Probing proton emitters using the MARA separator K. Auranen¹, A.D. Briscoe¹, L.S. Ferreira², T. Grahn¹, P.T. Greenlees¹, A. Herzáň³, A. Illana¹, D.T. Joss⁴, H. Joukainen¹, R. Julin¹, H. Jutila¹, M. Leino¹, J. Louko¹, M. Luoma¹, E. Maglione², J. Ojala¹, R.D. Page⁴, J. Pakarinen¹, P. Rahkila¹, J. Romero^{1,4}, P. Ruotsalainen¹, M. Sandzelius¹, J. Sarén¹, A. Tolosa-Delgado¹, J. Uusitalo¹, and G. Zimba¹ ¹Accelerator Laboratory, Department of Physics, Univ. of Jyväskylä, Jyväskylä, Finland ² CeFEMA, Instituto Superior Técnico, Univ. de Lisboa, Lisbon, Portugal ³ Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia ⁴ Dept. of Physics, Oliver Lodge Laboratory, Univ. of Liverpool, Liverpool, United Kingdom Using the fusion-evaporation reaction 96 Ru(58 Ni,p4n) 149 Lu and the MARA vacuum-mode recoil separator we have identified a new proton-emitting isotope 149 Lu. The measured decay Q-value of 1920(20) keV is the highest measured for a ground-state proton decay, and it naturally leads to the shortest di-rectly measured half-life of 450^{+170}_{-100} ns for a ground-state proton emitter. The decay rate is consistent with $l_p = 5$ emission, suggesting a dominant $\pi h_{^{11}\!/_2}$ component for the wave function of the proton-emitting state. Through non-adiabatic quasiparticle calculations we were able to conclude that 149 Lu is the most oblate deformed proton emitter observed to date. In this talk I will discuss the experimental details and the already published results [1]. Additionally, we collected a good number of recoil-decay tagged γ rays feeding the proton decaying 147 Tm and 147m Tm. The preliminary level schemes extracted from these data are also presented and discussed. ## Reference [1] K. Auranen et al., PRL **128**, 112501 (2022).