## Nuclear structure and heavy-ion collisions

by

## Giuliano Giacalone

30 / 05 / 2022

## ExtreMe Matter Institute EMMI

EMMI Rapid Reaction Task Force

Nuclear Physics Confronts
Relativistic Collisions of Isobars
Open Symposium:
May 30, 2022, 1:45 p.m., Grosser Hoersaal, Heidelberg University,
Philosophenweg 12, 69120 Heidelberg/Germany

## OUTLINE

- 1. Heavy-ion collisions.
-2. Anisotropic flow.
- 3. Modeling nuclei at high energy.
- 4. Nuclear deformation in elliptic flow data.
- 5. Nuclear deformation in shape-size correlations.
- Towards isobars.


## 1. Heavy-ion collisions.

Long Island (NY)


- Great experimental program of high-energy nuclear collisions. (~2k experimentalists involved)
- Nuclei collided ~1 month/year @ LHC.

RHIC is dedicated to nuclear collisions. (shutdown 2026/2027)

## COLLISION GEOMETRY




Nuclei are "pancakes" in the lab frame

Plane transverse to the beam:


## REPRODUCING THE EARLY UNIVERSE IN THE LAB


$\Longrightarrow$ Effective description: relativistic fluid. [Romatschke \& Romatschke, 1712.05815]

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}+\text { viscous corrections }(\eta / s, \zeta / s, \ldots)
$$

Equation of state from lattice QCD. Large number of DOF (~40): QGP.
[HotQCD collaboration, 1407.6387]
Main goals: understanding the initial condition and the transport properties.
N.B. All we see is a spectrum of particles in momentum space.

N.B. All we see is a spectrum of particles in momentum space.


INITIAL STATE

This talk: Can we "go back in time" and probe the initial condition? Imprints of the colliding ions?

## 2. Anisotropic flow.



Are particles emitted isotropically in the transverse plane?

Fourier decomposition of the azimuthal distribution of particles.

$$
\begin{aligned}
V_{n} & =\frac{1}{N} \int_{\mathbf{p}_{t}} \frac{d N}{d^{2} \mathbf{p}_{t}} e^{-i n \phi_{p}} \\
v_{n} & =\left|V_{n}\right|
\end{aligned}
$$

anisotropic flow coefficients

Experimentally, anisotropy is observed.

Measurable up to $\mathrm{n} \sim 10$.

Dominance of elliptical component ( $n=2$ ) for off-central collisions. Why?


Anisotropic flow from spatial anisotropy.
$F=-\nabla P$

Elliptic flow, the $2^{\text {nd }}$ harmonic.
Dynamical response to elliptical geometry. $\longrightarrow V_{2}=\frac{1}{N} \int_{\mathbf{p}_{t}} \frac{d N}{d^{2} \mathbf{p}_{t}} e^{-i 2 \phi_{p}}$
[Ollitrault, 1992]


## QGP is not a smooth object.

Deformations yield flow harmonics via pressure gradients. $F=-\nabla P$


In a QGP, all multi-pole moments are nonzero:

$$
\mathcal{E}_{n}=-\frac{\int r d r d \phi r^{n} e^{i n \phi} \epsilon(r, \phi)}{\int r d r d \phi r^{n} \epsilon(r, \phi)}
$$


[Teaney, Yan, 1010.1876]

Recent measurements.
[ALICE collaboration, 1804.02944]
$V_{n}=\frac{1}{N} \int_{\mathbf{p}_{t}} \frac{d N}{d^{2} \mathbf{p}_{t}} e^{-i n \phi_{p}}$


Strong enhancement of $\mathrm{V}_{2}$ as the system becomes more elliptical.

Other coefficients depend little on centrality. Still nonzero.


The Big Bang


## The Little Bang(s)



## 3. Modeling nuclei at high energy

## Origin of primordial fluctuations?

Encoded in the colliding ions (projected in 2D by Lorentz boost).


Inner structure of the colliding objects.
Starting point: Glauber Monte Carlo approach.


Independent nucleons in Woods-Saxon profile (ground state).
$\rho(r)=\frac{\rho_{0}}{1+\exp \left(\frac{r-R}{a}\right)} \rightarrow$ half-width radius $\overbrace{\text { diffusivity }}^{\rho}$
[Miller, Reygers, Sanders, Steinberg, nucl-ex/0701025]

Important ingredient required. Nucleons are strongly correlated and exhibit collective behavior.
${ }_{92}^{238} \mathrm{U} \quad \mathrm{E}=\mathrm{B} \mathbf{J}(\mathrm{J}+1)$


Powerful approximation: "deformation". intrinsic deformed shape (nucleons) with a random orientation.


Nuclear states from intrinsic shapes.
Capture correlations through "symmetry-breaking" intrinsic states (HFB states).

$$
\delta\left(\langle\Phi| H-\mu Q_{2}|\Phi\rangle\right)=0
$$

Slater determinant

+ pairing
Restore symmetry via enriched variational Ansatz. Projected generator coordinate method, e.g.,

$$
|\Psi\rangle=\sum_{\left(\beta_{v}, \gamma_{v}\right) K} f_{\left(\beta_{v}, \gamma_{v}\right) K} P_{M K}^{J} P^{N} P^{Z}\left|\Phi\left(\beta_{v}, \gamma_{v}\right)\right\rangle
$$

Fix the weights via additional variational equation

$$
\delta \frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=0 \quad \text { to extract } \quad g^{2} \sim P(\beta, \gamma)
$$



Intrinsic shapes are non-observable for direct measurements, but they leave their fingerprint on virtually all nuclear observables and phenomena

They will show up as well at high energy.


Collide nuclei with intrinsic deformations.


The configuration of nucleons is deformed with a random orientation.

Generalize the Woods-Saxon profile:

$$
\rho(r, \Theta, \Phi) \propto \frac{1}{1+\exp ([r-R(\Theta, \Phi)] / a)}, R(\Theta, \Phi)=R_{0}\left[1+\underline{\beta_{2}}\left(\cos \gamma Y_{20}(\Theta)+\sin \gamma Y_{22}(\Theta, \Phi)\right)+\underline{\beta_{3}} Y_{30}(\Theta)+\underline{\beta_{4}} Y_{40}(\Theta)\right]
$$

Deformation coefficients associated with the multipole moments of the density:

$$
\beta_{2} \rightarrow \int \rho(r, \Theta, \Phi) r^{2} Y_{20}(\Theta)
$$

$$
\beta_{3} \rightarrow \int \rho(r, \Theta, \Phi) r^{3} Y_{30}(\Theta)
$$

$$
\beta_{4} \rightarrow \int \rho(r, \Theta, \Phi) r^{4} Y_{40}(\Theta)
$$



For $\beta_{2}>0$, the nucleus is prolate $(\gamma=0)$, triaxial $\left(\gamma=30^{0}\right)$, or oblate $\left(\gamma=60^{\circ}\right) . \quad Y_{2}^{2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y)^{2}}{r^{2}}$


Impact on QGP: additional sources of anisotropic flow for central collisions.


Very straightforward method to "see" nuclear deformations.
4. Nuclear deformation in elliptic flow data.

## Standard measure is mean squared value.

Robust leading dependence.

$$
v_{2}\{2\}^{2} \equiv\left\langle v_{2}^{2}\right\rangle=a_{2}+b_{2} \beta_{2}^{2}
$$

[Giacalone, 1811.03959]
[Giacalone, Jia, Zhang, 2105.01638]
[Jia, 2106.08768]


Issues on theory side.
Too large $\mathrm{v}_{2}$ in $\mathbf{U}+\mathbf{U}$.

[Schenke, Shen, Tribedy, 2005.14682]


Systematic study within AMPT code. We need "less deformation" in ${ }^{238} \mathrm{U}$. Why?


Spoiler: low-energy nuclear theory predicts $\beta 2$ of ${ }^{197} \mathrm{Au}$ of about 0.13 .

LHC: Enhanced flow in ${ }^{129} \mathrm{Xe}+{ }^{129} \mathrm{Xe}$ collisions compared to spherical baseline $\left({ }^{208} \mathrm{~Pb}+{ }^{208} \mathrm{~Pb}\right)$.


## 4. Nuclear deformation in shape-size correlations.

Additional observable to access the initial condition.


How much does it flow?

$$
\left\langle p_{t}\right\rangle=\frac{1}{N} \int_{\mathbf{p}_{t}} p_{t} \frac{d N}{d^{2} \mathbf{p}_{t}}
$$

Mean transverse momentum.
Energy per particle.

The "explosiveness" of the expansion from the initial system size.
initial state (x)

final state (p)


[Broniowski, Chojnacki, Obara, 0907.3216] [Bozek, Broniowski, 1203.1810] [Bozek, Broniowski, 1701.09105]

New "classical phenomenon". What if we select events with a large overlap area?


Correlation between $\mathrm{v}_{2}$ and $\left[p_{\mathrm{t}}\right]$ via Pearson coefficient: $\quad \rho_{2} \equiv \rho\left(v_{2}^{2},\left[p_{t}\right]\right)=\frac{\left\langle\delta v_{2}^{2} \delta\left[p_{t}\right]\right\rangle}{\sqrt{\left\langle\left(\delta v_{2}^{2}\right)^{2}\right\rangle\left\langle\left(\delta\left[p_{t}\right]\right)^{2}\right\rangle}}$
Negative correlation from the quadrupole deformation.
[see e.g. Jia, Initial Stages 21]
For central collisions of well-deformed nuclei:


Correlation of the two observables is negative:

$$
\rho_{2}<0
$$



The ellipticity of the maximal area of overlap depends on the triaxiality.


## Triaxiality @ LHC.

${ }^{129}$ Xe predicted to be triaxial.
[Bally, Bender, Giacalone, Somà, 2108.09578]

Compare to spherical baseline. Simple leading dependence:

$$
\rho_{2} \propto-\cos (3 \gamma) \beta_{2}^{3}
$$

[Jia, 2109.00604]

First experimental constraint on triaxiality of odd-mass ${ }^{129} \mathrm{Xe}$.
[ATLAS Collaboration, 2205.00039]


## Towards isobars.

## BREAKTHROUGH IN 2021

Isobar collisions @ RHIC.
[STAR collaboration, 2109.00131]
Octupole deformation observed in zirconium-96!

A tool for precision studies of nuclear shapes.


NEXT TALK BY J. JIA

## Highlight: Neutrons matter!



Due to the smaller neutron skin, Ru+Ru systems are more compact.

$<p_{t}>$ is enhanced.
[Nijs, van der Schee, 2112.13771] [Xu, Zhao, Li, Zhou, Chen, Wang, 2111.14812] [Jia, Zhang, 2111.15559]

## CONCEPTUAL QUESTIONS (to be discussed by the Task Force)

Unreasonable effectiveness of nuclear shapes?
Low-energy and high-energy approaches are consistent?
State-of-the-art low energy predictions match high-energy observations?
Would two communities benefit from collisions of extra species?
Exploiting isobars? (see next talk)

## RECAP

- Manifestation of intrinsic nuclear shapes in the initial condition of the quark-gluon plasma.
- Evidence of axial \& triaxial quadrupole, axial octupole, and neutron skin effects.
- 238 U appears to be less deformed in high-energy collisions than in low-energy calculations.
- Triaxial ${ }^{129} \mathrm{Xe}$ with $\beta_{2}=0.20$ naturally explains LHC data.
- Many conceptual questions to address in future. Isobars?

