The Skyrme EDF: so you want to describe nuclei?

$$\hat{H}|\Psi\rangle = E|\Psi\rangle$$
.

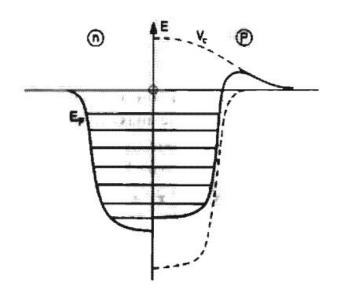
Interaction?

- Look at QCD, n-n scattering?
- Phenomenological?
- Global or local?

Model space?

- Include all nucleons?
- Include all kinds of correlations?
- Numerical representation?
- Local or global?

II. The Skyrme EDF: the Skyrme interaction


$$T = \sum_{i < j} t_{ij} + \sum_{i < j < k} t_{ijk}$$

$$t_{12} = \delta(\mathbf{r}_1 - \mathbf{r}_2) t(\mathbf{k}', \mathbf{k})$$

$$t(\mathbf{k}', \mathbf{k}) = t_0(1+x_0P^{\sigma}) + \frac{1}{2}t_1(1+x_1P^{\sigma})(\mathbf{k}'^2+\mathbf{k}^2) + t_2[1+x_2(P^{\sigma}-\frac{4}{5})]\mathbf{k}' \cdot \mathbf{k} + \frac{1}{2}T[\boldsymbol{\sigma}_1 \cdot \mathbf{k}\boldsymbol{\sigma}_2 \cdot \mathbf{k} - \frac{1}{3}\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2\mathbf{k}^2 + \text{conj.}] + \frac{1}{2}U[\boldsymbol{\sigma}_1 \cdot \mathbf{k}'\boldsymbol{\sigma}_2 \cdot \mathbf{k} - \frac{1}{3}\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2\mathbf{k}' \cdot \mathbf{k} + \text{conj.}] + V[i(\boldsymbol{\sigma}_1+\boldsymbol{\sigma}_2) \cdot \mathbf{k}' \times \mathbf{k}],$$

= Central + Tensor + Spin-orbit interaction

"It is now clear that such interaction is **very different** from the interaction between two (free) nucleons."

T. H. R. Skyrme, Nuclear Physics 9, 615–634 (1958). P. Ring and P. Schuck, the nuclear many-body problem (1984).

II. The Skyrme EDF

D. Vautherin and D. M. Brink, PRC 5, 626-647 (1972).

$$E = \langle HF | \hat{H}_{Sk.} | HF \rangle = \int H(\mathbf{r}) d^3 \mathbf{r}.$$

$$H(\vec{\mathbf{r}}) = \frac{\hbar^2}{2m} \tau + \frac{\frac{3}{8} t_0 \rho^2 + \frac{1}{16} t_3 \rho^3 + \frac{1}{16} (3t_1 + 5t_2) \rho \tau}{+ \frac{1}{64} (9t_1 - 5t_2) (\vec{\nabla} \rho)^2 - \frac{3}{4} W_0 \rho \vec{\nabla} \cdot \vec{\mathbf{J}}}.$$

= Central + Tensor + Spin-orbit interaction

$$E_{Sk} = \int d^{3}\mathbf{r} \sum_{t=0,1} \mathcal{E}_{t}(\mathbf{r}),$$

$$\mathcal{E}_{t}(\mathbf{r}) = C_{t}^{\rho\rho} \rho_{t}^{2}(\mathbf{r}) + C_{t}^{\rho\rho\rho^{\gamma}} \rho_{0}^{\gamma}(\mathbf{r}) \rho_{t}^{2}(\mathbf{r})$$

$$+ C_{t}^{\rho\tau} \rho_{t}(\mathbf{r}) \tau_{t}(\mathbf{r}) + C_{t}^{\rho\Delta\rho} \rho_{t}(\mathbf{r}) \Delta\rho_{t}(\mathbf{r})$$

$$+ C_{t}^{\rho\nabla\cdot J} \rho_{t}(\mathbf{r}) \nabla \cdot \mathbf{J}_{t}(\mathbf{r}),$$

= Central + Tensor + Spin-orbit functional

Some remarks:

Energy Density Functional= analytical form of the energy density, **can be** linked to an interaction Parameterization = values of the coupling constants

Nuclear DFT is significantly more **ad-hoc** than electronic DFT.

II. The Skyrme EDF: a comparison

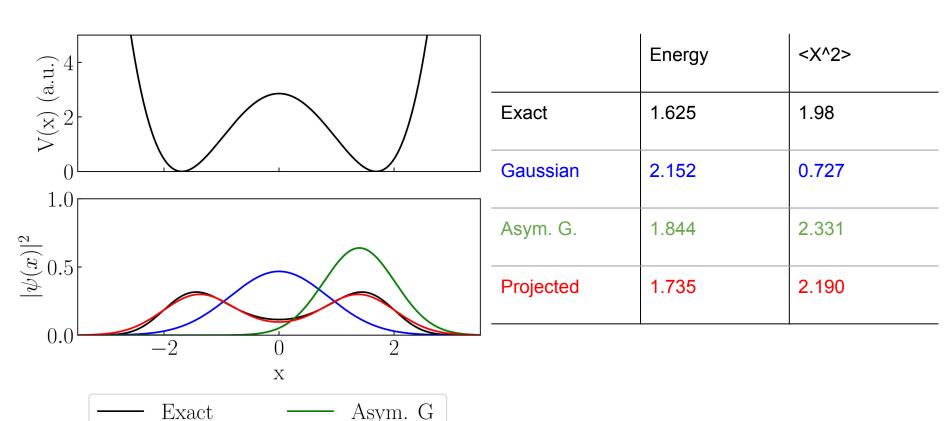
		Pros		
Skyrme	standard	Simple zero-range interaction		
		=> parameter adjustment pushed farthest		
	=> most applications (linear response, time-dependent MF,)			
	Fayans	Gradients in the pairing channel		
N2/3LO Higher-number-of-gradients expansion		Higher-number-of-gradients expansion		
	SEAL	Minimal number of parameters		
	Ab initio	Forms inspired by different kinds of ab initio calculations		
Gogny		Finite-range interaction (with identical interaction in pairing channel)		
RMF		Lorentz-invariant (with implications for coupling constants)		

III. Modelspace: mean-field theory

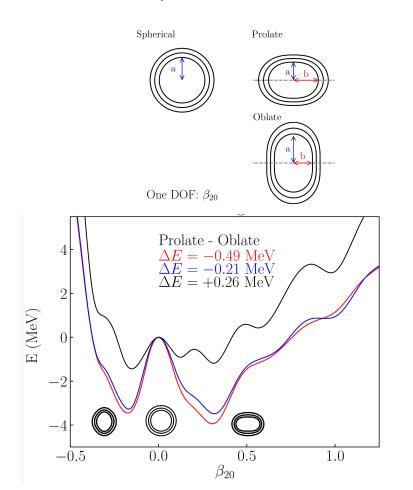
- 1. Guess some initial product wavefunction with **single-particle wavefunctions**
- 2. Variationally minimize the energy through variation of the spwfs
- 3. Restore symmetries if needed
- 4. Mix different solutions: **GCM**

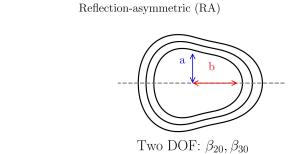
$$|\Psi\rangle = c_1^\dagger \dots c_A^\dagger |0\rangle \, .$$

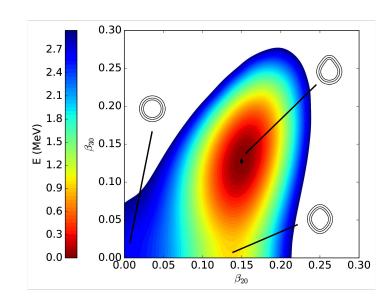
$$|\Psi_{\rm opt.}\rangle = \arg\min\left\{\langle\Psi|\hat{H}|\Psi\rangle|\Psi = {\rm simple}\right\}\,.$$


$$|\Psi_{\rm sym}\rangle = \frac{1}{\sqrt{2}} \left[|\Psi_{\rm opt.}\rangle + \hat{U} |\Psi_{\rm opt.}\rangle \right] .$$

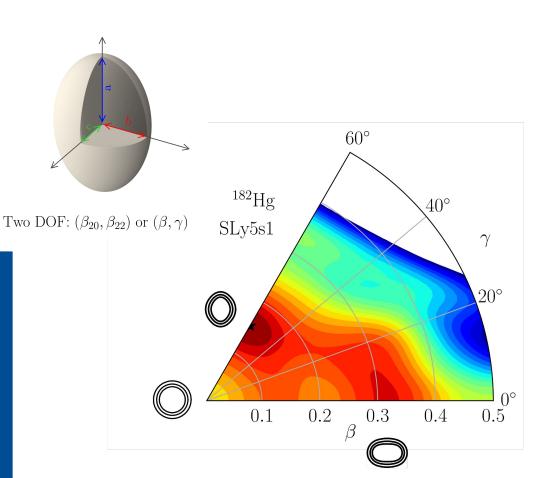
$$|\Psi_{\rm final}\rangle = \sum_{i} c_i |\Psi_{\rm sym}\rangle$$
.


III. Modelspace: symmetry breaking and restoration

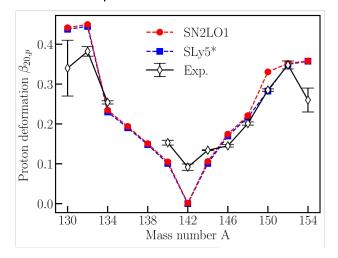

Projected

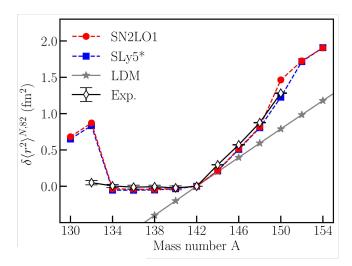

Gaussian

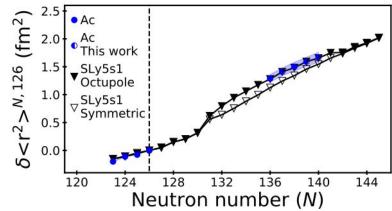
III. Modelspace: nuclear deformation


III. Modelspace: nuclear deformation

In general:


$$\beta_{\ell m} = \frac{4\pi}{3(r_0 A^{1/3})^{\ell} A} \int d^3 \mathbf{r} \, \rho(\mathbf{r}) r^{\ell} \operatorname{Re} Y_{\ell m}(\theta, \phi) \,,$$


Some remarks:


- multipole expansion of the nuclear volume
- a priori all are non-zero
- these are **outputs** of the models
- but they are inputs for mic-mac!

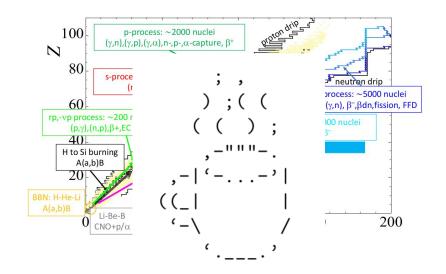
III. Modelspace: deformation and radii

W. R. and M. Bender, PRC 104, 044308 (2021). E. Verstraelen et al. PRC **100**, 044321 (2019).

III. Modelspace: MOCCa

W. R. PhD Thesis, ULB (2016).W. R. et. al., PRC 92, 064318 (2015).W. R. et. al., EPJA 55, 93 (2019).W.R. and M. Herbst, in preparation.W.R., in preparation.

Physics

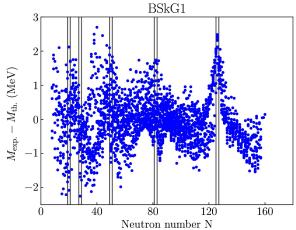

- flexibility w.r.t. imposed symmetries
- **unique tool** for the study of:
 - o **exotic** shapes
 - fission properties
 - o rotational bands
 - **electromagnetic** form factors
 - o odd-mass and odd-odd nuclei

Technical aspects

- 3D coordinate space representation
- developed algorithms
 - speed
 - o stability (constraints, blocked states,)
 - o numerical precision
- automated implementation of Skyrme EDFs

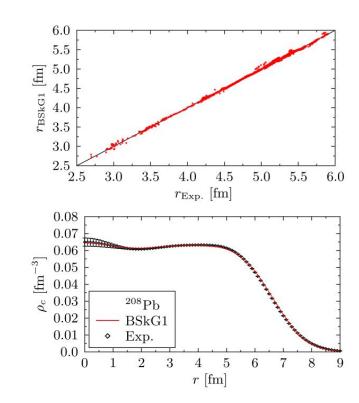
IV. The view from Brussels

- Skyrme EDF with:
 - no symmetry-restoration
 - o rotational correction
 - o **finite-size** of nucleons
- 20-25 parameters
- Fitting protocol
 - o 2457 known masses
 - o 884 charge radii
 - o infinite nuclear matter properties
- global description (< 0.8 MeV rms)
- Systematic tables of 1000's of nuclei:
 - o masses, radii, deformations,
 - **fission** properties
 - nuclear level densities
 - **strength** functions
- Input for:
 - o r-process calculations (S. Goriely)
 - neutron star structure (N. Chamel)



$$E_{\text{tot}} = E_{\text{HFB}} + E_{\text{corr}},$$

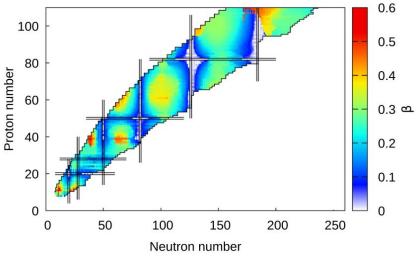
$$E_{\text{HFB}} = E_{\text{kin}} + E_{\text{Sk}} + E_{\text{pair}} + E_{\text{Coul}} + E_{\text{cm}}^{(1)},$$


$$E_{\text{corr}} = E_{\text{rot}} + E_{\text{cm}}^{(2)} + E_{\text{W}}.$$

IV. The view from Brussels: **BSkG1/2**

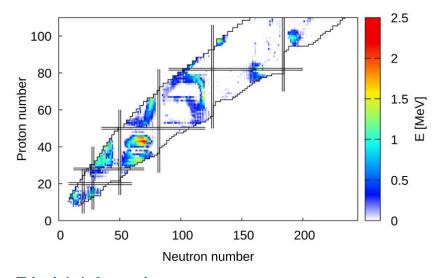
Global performance

σ²(MeV)	BSkG1	BSkG2	HFB-14	FR(L)DM
Masses	0.741	0.678	0.729	0.560
Charge radii (fm)	0.027	0.027	0.039	0.038
Primary barriers	0.87	0.45	0.61	0.79
Secondary barriers	0.86	0.45	0.70	1.35
Isomers	0.45	0.48	0.93	1.04



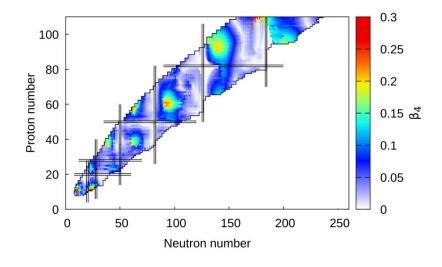
BSkG1: G. Scamps et al., EPJA 57, 333 (2021);

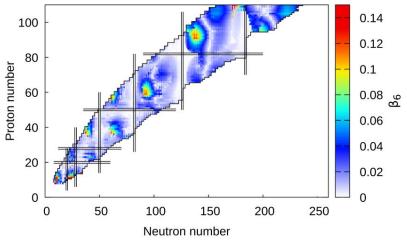
HFB-14: S. Goriely et al., PRC **75**, 064312 (2007).


FRDM: P. Möller et al., At. Data Nucl. Data Tables, 109-110 (2016).

G. Scamps et al., EPJA 57, 333 (2021).

- quadrupole is everywhere
- and can get rather large!



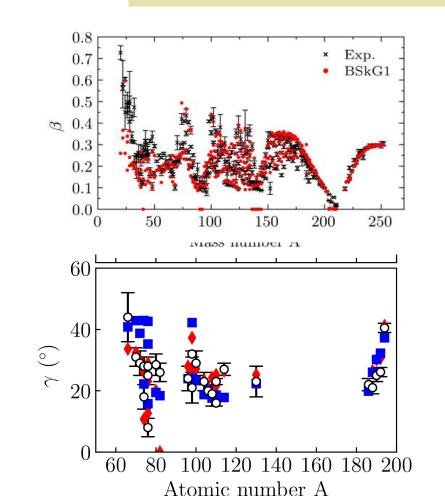

Triaxial deformation

- lots of nuclei
- significantly **more** than in mic-mac

IV. The view from Brussels: **BSkG1/2**

G. Scamps et al., EPJA **57**, 333 (2021).

- always present
- though less important
- but not necessarily for **fission!**

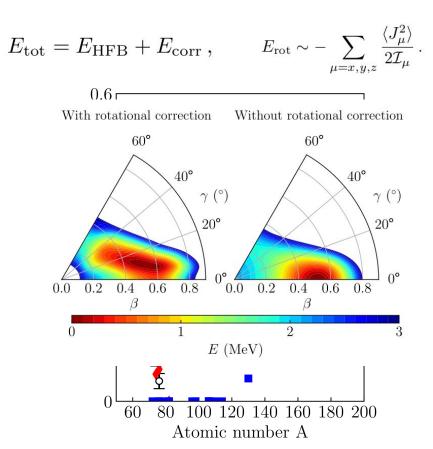


IV. The view from Brussels: **BSkG1/2**

S. Raman, At. Data Nucl. Data Tables, 78(1), 1-128 (2001). Many references for γ , thanks to M. Zielinska!

- average β from B(E2) systematics
- average **γ** from COULEX

	Ехр.		BSkG1	
	β	Υ	β	Υ
⁹⁶ Mo	0.17	24(4)	0.19	24
⁹⁸ Mo	0.17	32(1)	0.22	24
¹⁰⁰ Mo	0.23	29(4)	0.25	23

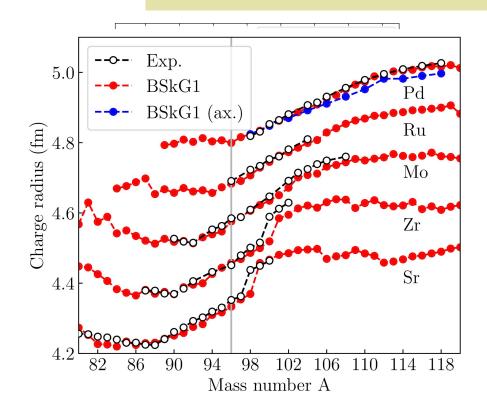

IV. The view from Brussels: the rotational correction

Rotational correction

- aims to mimic beyond-MF effects
- assumes rotational motion
- with consistent moments of inertia
- some parameters

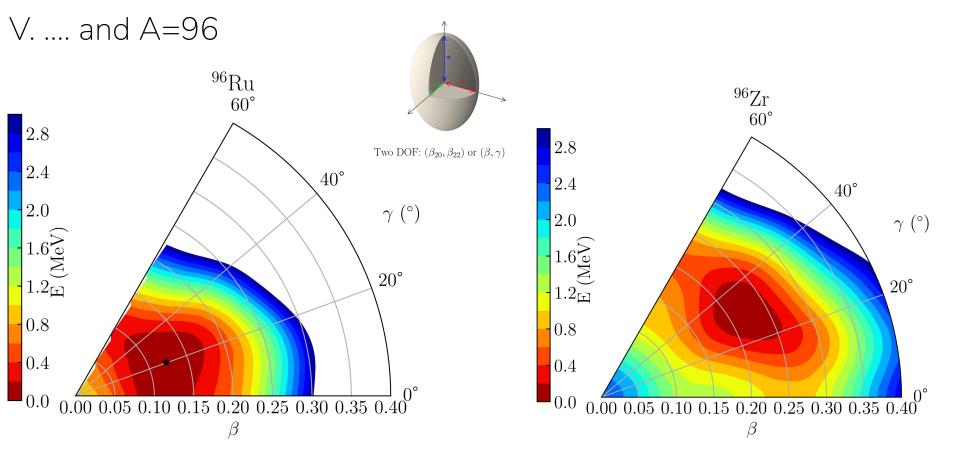
Semi-variational approach:

- 1. construct surface in (β, γ)
- 2. add rotational energy
- 3. select minimum

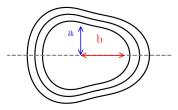


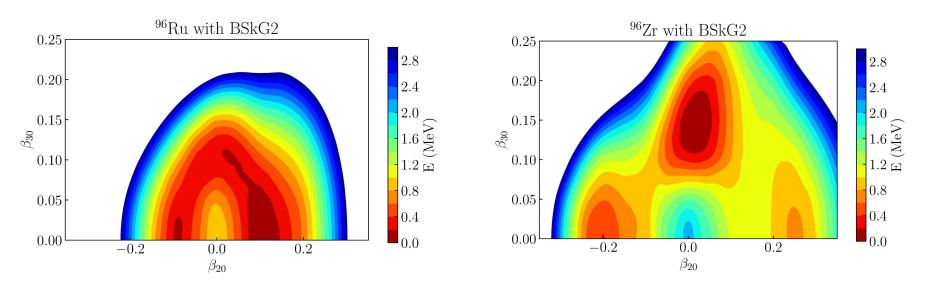
V. Some Ru's, Rh's, Pd's: masses and radii

Performance in the region

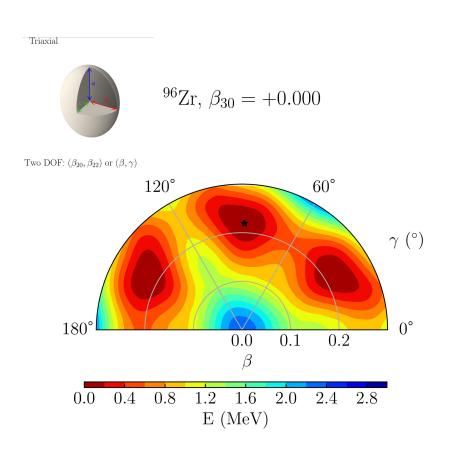

- absolute E about 700 keV
- triaxial model agrees well for S2ns
- all older axial models are less good
- absolute charge radii well-reproduced

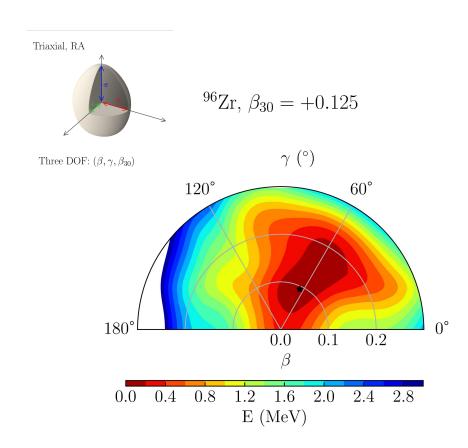
M. Hukkanen et al., in preparation.
I. Angeli and K. P. Marinova, *At. Data Nuc. Data Tables*, **99** (2015).
S. Geldhof et al., PRL **128**, 152501 (2022).


without rotational correction.


with rotational correction.

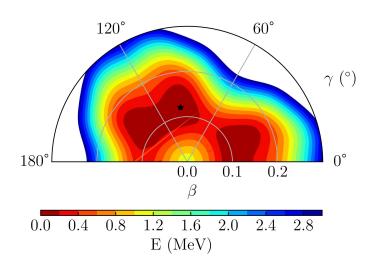
V. and A=96

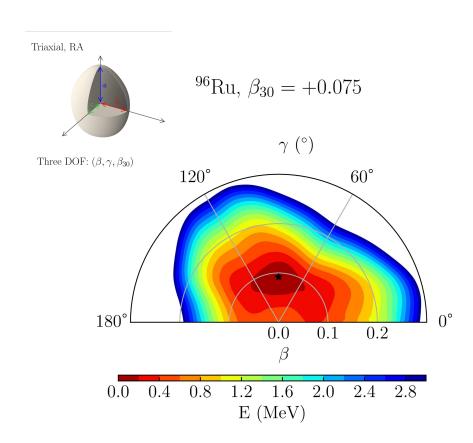

Reflection-asymmetric (RA)



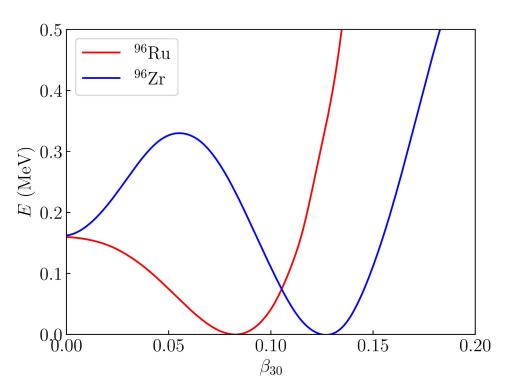
Two DOF: β_{20}, β_{30}

V. and A=96




V. and A=96

Triaxial


96
Ru, $\beta_{30} = +0.000$

Two DOF: (β_{20}, β_{22}) or (β, γ)

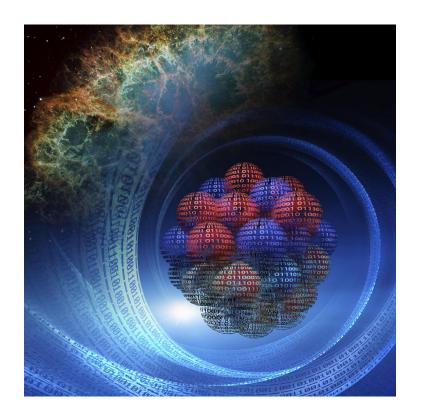
V. ... and A=96

Conclusions

Skyrme Energy Density Functional

- simplicity as **prime quality**
- has been pushed very far
- many variants, many extensions sought for

Symmetries & deformations


- symmetry breaking captures correlations
- with simple wave-functions
- symmetry restoration highly desirable
- but many things can be studied without it

The Brussels Models

- excellent description: masses, radii, INM, ...
- geared for large-scale applications
- recent push towards exotic deformations
- pheno. corrections beyond mean-field

Ru, Rh, Pds and A=96

- overall good description of region
- unexpected ground-state deformations for 96Ru and 96Zr

