Horizontal beam response for the design of an RF signal for the slow extraction at HIT's synchrotron

GSI Accelerator Seminar

Cristopher Cortés Heidelberg Ion-Beam Therapy Center

Table of Contents

Introduction HIT Facility Motivation

Resonant RF-KO slow extraction

Linear theory Kobayashi Hamiltonian Recent studies

Experiment BTF Measurement

Results

Carbon-ion Protons

Summary

Table of Contents

Introduction HIT Facility Motivation

Resonant RF-KO slow extraction Linear theory Kobayashi Hamiltonian Recent studies

Experiment BTF Measurement

Results

Carbon-ion

Protons

Summary

Heidelberg Ion-Beam Therapy-Center

Parameter	Value
lon species	p ⁺ , He ²⁺ , C ⁶⁺ , O ⁸⁺
Depth range	2 - 30 cm
Beam size	3.4 - 32.4 mm
Max. dose	2 Gy min ⁻¹ l ⁻¹
Irradiation field	$20 \times 20 \text{ cm}^2$
Intensity	10 ⁶ -10 ⁹ part./s

Table: Beam characteristics at the HIT facility.

Figure: Typical spill at HIT.

Figure: Typical spill at HIT.

Figure: Typical spill at HIT.

Motivation

Questions

- Can we suppress the fluctuations?
- Can we improve the spill quality?

Motivation

Faster dose delivery

Figure: Typical spill at HIT.

Table of Contents

Introduction HIT Facility Motivation

Resonant RF-KO slow extraction

Linear theory Kobayashi Hamiltonian Recent studies

Experiment BTF Measurement

Results

Carbon-ion

Protons

Summary

Linear dynamics

Harmonic oscillator

$$\mathcal{H}=rac{\mu}{2}(X^2+P_x^2)$$

H : Eff. Hamiltonian

- Q : Machine's tune
- X, P_x : Norm. coor.

Resonances

Harmonic oscillator

$$\mathcal{H}=\frac{\mu}{2}(\textit{X}^2+\textit{P}_x^2)$$

- *H* : Eff. Hamiltonian
- $\mu = 2\pi Q$: 'Osc. Freq.'
- Q : Machine's tune
- X, P_x : Norm. coor.

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{\mathsf{rev}}$$

- q : Fractional part of the tune
- Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

 $\boldsymbol{\xi}$: Chromaticity

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{\mathsf{rev}}$$

q : Machine's tune

Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

 $\boldsymbol{\xi}$: Chromaticity

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{\mathsf{rev}}$$

q : Machine's tune

Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

 ξ : Chromaticity

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{\mathsf{rev}}$$

Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

 $\boldsymbol{\xi}$: Chromaticity

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{
m rev}$$

Q : Machine's tune

Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

 $\boldsymbol{\xi}$: Chromaticity

Slow extraction cartoon

Figure: Picture taken from P. J. Bryant at CERN School 2017.

Particle dynamics

Kobayashi Hamiltonian (1960's)

$$\mathcal{H} = \frac{\varepsilon}{2} (X^2 + P_x^2) + \frac{S}{4} (3XP_x^2 - X^3)$$

$$S=rac{1}{2}eta_x^{3/2}k_S' l_S, \qquad arepsilon=6\pi\Delta Q$$

Perturbation prop. to sext. strength S

Kobayashi Hamiltonian

$$\mathcal{H} = \frac{\varepsilon}{2}(X^2 + P_x^2) + \frac{S}{4}(3XP_x^2 - X^3)$$

$$S = \frac{1}{2} \beta_x^{3/2} k'_S l_S \qquad \varepsilon = 6\pi \Delta Q$$

RF-KO slow extraction

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{
m rev}$$

- Fixed linear ion-optics
- Fixed separatrix

Excitation spectrum at HIT

Excitation spectrum at HIT

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{
m rev}$$

 Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

Recent studies

HIT

Recent studies

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{ extsf{rev}}$$

 Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

Recent studies

Betatron resonance

Betatron frequency

$$f_eta = (n \pm q) \cdot f_{
m rev}$$

 Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

Proposal

Questions

- Is it a good idea to use the tune distribution as reference for the excitation spectrum?
- Can we measure the tune distribution?
- Can we calculate the tune distribution?

Proposal

Questions

- Is it a good idea to use the tune distribution as reference for the excitation spectrum? -> Probably
- Can we measure the tune distribution? -> Yes!
- Can we calculate the tune distribution? -> Yes!

Proposal

Questions

- Can we measure the tune distribution (indirectly) ? ->
 Beam Transfer Function
- Can we calculate the tune distribution? -> Perturbation theory with Vlasov-Eq.

Table of Contents

Introduction HIT Facility Motivation

Resonant RF-KO slow extraction Linear theory Kobayashi Hamiltonian Recent studies

Experiment BTF Measurement

Results

Carbon-ion

Protons

Summary

BTF experimental setup

Carbon-ion

E_{kin} = 124.25 MeV/u

Extraction conditions

- Sextupoles at extraction conditions
- Coasting beam
- Weak excitation

Figure: BTF at extraction conditions at the lower 9th betatron band. Orange: Raw data. Blue: Mean value.

Carbon-ion

*E*_{kin} = 124.25 MeV/u

Extraction conditions

- Sextupoles at extraction conditions
- Coasting beam
- Weak excitation

Carbon-ion

Ekin = 124.25 MeV/u

Extraction conditions

- Sextupoles at extraction conditions
- Coasting beam
- Weak excitation

BTF Simulation

- MADX tracking module
- 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 200GB of data

BTF Simulation

- MADX tracking module
- 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 200GB of data

BTF Simulation

- MADX tracking module
- 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 200GB of data

BTF Simulation and Measurement

- MADX tracking module
- 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 200GB of data

New excitation spectrum

- MADX tracking module
- 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 200GB of data

New excitation spectrum

Signal generation

Pseudo-Random BPSK

$$V(t)=V_0\sin\left(2\pi f_0+\phi_{ ext{BPSK}}
ight)$$

$$\phi_{\mathsf{BPSK}}=\pi(n-1), \hspace{1em} n=0,1$$

 \$\phi_{BPSK}\$: Binary Phase Shift Keying

New excitation spectrum

Excitation spectrum

- Two peaks
- Narrow bands (less than 5kHz)
- Central frequencies are ~ 10kHz appart of each other

Spill with new excitation spectrum

Figure: Spill with new excitation spectrum.

Table of Contents

Introduction HIT Facility Motivation

Resonant RF-KO slow extraction Linear theory Kobayashi Hamiltonian Recent studies

Experiment BTF Measurement

Results

Carbon-ion Protons

Summary

Spill with new excitation spectrum

Figure: Spill with new excitation spectrum.

Comparison of spill quality

Figure: Spill quality through extraction in 1ms windows.

Comparison of spill quality

Figure: Histogram of R-Value over 5 s extraction.

Improvement of spill quality: Carbon-ion

Spill with new excitation spectrum: Protons

Figure: Spill with new excitation spectrum with protons.

Improvement of the spill-quality: Protons

Table of Contents

Introduction HIT Facility Motivation

Resonant RF-KO slow extraction

Linear theory Kobayashi Hamiltonian Recent studies

Experiment BTF Measurement

Results

Carbon-ion

Protons

Summary

Summary

- Improvement of spill quality from \sim 90% to \sim 99%
- Improvement for all energies, ion species and intensity configurations
- Strong suppresion of fluctuations in the spill
- Take the BTF spektrum as reference for the excitation signal
- Tune distribution is given by amplitude-detuning of the non-linear dynamics of the system

$$Q=rac{1}{2\pi}rac{\partial \mathcal{H}}{\partial J_x}$$

 J_x : Action \propto Amplitude in phase-space

and the perturbed distribution in phase-space.

Phase-space

Thank you for your attention.

Extra-slides

17.03.2022 | HIT | Heidelberg Ion-Beam Therapy Center | C. Cortés | 56

Schottky noise signals and BTF

With a coasting beam and no sextupoles:

Parameter	Design value	Measured value
Q _x	1.67895	$1.67952 \pm 5 imes 10^{-5}$
Q_y	1.755	$1.720\pm 6 imes 10^{-3}$
η	0.47657	0.44 ± 0.02
ξ	-0.655	$\textbf{-0.72} \pm \textbf{0.06}$
σ_{δ}	-	$1.2 imes10^{-3}$ (FWHM)
ω_{S}	843.56 Hz	(810 \pm 21) Hz

Table: Measured ion-optical parameters with a carbon ion beam C^{6+} with $E_{kin} = 125.25$ MeV/n.

Figure: BTF of a C⁶⁺ coasting beam

Figure: BTF with sextupolar fields

