Nuclear structure and heavy-ion collisions

by

GIULIANO GIACALONE

30 / 05 / 2022

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

ExtreMe Matter Institute EMMI

EMMI Rapid Reaction Task Force

Nuclear Physics Confronts Relativistic Collisions of Isobars

Open Symposium: May 30, 2022, 1:45 p.m., Grosser Hoersaal, Heidelberg University, Philosophenweg 12, 69120 Heidelberg/Germany

OUTLINE

- 1. Heavy-ion collisions.
- 2. Anisotropic flow.
- 3. Modeling nuclei at high energy.
- 4. Nuclear deformation in elliptic flow data.
- 5. Nuclear deformation in shape-size correlations.
- Towards isobars.

1. Heavy-ion collisions.

Long Island (NY)

- Great experimental program of high-energy nuclear collisions.
 (~2k experimentalists involved)
- Nuclei collided ~1 month/year @ LHC. RHIC is dedicated to nuclear collisions. (shutdown 2026/2027)

REPRODUCING THE EARLY UNIVERSE IN THE LAB

=> Effective description: <u>relativistic fluid</u>. [Romatschke & Romatschke, 1712.05815]

 $T^{\mu
u}=(\epsilon+P)u^{\mu}u^{
u}-Pg^{\mu
u}$ + viscous corrections (η/s , ζ/s , ...)

Equation of state from lattice QCD. Large number of DOF (~40): QGP. [HotQCD collaboration, 1407.6387]

Main goals: understanding the initial condition and the transport properties.

N.B. All we see is a spectrum of particles in momentum space.

N.B. All we see is a spectrum of particles in momentum space.

This talk: Can we "go back in time" and probe the initial condition? Imprints of the colliding ions?

2. Anisotropic flow.

Are particles emitted isotropically in the transverse plane?

Fourier decomposition of the azimuthal distribution of particles.

$$V_n = \frac{1}{N} \int_{\mathbf{p}_t} \frac{dN}{d^2 \mathbf{p}_t} e^{-in\phi_p}$$
$$v_n = |V_n|$$

anisotropic flow coefficients

Experimentally, anisotropy is observed.

Measurable up to n~10.

Dominance of elliptical component (n=2) for off-central collisions. Why?

11

Anisotropic flow from spatial anisotropy. $F = -\nabla P$

Elliptic flow, the 2nd harmonic. Dynamical response to elliptical geometry. $\rightarrow V_2 = \frac{1}{N} \int_{\mathbf{p}_t} \frac{dN}{d^2 \mathbf{p}_t} e^{-i2\phi_p}$

[Ollitrault, 1992]

QGP is not a smooth object. Deformations yield flow harmonics via pressure gradients. $F = -\nabla P$

In a QGP, all multi-pole moments are nonzero:

$$\mathcal{E}_n = -\frac{\int r dr d\phi \ r^n e^{in\phi} \epsilon(r,\phi)}{\int r dr d\phi \ r^n \epsilon(r,\phi)} \qquad \Longrightarrow \qquad V_n \propto \mathcal{E}_n$$
[Teaney, Yan, 1010.1876]

3. Modeling nuclei at high energy

Origin of primordial fluctuations?

Encoded in the colliding ions (projected in 2D by Lorentz boost).

Inner structure of the colliding objects.

Starting point: Glauber Monte Carlo approach.

[Miller, Reygers, Sanders, Steinberg, nucl-ex/0701025]

Important ingredient required. Nucleons are strongly correlated and exhibit collective behavior.

Powerful approximation: "deformation".

intrinsic deformed shape (nucleons) with a random orientation.

 ${}^{238}_{92}$ U

From https://www.nndc.bnl.gov/nudat3/

E = B J(J+1)

-518.1

Nuclear states from intrinsic shapes.

Capture correlations through "symmetry-breaking" intrinsic states (HFB states).

$$\delta\left(\langle \Phi | H - \mu Q_2 | \Phi \rangle\right) = 0$$

Slater determinant + pairing e.g. quadrupole deformation

Restore symmetry via enriched variational Ansatz. Projected generator coordinate method, e.g.,

$$|\Psi\rangle = \sum_{(\beta_v, \gamma_v)K} f_{(\beta_v, \gamma_v)K} P^J_{MK} P^N P^Z |\Phi(\beta_v, \gamma_v)\rangle$$

weights projections HFB states

Fix the weights via additional variational equation

$$\delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0 \quad \text{ to extract } \quad g^2 \sim P(\beta, \gamma)$$

[Bender, Heenen, Reinhard, RMP 2003] [Bender, Bally, 2010.15224] [Bally, Bender, Giacalone, Somà, 2108.09578]

Intrinsic shapes are non-observable for direct measurements, but they leave their fingerprint on virtually all nuclear observables and phenomena Michael Bender – RBRC Workshop Jan 2021

They will show up as well at high energy.

OUR FOCUS!

Collide nuclei with intrinsic deformations.

The configuration of nucleons is deformed with a random orientation.

Generalize the Woods-Saxon profile:

$$\rho(r,\Theta,\Phi) \propto \frac{1}{1+\exp\left(\left[r-R(\Theta,\Phi)\right]/a\right)} \quad \text{,} \quad R(\Theta,\Phi) = R_0 \bigg[1 + \frac{\beta_2}{\cos\gamma Y_{20}(\Theta)} + \frac{\gamma}{\sin\gamma Y_{22}(\Theta,\Phi)} \bigg) + \frac{\beta_3}{3} Y_{30}(\Theta) + \frac{\beta_4}{3} Y_{40}(\Theta) \bigg] \bigg] = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) \right)}{1} \right)} \right)} \right)}$$

Deformation coefficients associated with the multipole moments of the density:

For $\beta_2 > 0$, the nucleus is prolate ($\gamma = 0$), triaxial ($\gamma = 30^0$), or oblate ($\gamma = 60^0$).

$$Y_2^2(heta,arphi)=rac{1}{4}\sqrt{rac{15}{2\pi}}\cdotrac{(x+iy)^2}{r^2}$$

Impact on QGP: additional sources of anisotropic flow for central collisions.

Very straightforward method to "see" nuclear deformations.

4. Nuclear deformation in elliptic flow data.

Standard measure is mean squared value.

[Schenke, Shen, Tribedy, 2005.14682]

Issues on theory side. Too large v₂ in U+U.

Systematic study within AMPT code. We need "less deformation" in ²³⁸U. Why?

Spoiler: low-energy nuclear theory predicts β_2 of ¹⁹⁷Au of about 0.13.

[Bally, Giacalone in preparation]

LHC: Enhanced flow in ¹²⁹Xe+¹²⁹Xe collisions compared to spherical baseline (²⁰⁸Pb+²⁰⁸Pb).

4. Nuclear deformation in shape-size correlations.

Additional observable to access the initial condition.

How much does it flow?

$$\langle p_t \rangle = \frac{1}{N} \int_{\mathbf{p}_t} p_t \frac{dN}{d^2 \mathbf{p}_t}$$

Mean transverse momentum.

Energy per particle.

The "explosiveness" of the expansion from the initial system size.

New "classical phenomenon". What if we select events with a large overlap area?

[Giacalone, 1910.04673, 2004.14463]

Negative correlation from the quadrupole deformation.

[Bozek,1601.04513]

The ellipticity of the maximal area of overlap depends on the triaxiality.

Triaxiality @ LHC. ¹²⁹Xe predicted to be triaxial.

[Bally, Bender, Giacalone, Somà, 2108.09578]

Compare to spherical baseline. Simple leading dependence:

> $ho_{_2} \propto$ – $\cos(3\gamma)eta_2^3$ [Jia, 2109.00604]

First experimental constraint on triaxiality of odd-mass ¹²⁹Xe.

Towards isobars.

BREAKTHROUGH IN 2021

Isobar collisions @ RHIC.

[STAR collaboration, 2109.00131]

Octupole deformation observed in zirconium-96!

A tool for precision studies of nuclear shapes.

NEXT TALK BY J. JIA

Highlight: Neutrons matter!

Radial profiles are different:

$$\rho(r) = \frac{\rho_0}{1 + \exp\left(\frac{r - R}{a}\right)}$$

- 96Zr, more diffuse due to larger N.
- 96Ru, sharper surface.

<pt> is enhanced.

[Nijs, van der Schee, 2112.13771] [Xu, Zhao, Li, Zhou, Chen, Wang, 2111.14812] [Jia, Zhang, 2111.15559]

CONCEPTUAL QUESTIONS (to be discussed by the Task Force)

Unreasonable effectiveness of nuclear shapes?

Low-energy and high-energy approaches are consistent?

State-of-the-art low energy predictions match high-energy observations?

Would two communities benefit from collisions of extra species?

Exploiting isobars? (see next talk)

• Manifestation of intrinsic nuclear shapes in the initial condition of the quark-gluon plasma.

• Evidence of axial & triaxial quadrupole, axial octupole, and neutron skin effects.

• ²³⁸U appears to be less deformed in high-energy collisions than in low-energy calculations.

• Triaxial ¹²⁹Xe with $\beta_2=0.20$ naturally explains LHC data.

• Many conceptual questions to address in future. Isobars?