Probing the heaviest elements using Penning Trap Mass Spectrometry at SHIPTRAP

Manuel J. Gutiérrez (HIM) for the SHIPTRAP collaboration

TASCA22: 19 ${ }^{\text {th }}$ Workshop on Recoil Separator for Superheavy Element Chemistry \& Physics

Mass measurements of SHEs

- With mass measurements of SuperHeavy Elements (SHEs):
- Benchmark nucl. structure models at extreme conditions
- Study isomers (if enough resolution)
- Determine binding energies
- Anchor points
- Produced in tiny amounts ($<1 / h$)
- Efficiency is key!

Status as of 2018:

Mass measurements of SHEs

Anchor points:

Shell closure position and strength:

E. Minaya Ramirez et al, Science 3371207 (2012)
M. Dworschak et al., PRC 81 (2010)
O. Kaleja et al, in preparation
O. Kaleja, PhD thesis

Penning Trap Mass Spectrometry

High, uniform B:

Ion of interest

Reference ion

$$
\nu_{c}=\frac{1}{2 \pi} \frac{q B}{m} \Rightarrow \frac{\nu_{c}^{i o i}}{\nu_{c}^{r e f}}=\frac{(m / q)^{r e f}}{(m / q)^{i o i}}
$$

Reference Ion of
ion

Important: $\nu_{c}^{i o i} \simeq \nu_{c}^{r e f}$ (systematics) \rightarrow choice of reference!

If no other fields are present...

Penning Trap Mass Spectrometry

Penning trap
\uparrow B

Resulting motion

From the 'trap' frequencies: $\nu_{c}^{2}=\nu_{+}^{2}+\nu_{z}^{2}+\nu_{-}^{2}$ or $\nu_{c} \simeq \nu_{+}+\nu_{-}$ (sideband method precise up to 10^{-9})

Phase-Imaging lon-Cyclotron-Resonance

Several ways to measure motional frequencies in Penning traps. Here we project radial motions onto pos. sensitive detector:

More details*:
S. Eliseev et al,

Appl. Phys. B 114 (2014)
Figure adapted from:
P. Filianin et al,

Physics Letters B 758 (2016)

Then, freq $=$ angle $/$ time. Also, $\nu_{c}=\nu_{+}+\nu_{-}$directly is possible! ${ }^{*}$

Phase-Imaging lon-Cyclotron-Resonance

Furthermore, difference in ν_{+}allows to separating isomers \& measuring their exc. energy and half life. Resolving power $\approx 11,000,000$!

$$
\begin{aligned}
& \left\{\begin{array}{l}
\nu_{c}=\nu_{+}+\nu_{-} \\
\nu_{-} \neq f(m)
\end{array} \Longrightarrow \Delta \nu_{c} \simeq \Delta \nu_{+}\right.
\end{aligned}
$$ different acc. times yields $T_{1 / 2}$

The setup

${ }^{257}$ Rf isomer

Isomer at $\approx 80 \mathrm{keV}$ resolved with $\approx \mathrm{keV}$ resolution. $\sigma=10 \mathrm{nb}$!

K. Hauschild et al, Eur. Phys. J. A 586 (2022)

${ }^{255}$ Lr isomer

Resolving power can be even higher - a look back at 2018:

$\mathrm{E} \approx 37 \mathrm{keV} \rightarrow$
$\mathrm{m} / \Delta \mathrm{m} \approx 11,000,000$!
O. Kaleja et al, in preparation
O. Kaleja, PhD Thesis

${ }^{241} \mathrm{C} f$ isomer

Proposed isomer* directly detected. Weisskopf estimation $\mathrm{T}_{1 / 2} \approx 0.2 \mathrm{~ms}$, but it must be ≈ 100 s of ms to be detected here!

*J. Khuyagbaatar et al, PRC 102, 044312 (2020)

Fr-At-Bi decay chains

Extending SHIPTRAP's range: complementing decay spectroscopy of lighter elements. Studied: ${ }^{206} \mathrm{Fr}-{ }^{202} \mathrm{At}-{ }^{198} \mathrm{Bi}$ and ${ }^{204} \mathrm{Fr}-{ }^{200} \mathrm{At}-{ }^{196} \mathrm{Bi}$ (double odd). Done with parasitic beam!

200 At

Two long-lived, low-lying (112 and 344 keV) isomers are resolved:
150 ms acc. time:
250 ms acc. time:
350 ms acc. time:

2021 online campaign

- Pushed the limit on SHEs even further:
- First direct measurement of ${ }^{258} \mathrm{Db}(0.00002 / \mathrm{s}$! $)$
- Resolved isomeric state of ${ }^{257} \mathrm{Rf}$
- Study of isomeric states of other interesting cases:
- Californium-241
- Francium-206 and -204 decay chains

Recent developments

- Next candidates involve even longer measurement times (weeks).
- From recent campaigns it became clear that the CGC stopping power changes with time.
- Cause has been found to be cryopumping by the entrance window. Window is at 40 K , but exposed to room temperature vacuum of SHIP \rightarrow freezing of residual gases.

Thickness measurement

Idea: track the difference in α energy from inside and outside the cell:

Thickness measurement

During warm up:

This indicates at least two substances accumulate on the window

Thickness measurement

During cool down:

Thickness measurement

With heating (light bulb on SHIP side):

\square No heating
$\square 12 \mathrm{~W}$ heating
$\square 18 \mathrm{~W}$ heating
$\square 35 \mathrm{~W}$ heating
time after start of CGC cooling (days)

Summary

- The SHIPTRAP setup continues to progress in the SHE region: ${ }^{258} \mathrm{Db}$ measured for the first time, improved ${ }^{257} \mathrm{Rf}$ (incl. isomer!)
- PTMS (especially with PI-ICR) established as a powerful technique
- Can also complement decay spectroscopy!
- Improvements are being made to enable longer campaigns with lower cross-sections
- Next candidates: ${ }^{255} \mathrm{Rf},{ }^{257} \mathrm{Db},{ }^{259} \mathrm{Sg} \&{ }^{261} \mathrm{Sg}$

Summary

My thanks to you, the organizers and to the SHIPTRAP collaboration:

B. Anđelić, L. Arcila Gonzalez, J. Berrocal, L. Blaauw, K. Blaum, M. Block, P. Chauveau, S. Chenmarev, P. Chhetri, C. E. Düllmann, M. Eibach, J. Even, P. Filianin, M.J. Gutiérrez, F. P. Hessberger, N. Kalantar-Nayestanaki, O. Kaleja, J. van de Laar, M. Laatiaoui, S. Lohse, E. Minaya Ramirez, A. Mistry, E. Morin, Y. Nechiporenko, D. Neidherr, S. Nothhelfer, Y. Novikov, S. Raeder, E. Rickert, D. Rodríguez, L. Schweikhard, P. G. Thirolf, J. Warbinek, A. Yakushev

TECHNISCHE UNIVERSITAT DARMSTADT

HELMHOLTZ
Helmholtz-Institut Mainz

TASCA22: 19 th Workshop on Recoil Separator for Superheavy Element Chemistry \& Physics

