η , η' mesons and the Witten-Veneziano formula from lattice QCD

Konstantin Ottnad

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

EMMI Workshop "Meson and Hyperon Interactions with Nuclei", Kitzbühel, Austria, September 14-16, 2022

In the design	•				
Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
●000	0000000	00000	0000	0000	0

Introduction

Quarks cannot be observed directly but are bound in hadrons (at low energies):

- The lightest hadrons π^{\pm} , π^{0} , K^{\pm} , K^{0} , \bar{K}^{0} , η ("octet mesons") have masses from 135 MeV to 548 MeV.
- In addition there is a "flavor-singlet", the η' .
- For exact flavor symmetry $(m_u = m_d = m_s)$ all 9 mesons should have the same mass.

However: $M_{\eta'} \approx 958 \,\mathrm{MeV} \gg M_{octet}$

Solution to this puzzle:

• Large mass of the η' is caused by the QCD vacuum structure and the $U(1)_A$ anomaly. Weinberg (1975), Belavin et al. (1975), t'Hooft (1976), Witten (1979), Veneziano (1979)

 The U(1) axial current is anomalously broken, i.e. even for m_q = 0: Adler (1969), Jackiw and Bell (1969)

$$\partial_{\mu}A^{0}_{\mu} = \frac{N_{f}g^{2}}{32\pi^{2}}G^{a}_{\mu\nu}\tilde{G}^{a,\mu\nu}\neq 0$$

- Instantons with non-trivial topology provide non-perturbative explanation. Belavin et al. (1975), t'Hooft (1976)
- The flavor-singlet η' is not a Goldstone boson (not even in the chiral limit).

Is it possible to reproduce M_{η} , M'_{η} from first principles?

N 4 · ·			
Mixing			

For exact SU(3) flavor symmetry one expects

- Flavor octet state $|\eta_8\rangle = \frac{1}{\sqrt{6}} (|\bar{u}u\rangle + |\bar{d}d\rangle 2|\bar{s}s\rangle)$ (Pseudo-Goldstone boson)
- Flavor singlet state $|\eta_0\rangle = \frac{1}{\sqrt{3}}(|\bar{u}u\rangle + |\bar{d}d\rangle + |\bar{s}s\rangle)$ (related to $U(1)_A$ anomaly)

However, SU(3) flavor symmetry is broken by large $m_s \gg m_u \approx m_d \equiv m_l$:

• Physical η , η' states are not flavor eigenstates but **mixtures**, e.g.

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\phi_l & -\sin\phi_s \\ \sin\phi_l & \cos\phi_s \end{pmatrix} \begin{pmatrix} |\eta_l\rangle \\ |\eta_s\rangle \end{pmatrix}$$

in the quark flavor basis $|\eta_l\rangle = \frac{1}{\sqrt{2}}(|\bar{u}u\rangle + |\bar{d}d\rangle), \quad |\eta_s\rangle = |\bar{s}s\rangle.$

- In nature further mixing possible, e.g. with π^0 ($m_u \neq m_d$), η_c (including c quark)
- How did nature arrange the mixing pattern?

Can we determine the mixing parameters?

Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
0000					

Witten-Veneziano formula

The Witten-Veneziano formula

$$\chi_{\infty} = \frac{f_0^2}{4N_f} (M_{\eta'}^2 + M_{\eta}^2 - 2M_K^2)$$

establishes a relation between:

- Topological susceptibility χ_∞ in pure Yang-Mills gauge theory
- Meson masses M_K , M_η , $N_{\eta'}$
- Singlet decay constant f_0 (a parameter of the η, η' -mixing)

<u>Remark</u>: From a modern perspective the formula is LO χ PT for a combined power counting scheme:

$$\mathcal{O}(p^2) \sim \mathcal{O}(m_q) \sim \mathcal{O}(1/N_c)$$

All these quantities can be computed from first principles in lattice QCD (LQCD), i.e. using:

- Dedicated simulations in quenched LQCD for χ_{∞} (for $N_c = 3$)
- Ensembles generated with $N_f = 2 + 1 + 1$ dynamical quark flavors.

Can we test the Witten-Veneziano formula on the lattice?

- A few details on the lattice setup and analysis
- 2 Physical results for $M_{\eta,\eta'}$ and mixing parameters JHEP 11 (2012) 048, PRL 111 (2013) 18, 181602, PRD 97 (2018) 5, 054508
- The Witten-Veneziano formula from LQCD

JHEP 09 (2015) 020, PoS CD2018 (2019) 077

Newer / ongoing work directly at physical quark mass. PRD 99 (2019) 3, 034511

Contributions by many collaborators over the years:

Krzysztof Cichy Elena Garcia-Ramos Karl Jansen Bastian Knippschild Liuming Liu Marcus Petschlies Carsten Urbach Markus Werner Petros Dimopoulos Christopher Helmes Christian Jost Bartosz Kostrzewa Chris Michael Siebren Reker Urs Wenger Falk Zimmermann

Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
0000	●000000	00000	0000	0000	0
Lattice s	etun				

To obtain physical results from LQCD we have to:

Control discretization effects:

- Simulate at different (small) values of a
- Perform continuum extrapolation
- Three lattice spacings $a_A = 0.086 \text{ fm}$, $a_B = 0.078 \text{ fm}$ and $a_D = 0.061 \text{ fm}$

Correct for unphysical quark masses:

- Simulate at several pion masses
- Perform chiral extrapolation
- Pion masses from $\sim 230\,\text{MeV}$ to $\sim 500\,\text{MeV}$
- However, bare m_s, m_c usually fixed for each a
- Few dedicated ensembles with different m_s

Control finite size effects:

Simulate different physical volumes

Use 17 gauge ensembles with $N_f = 2+1+1$ dynamical flavors of Wilson twisted-mass quarks provided by ETMC JHEP 0108058 (2001), Nucl. Phys. Proc. Suppl.1258 (2004), JHEP 1006:111 (2010)

Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
0000	0●00000	00000	0000	0000	0
n n' on t	he lattice				

Extract masses and amplitudes from suitable meson two-point correlation functions:

$$\mathcal{C}_{ij}\left(t
ight)\sim\sum_{ec{x}}\left\langle 0
ight|\left. oldsymbol{O}_{i}\left(x
ight) oldsymbol{O}_{j}\left(0
ight) \left|0
ight
angle$$

• Interpolating operators $O_{i,i}$ need to couple to the desired states

• For η , η' use local pseudoscalar operators (quark flavor basis):

$$\eta_l=rac{1}{\sqrt{2}}(ar{u}i\gamma_5u+ar{d}i\gamma_5d)\,,\quad\eta_s=ar{s}i\gamma_5s\,,\quad\eta_c=ar{c}i\gamma_5c$$

Considering i = j:

$$\mathcal{C}(t) = \sum_{n} \frac{|\langle 0| O_i |n\rangle|^2}{2M_n} \exp\left(-M_n t\right) \stackrel{t \gg 0}{\to} \frac{|\langle 0| O_i |\eta\rangle|^2}{2M_\eta} \exp\left(-M_\eta t\right)$$

 \rightarrow Ground state mass M_η can be extracted from $\mathit{aM}(t) = \log \frac{\mathcal{C}(t)}{\mathcal{C}(t+1)}$

 \rightarrow Decay constants / mixing parameters from physical amplitudes $A_i^n = \langle 0 | O_i | n \rangle$.

 \rightarrow Higher states: diagonalize C_{ij} (GEVP) + correlated fits to principal correlators

 $\log \mathcal{C}(t)$

Quark disconnected diagrams

• Consider
$$O_i = O_j = \eta_i$$
:

$$\begin{aligned} \mathcal{C}_{II}(t) &\sim \sum_{\vec{x}} \langle 0 | \, \bar{u}(x) i \gamma_5 u(x) \bar{u}(0) i \gamma_5 u(0) | 0 \rangle \\ &\sim \mathrm{tr} \left[D_{0t}^{-1} \gamma_5 D_{t0}^{-1} \gamma_5 \right] + \mathrm{tr} \left[D_{tt}^{-1} \gamma_5 \right] \mathrm{tr} \left[D_{00}^{-1} \gamma_5 \right] \end{aligned}$$

Quark connected and disconnected pieces:

Lattice Dirac operator D_{xy} is a very large (3 · 4 · L³ · T) × (3 · 4 · L³ · T) – matrix

Full and connected-only correlators; $M_{\pi} = 270 \,\mathrm{MeV}, \ a = 0.078 \,\mathrm{fm}$

- Disconnected diagrams need all-to-all propagator $D_{xx}^{-1} \Rightarrow$ prohibitively expensive
- Use stochastic method + one-end trick instead (still not cheap; required $\gtrsim 10^8$ core hours)

 \rightarrow Severe signal-to-noise problem; signal typically lost at $t\gtrsim 1\,{\rm fm}$...

How to tackle the signal-to-noise problem?

Assumption:

Disconnected diagrams couple only to η , η' :

- Ignore charm quark. (contributions are negligibly small)
- No signal-to-noise problem in quark-connected contribution
- Replace connected contributions by respective ground state contributions
 PRD 64 (2001), 114509, EPJ C58 (2008), 261-269
 PRL 111 (2013) 18, 181602

If this assumption is correct we should see a plateau at very small values of $t/a \dots$

Removal of excited state

• ... We observe plateaux in both states starting at t/a = 2

- M_n agrees very well with previous result
- Significant improvement in the statistical error for $M_{\eta'}$
- Requires to check validity of assumption from Monte-Carlo data

In finite volume and for fixed top. charge Q_t one finds

$$\langle \omega(\mathbf{x})\omega(\mathbf{0}) \rangle_{Q_t=\mathrm{fixed}} \rightarrow \frac{1}{V} \left(\chi_t - \frac{Q_t^2}{V} + \frac{c_4}{2V\chi_t} \right) + \dots,$$

for correlators of winding number densities $\omega(x)$ at large |x|.

S. Aoki et al., Phys.Rev. D76, 054508 (2007)

 \Rightarrow Expect constant offset in $\eta'(\eta)$ correlator at large *t*:

$$<\lambda^{\eta'}(t)>_{Q_t= ext{fixed}}
ightarrow \sim rac{a^5}{T}\left(\chi_t-rac{Q_t^2}{V}+rac{c_4}{2V\chi_t}
ight).$$

Principal correlators $M_{\pi} = 375 \text{ MeV}, M_{\pi} \cdot L = 3.8, L = 2 \text{ fm}$

Always present for finite volume + finite statistics.

Often masked by statistical point errors!

• Noise in η' -signal largely due to fluctuation + autocorrelation of this constant.

Topological finite volume effect (II)

Simple but efficient way to correct for this effect:

Remove constant using discrete derivative ("time-shifted") correlator:

$$\mathcal{C}(t)
ightarrow ilde{\mathcal{C}}(t) = \mathcal{C}(t) - \mathcal{C}(t + \Delta t)$$

- Resulting data are much less correlated.
- Remaining analysis (GEVP, CCF extrapolation) can be carried out in standard way...

Point errors highly correlated.

• Results in good agreement with experiment.

- Compatible with results from older analysis, but better control of systematics for η' . PRL 111 (2013) 18, 181602
- Chiral and continuum behavior mild.
- Scale setting using Sommer parameter $r_0=0.474(14)\,\mathrm{fm}$. Nucl.Phys. B887 (2014) 19-68

Introduction	LQCD setup & methods	Masses & mixing	WV formula	lowards $m_q = phys$	Summary & Outlook
0000	0000000	0●000	0000		0
Mixing					

Decay constants $f_{\rm P}^i$ are defined from axial-vector matrix elements (amplitudes)

$$\langle 0|A^{i}_{\mu}|\mathrm{P}(p)\rangle = if^{i}_{\mathrm{P}}p_{\mu}, \qquad \mathrm{P} = \eta, \eta',$$

On the lattice: quark flavor basis (i=l,s) is a more "natural" choice

$$A^{\prime}_{\mu}=rac{1}{\sqrt{2}}(ar{u}\gamma_{\mu}\gamma_{5}u+ar{d}\gamma_{\mu}\gamma_{5}d), \qquad A^{s}_{\mu}=ar{s}\gamma_{\mu}\gamma_{5}s.$$

 η and η' are not flavor eigenstates; most general parametrization:

$$\begin{pmatrix} f_{\eta}^{l} & f_{\eta}^{s} \\ f_{\eta'}^{l} & f_{\eta'}^{s} \end{pmatrix} = \begin{pmatrix} f_{l}\cos\phi_{l} & -f_{s}\sin\phi_{s} \\ f_{l}\sin\phi_{l} & f_{s}\cos\phi_{s} \end{pmatrix}$$

From χ PT one expects $|\phi_l - \phi_s|$ to be small, i.e. $\frac{|\phi_l - \phi_s|}{|\phi_l + \phi_s|} \ll 1$

Small difference in one basis does NOT imply small difference in another basis!

• Expect that only one angle $\phi \approx \phi_l \approx \phi_s$ is required: $\tan^2(\phi) = -\frac{f_l^{\eta'} f_s^{\eta}}{f_l^{\eta} f_s^{\eta'}}$.

Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
0000	0000000	00●00	0000	0000	0
Mixing					

However, we find the axial vector too noisy to determine $\phi/\phi_{l,s}$ and $f_{l,s}$ directly.

Consider pseudoscalar matrix elements

$$h_{\mathrm{P}}^{i}=2m_{i}<0|P^{i}|\mathrm{P}>,\quad \mathrm{P}=\eta,\eta^{\prime},$$

which can be related to axial vector ones via the anomaly equation using χPT :

$$\begin{pmatrix} h_{\eta}^{l} & h_{\eta}^{s} \\ h_{\eta'}^{l} & h_{\eta'}^{s} \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \operatorname{diag} \left(f_{l} M_{\pi}^{2}, f_{s} \left(2M_{K}^{2} - M_{\pi}^{2} \right) \right) \,.$$

Th. Feldmann et al., PRD 58 (1998), 114006 Th. Feldmann et al., Phys.Lett. B449 (1999) 339-346

- This expression holds to LO χPT.
- Mixing angle(s) do not depend on renormalization.
- Can check whether $|\phi_l \phi_s|$ is small!

 \rightarrow Residual χ PT-dependence compared to axial-vector approach

Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook				
0000	0000000	00000	0000	0000	O				
Physical	Physical result for ϕ								

Good agreement with phenomenology: φ^{pheno} = 39.3°(1.0). Th. Feldmann, Int.J.Mod.Phys. A15 (2000) 159-207

- Significant effect from continuum extrapolation.
- Data compatible with requirement \(\phi_{\mathcal{SU}(3)_F}\) \approx 54.7^\circ.\)
- $|\phi_l \phi_s| = 2.8(1.1)_{\text{stat}}(2.6)^{\circ}_{\text{sys}}$ confirms smallness of NLO (OZI) corrections.

Results for f_l , f_s : Chiral and continuum extrapolation of f_l/f_{π} and $f_s/f_{\rm K}$

- f_l, f_s rather difficult to fit individually.
- Ratios f_l/f_{π} and f_s/f_K cancel most of the quark mass, lattice spacing and volume-dependence.

Final results:

 $\begin{array}{lll} (f_l/f_{\pi})_{\rm phys} = 0.960(37)_{\rm stat}(46)_{\chi} \rho_T & \to & f_{l,{\rm phys}} = 0.125(5)_{\rm stat}(6)_{\chi} \rho_T \, {\rm GeV} \\ (f_s/f_{\rm K})_{\rm phys} = 1.143(23)_{\rm stat}(04)_{\chi} \rho_T & \to & f_{s,{\rm phys}} = 0.178(4)_{\rm stat}(1)_{\chi} \rho_T \, {\rm GeV} \end{array}$

Averages from phenomenology: $f_l/f_\pi=1.07(2)$ and $f_{
m s}/f_{
m K}=1.12(6)$ Th. Feldmann, Int. J.Mod.Phys. A15 (2000) 159-207

0000	0000000	00000	0000	0000	0
Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
0000	0000000	00000	●000	0000	0

The Witten-Veneziano formula

$$\chi_{\infty}^{\rm YM} = \frac{f_0^2}{4N_f} (M_{\eta'}^2 + M_{\eta}^2 - 2M_K^2)$$

Nucl. Phys. B 156 (1979) 269 Nucl. Phys. B 159 (1979) 213

connects:

- Topological susceptibility $\chi^{\rm YM}_\infty$ in pure Yang-Mills gauge theory,
- Singlet decay constant f₀,
- Meson masses M_K , M_η , $N_{\eta'}$.

To test it from first principles, calculate all quantities (for $N_c = 3$) using:

- Results from our dynamical $N_f = 2 + 1 + 1$ tmLQCD simulations (as shown before),
- Dedicated simulations in the quenched setup for χ^{YM}_∞.

JHEP 1509 (2015) 020

Quenched computation of χ_∞

Compute χ_∞ from (stochastically estimated) density chains

$$\chi_t = m_1 \cdot \dots m_5 \cdot \mathsf{a}^{16} \sum_{x_1, \dots, x_4} \langle P_{31}(x_1) S_{12}(x_2) S_{23}(x_3) \times P_{54}(x_4) S_{45}(0) \rangle_c$$
JHEP 0903 (2009) 01

where S_{ij} , P_{ij} denote scalar and pseudoscalar densities, respectively.

-> Theoretical sound definition; only multiplicative renormalization

0000)	0000000	00000	0000	0000	0
Co	nputat	tion of f_0				

• fo is defined in octet-singlet basis:

$$\begin{split} A^{0}_{\mu} &= \frac{1}{\sqrt{6}} \big(\bar{u} \gamma_{\mu} \gamma_{5} u + \bar{d} \gamma_{\mu} \gamma_{5} d + \bar{s} \gamma_{\mu} \gamma_{5} s \big), \\ A^{8}_{\mu} &= \frac{1}{\sqrt{3}} \big(\bar{u} \gamma_{\mu} \gamma_{5} u + \bar{d} \gamma_{\mu} \gamma_{5} d - 2 \bar{s} \gamma_{\mu} \gamma_{5} s \big). \end{split}$$

• f_0 can be related by LO continuum χ PT to f_l , f_s and f_{π} , f_K e.g.

$$f_0^2 = -7/6f_\pi^2 + 2/3f_K^2 + 3/2f_l^2, \qquad (D1)$$

$$f_0^2 = +1/3f_\pi^2 - 4/3f_K^2 + f_l^2 + f_s^2, \qquad (D2)$$

$$f_0^2 = +10/3f_\pi^2 - 16/3f_K^2 + 3f_s^2.$$
 (D3)

• Not unambiguous; they have different systematics:

$f_{0, \rm phys} = 0.141(06)_{\rm stat} {\rm GeV}$	(D1)
$f_{0,\rm phys} = 0.144(07)_{\rm stat}{ m GeV}$	(D2)
$f_{0, \rm phys} = 0.149(13)_{ m stat}{ m GeV}$	(D3)

Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$ 0000	Summary & Outlook
0000	0000000	00000	000●		0
Results					

Putting everything together:

- Weighted average for dynamical simulations: $r_0^4 \chi_{\infty}^{\text{dyn}} = 0.037(7)_{\text{stat+sys}}$.
- Comparison in physical units problematic because in general $r_0^{dyn} \neq r_0^{\text{YM}}$.
- $r_0^{\rm YM} = 0.5 \, {\rm fm}$ and $r_0^{\rm dyn} = 0.474(14) \, {\rm fm}$ yields good agreement: Nucl.Phys. B887 (2014) 19-68

 $\chi^{\rm YM}_{\infty} = (185.3(5.6)_{\rm stat+sys}\,{\rm MeV})^4 \quad \text{ vs. } \quad \chi^{\rm dyn}_{\infty} = (182.6(8.3)_{\rm stat+sys}\,{\rm MeV})^4$

PoS CD2018 (2019) 077

Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
0000	0000000	00000	0000	$\bullet 000$	0

Towards the physical point $(N_f = 2)$

Most important issue for simulating η , η' at the physical point:

How do the errors scale?

- Results shown so far use ensembles with $M_{\pi} \gtrsim 230 \,\mathrm{MeV}$ for $N_f = 2 + 1 + 1$.
- In the last years $N_f = 2 + 1 + 1$ simulations by ETMC became available at physical M_{π} .

Isospin symmetric $N_f = 2$ theory conceptually and technically more simple:

- Only three (degenerate) pions and one singlet field η_0 related to the anomaly; no mixing.
- No GEVP required for computing the mass, can analyze ground state directly.
- Provides testbed for simulating η , η' at physical M_{π} (error scaling, topological FV effect...)

ensemble	T/a	L/a	L/fm	M_{π} [MeV]	$M_{\pi} \cdot L$	$N_{\rm conf}$
cA2.09.48	96	48	4.5	132	3.0	615
cA2.30.48	96	48	4.5	240	5.4	352
cA2.30.24	48	24	2.2	245	2.8	352
cA2.60.32	64	32	3.0	337	5.0	337
cA2.60.24	48	24	2.2	340	3.8	424

Ensembles with N_f = 2 Wilson twisted mass + clover fermions

ETMC, Lat15 (2015) ETMC, Phys.Rev. D95 (2017) no.9, 094515

How much noise?

- Massive increase in noise towards physical point in flavor-singlet correlator.
- Correlation and point errors drastically reduced in derivative correlator.
- Resulting shift due to topological FV effect not too severe.
 - \rightarrow Reasonable signal quality; analysis is possible.

Masses

- Excite state removal in connected piece again crucial to improve result at small M_{π}
- Can also determine M_{η_0} from fit to (smeared) gluonic correlation function

$$C_{qq}(r) \sim \sqrt{rac{M_{\eta_0}}{r^{3/2}}} e^{-M_{\eta_0}r} \left(1 + \mathcal{O}\left(rac{1}{M_{\eta_0}r}
ight)
ight) \quad ext{at large separations } r \,.$$

• Fermionic and gluonic results at physical point in excellent agreement:

 $M_{\eta_0}^{
m ferm} = 772(18)_{
m stat}\,{
m GeV}$ vs. $M_{\eta_0}^{
m glue} = 781(21)_{
m stat}\,{
m GeV}$ prd 99 (2019) 3, 034511

Data in agreement with existing lattice results.

- Chiral behavior very flat; similar to $N_f = 2 + 1 + 1$.
- Errors are small due to removal of excited states; η₀ being ground state

 \rightarrow It is possible to simulate η, η' directly at physical quark mass for $N_f = 2 + 1 + 1$.

Work in progress...

Summan	, and outlook				
Introduction	LQCD setup & methods	Masses & mixing	WV formula	Towards $m_q = phys$	Summary & Outlook
0000	0000000	00000	0000	0000	●

First lattice study of η , η' with $N_f = 2 + 1 + 1$ dynamical quark flavors and controlled systematics:

- Physical extrapolations for all observables.
- Several improvements in the analysis since 2013 lead to reduced systematic and statistical errors.
- Large mass of η' reproduced from first principles; $M_{\eta,\eta'}$ in agreement with experiment.

First systematic lattice study of η , η' -mixing:

- Full chiral and continuum extrapolations for \u03c6, fl and fs.
- Results in good agreement with phenomenology, with competitive errors.
- Confirmed the validity of the Veneziano-Witten formula directly using lattice data.

Future plans:

- Use "new" ETMC $N_f = 2 + 1 + 1$ ensembles (four lattice spacings, three boxes at m_a^{phys})
- Study properties of η, η' directly at physical quark mass.
- Removing the need for chiral extrapolation.
- Production almost complete, analysis in progress ...

Ensembles ($N_f = 2 + 1 + 1$)

ensemble	β	T/a	L/a	$\pmb{a}\mu_l$	$a\mu_{\sigma}$	$\pmb{a}\mu_{\delta}$	$N_{\rm conf}$	ΔN	Ns
A30.32	1.90	64	32	0.0030	0.150	0.190	1363	4	24
A40.32	1.90	64	32	0.0040	0.150	0.190	863	4	24
A40.24	1.90	48	24	0.0040	0.150	0.190	1877	4	32
A60.24	1.90	48	24	0.0060	0.150	0.190	1248	4	128
A80.24	1.90	48	24	0.0080	0.150	0.190	2449	2	32
A100.24	1.90	48	24	0.0100	0.150	0.190	2514	2	32
A80.24s	1.90	48	24	0.0080	0.150	0.197	2489	2	32
A100.24s	1.90	48	24	0.0100	0.150	0.197	2312	2	32
B25.32	1.95	64	32	0.0025	0.135	0.170	1467	4	24
B35.32	1.95	64	32	0.0035	0.135	0.170	1251	4	24
B55.32	1.95	64	32	0.0055	0.135	0.170	4996	4	48
B75.32	1.95	64	32	0.0075	0.135	0.170	922	8	24
B85.24	1.95	48	24	0.0085	0.135	0.170	573	10	32
D15.48	2.10	96	48	0.0015	0.120	0.1385	1034	2	24
D20.48	2.10	96	48	0.0020	0.120	0.1385	429	4	24
D30.48	2.10	96	48	0.0030	0.120	0.1385	458	8	24
D45.32sc	2.10	64	32	0.0045	0.0937	0.1077	1074	4	48

Technical aside: η, η' in WtmLQCD

We work in the Wilson twisted mass $N_f = 2 + 1 + 1$ (unitary) setup:

- Automatic $\mathcal{O}(a)$ improvement $\rightarrow \mathscr{P}$ and \mathscr{F} at finite a
- Heavy sector not flavor-diagonal \rightarrow additional propagators G_{cs}^{xy} , G_{sc}^{xy}

In the physical basis 2 γ -combinations ($i\gamma_5$, $i\gamma_0\gamma_5$) available; consider only $i\gamma_5$:

phys basis:
$$\eta_l^{phys} = \frac{1}{\sqrt{2}} \bar{\psi}_l i \gamma_5 \psi_l$$
, $\eta_{c,s}^{phys} = \bar{\psi}_h \left(\frac{1 \pm \tau^3}{2} i \gamma_5 \right) \psi_h = \begin{cases} \bar{c} i \gamma_5 c \\ \bar{s} i \gamma_5 s \end{cases}$,
tm basis: $\eta_l^{tm} = \frac{1}{\sqrt{2}} \bar{\chi}_l \left(-\tau^3 \right) \chi_l$, $\eta_{c,s}^{tm} = \frac{1}{2} \bar{\chi}_h \left(-\tau^1 \pm i \gamma_5 \tau^3 \right) \chi_h$.

 \Rightarrow Heavy operators are a sum of scalars and pseudoscalars

Considering renormalization we have (up to a global factor)

$$\begin{aligned} \eta_{c,renormalized}^{tm} &= Z\left(\bar{\chi}_c i\gamma_5 \chi_c - \bar{\chi}_s i\gamma_5 \chi_s\right)/2 + \left(\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s\right)/2 \\ \eta_{s,renormalized}^{tm} &= Z\left(\bar{\chi}_s i\gamma_5 \chi_s - \bar{\chi}_c i\gamma_5 \chi_c\right)/2 - \left(\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s\right)/2 \end{aligned}$$

$$\rightarrow$$
 Need (non-singlet) $Z = \frac{Z_P}{Z_S}$; can avoid this for masses ...

Additional rotation of basis to disentangle "heavy" operators

$$\eta_{S,P} = \eta_c^{tm} \pm \eta_s^{tm} = \begin{cases} \frac{1}{\sqrt{2}} \left(\bar{\chi}_c \chi_s + \bar{\chi}_s \chi_c \right) \\ \frac{1}{\sqrt{2}} \left(\bar{\chi}_c i \gamma_5 \chi_c - \bar{\chi}_s i \gamma_5 \chi_s \right) \end{cases}$$

$$\Rightarrow C^{\eta}(t) = \begin{pmatrix} \eta_{l}(t)\eta_{l}(0) & \eta_{l}(t)\eta_{5}(0) & \eta_{l}(t)\eta_{P}(0) \\ \eta_{5}(t)\eta_{l}(0) & \eta_{5}(t)\eta_{5}(0) & \eta_{5}(t)\eta_{P}(0) \\ \eta_{P}(t)\eta_{l}(0) & \eta_{P}(t)\eta_{5}(0) & \eta_{P}(t)\eta_{P}(0) \end{pmatrix}$$

Advantage: Number of contractions per matrix element reduced by a factor 4

Putting in Z and rotating back before solving GEVP:

- \Rightarrow Eigenvalues of $C^{\eta}(t)$ give masses M_{η} , $M_{\eta'}$
- \Rightarrow Eigenvectors of $\mathcal{C}^{\eta}(t)$ give physical amplitudes \rightarrow mixing parameters

Alternative ratio extrapolation: M_{η}/M_{K}

• M_{η} and M_{K} have very similar dependence on m_s .

Ratio M_η/M_K cancels most m_s-dependence.

 $(M_{\eta}/M_{K})_{\rm phys} = 1.114(31)_{\rm stat} \rightarrow M_{\eta,\rm phys} = 0.554(15)_{\rm stat} \, {\rm GeV}$

ightarrow Confirms the results from the direct chiral + continuum fit

Decay constants - f_I and f_s

- f_l has some m_l-dependence, lattice artifacts
- f_s has very strong m_s-dependence; huge artifacts
- What about the influence of Z?

Decay constants - Renormalization

● Renormalization on the lattice not unambiguous → different lattice artifacts

- Values for Z from two different methods M1 (left) and M2 (right)
- Huge impact on f_s (effect much smaller for f_l)

• Z enters also $\mu_s = (\mu_\sigma - Z\mu_\delta)$ and hence $f_K = (\mu_l + \mu_s) \frac{\langle 0|\mathcal{P}_{neutral}^{+,im}|K\rangle}{M_K^2}$

Idea: Form ratios to cancel m_s-dependence, lattice artifacts

Backup slides 0000000●

Ratios f_l/f_{π} and $f_s/f_{ m K}$

- f_s/f_K cancels most m_s , *a*-dependence.
- Rather mild m_l-dependence.
- M2 has generally smaller artifacts.

 \rightarrow Use results from M2 for final analysis.