Properties of the η and η' mesons from lattice QCD

Sara Collins Universität Regensburg

with Jakob Simeth, Gunnar Bali, Vladimir Braun, Andreas Schäfer

EMMI Workshop, "Meson and hyperon interactions with nuclei", Kitzbühel, Sept. 16th, 2022

Outline

★ Preliminaries.

- * Previous work on the lattice.
- \star Simulation details: Extracting $\eta,~\eta'$ masses and decay constants.
- ★ Large- N_c ChPT.
- \star Results: continuum limit at physical quark masses, LECs.
- ★ Singlet axial Ward identity, gluonic decay constants.
- ★ Summary.

Pseudoscalar meson nonet

If \exists SU(3) flavour symmetry (*u*,*d*,*s*) then for $\bar{q}q$ we have $\bar{3} \otimes 3 = 8 \oplus 1$.

octet:
$$\pi^0, \pi^{\pm}, K^{\pm}, K^0, \overline{K}^0, \eta$$
, singlet: η' .
 $\eta = \eta_8 \sim \frac{1}{\sqrt{6}} (u\overline{u} + d\overline{d} - 2s\overline{s}), \quad \eta' = \eta_0 \sim \frac{1}{\sqrt{3}} (u\overline{u} + d\overline{d} + s\overline{s}).$

Pseudoscalar meson nonet

Classical global symmetries of \mathscr{L}_{QCD} for $m_u = m_d = m_s = 0$:

 $\mathsf{SU}_A(3) \times \mathsf{SU}_V(3) \times \mathsf{U}_A(1) \times \mathsf{U}_V(1) \longrightarrow \mathsf{SU}_V(3) \times \mathsf{U}_V(1)$

SU_A(3) chiral symmetry spontaneously broken at $T < T_c$, 8 Nambu-Goldstone bosons: $\pi^0, \pi^{\pm}, K^{\pm}, K^0, \overline{K}^0, \eta_8$.

 $U_A(1)$ symmetry broken due to quantum corrections (axial anomaly).

 η_0 is heavier than octet mesons.

Physical ($m_s > m_u \approx m_d > 0$) η and η' are no flavour eigenstates.

 \rightsquigarrow state mixing picture between η_8 and η_0 based on an effective Lagrangian.

Axial-Ward Identity $m_q = 0$

$$\partial_{\mu}\widehat{A}^{8}_{\mu} = 0, \qquad \partial_{\mu}\widehat{A}^{0}_{\mu} = \sqrt{6}\,\widehat{\omega}.$$

Finite m_q ,

$$\begin{split} \partial_{\mu}\widehat{A}^{8}_{\mu} &= \frac{2}{3}\left(\widehat{m}_{\ell} + 2\widehat{m}_{s}\right)\widehat{P}^{8} - \frac{2\sqrt{2}}{3}\delta\widehat{m}\,\widehat{P}^{0},\\ \partial_{\mu}\widehat{A}^{0}_{\mu} &= \frac{2}{3}\left(2\widehat{m}_{\ell} + \widehat{m}_{s}\right)\widehat{P}^{0} - \frac{2\sqrt{2}}{3}\delta\widehat{m}\,\widehat{P}^{8} + \sqrt{6}\,\widehat{\omega} \end{split}$$

with e.g. $\widehat{A}^{8\mu} = \overline{\psi} \gamma_{\mu} \gamma_5 t^8 \psi$ and $\widehat{P}^8 = \overline{\psi} \gamma_5 t^8 \psi$, $\psi = (u, d, s)$ and topological charge density

$$\omega(x) = -rac{1}{16\pi^2} \operatorname{tr} \left[\mathcal{F}_{\mu
u}(x) \widetilde{\mathcal{F}}_{\mu
u}(x)
ight], \qquad \mathcal{Q}_{\mathrm{t}} = \int \mathrm{d}^4 x \, \omega(x)$$

Witten and Veneziano relation (large N_c or t'Hooft limit):

$$rac{F_\pi^2}{2N_f}\left(M_\eta^2+M_{\eta'}^2-2M_K^2
ight)=\chi_{ ext{top}},\qquad\chi_{ ext{top}}=\langle\hat{Q}_{ ext{t}}^2
angle/V,$$

where χ_{top} is the quenched chiral susceptibility.

Axial decay constants Local axial-vector currents:

$$\langle 0|\widehat{A}^{a\mu}|\mathcal{M}\rangle = i F^{a}_{\mathcal{M}} p^{\mu}, \qquad \mathcal{M} = \eta, \eta'$$

Cf. $\langle 0|\hat{A}^{3\mu}|\pi^0\rangle = i F_{\pi}p^{\mu}$ (normalized so that $F_{\pi} = 92$ MeV) where F_{π} appears in the decay rate for $\pi \to \ell \nu$.

Four independent decay constants:

$$\begin{pmatrix} F_{\eta}^{8} & F_{\eta}^{0} \\ F_{\eta'}^{8} & F_{\eta'}^{0} \end{pmatrix} = \begin{pmatrix} F_{8}\cos\theta_{8} & -F^{0}\sin\theta_{0} \\ F^{8}\sin\theta_{8} & F^{0}\cos\theta_{0} \end{pmatrix} = \begin{pmatrix} \cos\theta_{8} & -\sin\theta_{0} \\ \sin\theta_{8} & \cos\theta_{0} \end{pmatrix} \begin{pmatrix} F^{8} & 0 \\ 0 & F^{0} \end{pmatrix} = \Xi(\theta_{8},\theta_{0})\operatorname{diag}(F^{8},F^{0})$$

In SU(3) limit $(m_u = m_d = m_s)$: $\theta_8 = \theta_0 = 0$, $F_{\eta}^0 = F_{\eta'}^8 = 0$.

One may also use the "flavour basis": $\overline{\ell}\ell = (\overline{u}u + \overline{d}d)/\sqrt{2}$ and $\overline{s}s$:

$$\begin{pmatrix} F_{\eta}^{\ell} & F_{\eta}^{s} \\ F_{\eta'}^{\ell} & F_{\eta'}^{s} \end{pmatrix} = \Xi(\theta_{\ell}, \theta_{s}) \operatorname{diag}(F^{\ell}, F^{s}) = \frac{1}{\sqrt{3}} \begin{pmatrix} F_{\eta}^{s} + \sqrt{2}F_{\eta}^{0} & -\sqrt{2}F_{\eta}^{s} + F_{\eta}^{0} \\ \sqrt{2}F_{\eta'}^{0} + F_{\eta'}^{s} & F_{\eta'}^{0} - \sqrt{2}F_{\eta'}^{s} \end{pmatrix}$$

Note: F^0 , F^ℓ , F^s , ϕ_ℓ , ϕ_s depend on the renormalisation scale μ , i.e. $F^0 = F^0(\mu)$ etc.. Flavour basis, at low scales $\phi_\ell \approx \phi_s$ replaced by single ϕ .

$\gamma\gamma^{\star} \rightarrow \eta/\eta'$ form factors

For $\mathcal{M} \in \{\eta, \eta'\}$: Collinear factorization at large Q^2 .

$$\begin{split} \mathbf{F}_{\gamma^{\star}\gamma \to \mathcal{M}}(\mathbf{Q}^2) &= \frac{\sqrt{2}F_{\mathcal{M}}^8}{3\sqrt{6}} \int_0^1 \mathrm{dx} \underbrace{\mathcal{T}_{\mathcal{H}}^8(x,\mu,Q^2)}_{\text{hard}} \underbrace{\phi_{\mathcal{M}}^8((x,\mu)}_{\text{soft}} + \\ & \frac{2\sqrt{2}F_{\mathcal{M}}^0}{3\sqrt{3}} \int_0^1 \mathrm{dx} \ \mathcal{T}_{\mathcal{H}}^0(x,\mu,Q^2) \phi_{\mathcal{M}}^0(x,\mu) + \frac{\sqrt{2}F_{\mathcal{M}}^0}{3\sqrt{3}} \int_0^1 \mathrm{dx} \ \mathcal{T}_{\mathcal{H}}^g(x,\mu,Q^2) \phi_{\mathcal{M}}^g(x,\mu) \,. \end{split}$$

$$\lim_{Q^2 \to \infty} Q^2 F_{\gamma^* \gamma \to \mathcal{M}}(Q^2) = \frac{2}{\sqrt{3}} \Big[\mathbf{F}^{\mathbf{8}}_{\mathcal{M}} + 2\sqrt{2} \mathbf{F}^{\mathbf{0}}_{\mathcal{M}}(\mu_{\mathbf{0}}) \Big(1 - \frac{2N_f}{\pi\beta_0} \alpha_s(\mu_0) \Big) \Big].$$

Gluonic matrix elements

$$a_{\eta}(\mu) \coloneqq \langle \Omega | 2 \widehat{\omega} | \eta \rangle \qquad a_{\eta'}(\mu) \coloneqq \langle \Omega | 2 \widehat{\omega} | \eta' \rangle$$

Extract $a_{\eta}(\mu)$ and $a_{\eta'}(\mu)$ via the singlet axial-ward identity. Relevant for $J/\psi \to \eta(\eta')\gamma$ decays.

If assume $c\bar{c} \rightarrow gg\gamma$ dominates the decay [Novikov et al.,1980], [Goldberg,1980].

$${\cal R}(J/\psi) = rac{{\sf \Gamma}[J/\psi o \eta' \gamma]}{{\sf \Gamma}[J/\psi o \eta \gamma]} pprox rac{{\sf a}_{\eta'}^2}{{\sf a}_{\eta}^2} \left(rac{{\sf k}_{\eta'}}{{\sf k}_{\eta}}
ight)^3$$

with k_n : momentum of the meson in the rest frame of J/ψ .

A mixing angle can also be defined: $(a_\eta(\mu) = 0$ if $m_s = m_\ell)$

$$heta_{y} = -\arctan\left(rac{a_{\eta}}{a_{\eta'}}
ight)$$

Previous lattice work

Masses:

[ETMC,1710.07986]: continuum, chiral extrapolation. Agreement with experiment.

$$M_{\eta} = 557(11)_{\text{stat}}(03)_{\text{ChPT}} \text{ MeV}$$
 $M_{\eta'} = 911(64)_{\text{stat}}(03)_{\text{ChPT}} \text{ MeV}$

Also results for the decay constants: use the flavour basis and ChPT with Feldmann-Kroll-Stech scheme [hep-ph/9802409]. Indirect determination via pseudoscalar amplitudes [Feldmann,hep-ph/9907491].

Previous lattice work: $D_s \rightarrow \eta/\eta' \ell \nu$

[Bali,1406.5449]

 $|f_0^{D_s \to \eta}| = 0.542(13)_{\text{stat}}, \qquad |f_0^{D_s \to \eta'}| = 0.404(25)_{\text{stat}} \text{ at } M_\pi \approx 370 \text{ MeV}$ [BESIII,1901.02133]: $f_+^{\eta}(0) = 0.458(7), \ f_+^{\eta'}(0) = 0.490(51)$

Lattice QCD simulations

Explore systematics:

Finite lattice spacing a.

(Unphysical) quark mass dependence.

Finite Volume.

CLS $N_f = 2 + 1$ ensembles: m_{ℓ} - m_s plane

Simulate in the isospin limit: $m_u = m_d = m_\ell$.

Two trajectories: good control over the quark mass dependence.

 $2m_{\ell} + m_s = \text{const.:}$ investigate SU(3) flavour breaking (flavour average quantities roughly constant), approach to physical point involves $m_{\pi} \downarrow$ and $m_{\kappa} \uparrow$.

Ensembles on red trajectory $(m_s = m_\ell)$ not used here.

Extracting the masses and decay constants

Construct two-point correlation functions:

$$C_{ij}(t) = \frac{1}{N_t} \sum_{t_i=0}^{N_t-1} \langle b_i(t+t_i)b_j^{\dagger}(t_i)\rangle \longrightarrow$$

$$\langle \mathbf{0}|\mathbf{b}_i|\mathbf{\eta}\rangle \langle \eta|b_j^{\dagger}|\mathbf{0}\rangle \frac{e^{-\mathbf{E}_{\mathbf{\eta}}t}}{2E_{\eta}V_3} + \langle \mathbf{0}|\mathbf{b}_i|\mathbf{\eta}'\rangle \langle \eta'|b_j^{\dagger}|\mathbf{0}\rangle \frac{e^{-\mathbf{E}_{\mathbf{\eta}'}t}}{2E_{\eta'}V_3} + \dots$$

where the interpolators b_i are chosen to have the right QNs: e.g.

$$b_8=rac{1}{\sqrt{6}}(u\gamma_5ar{u}+d\gamma_5ar{d}-2s\gamma_5ar{s}), \qquad b_0=rac{1}{\sqrt{3}}(u\gamma_5ar{u}+d\gamma_5ar{d}+s\gamma_5ar{s})$$

and the axial vector equivalents. Note: could also use $b^{\ell} \propto (u\gamma_5 \bar{u} + d\gamma_5 \bar{d})$ and $b^s \propto s\gamma_5 \bar{s}$.

Signal for $C_{ij}(t)$ rapidly falls below the noise as t increases due to disconnected quark line diagrams.

Mass spectrum and decay constants

22 ensembles, $M_\pi=420-135$ MeV, $a=0.086,\,0.076,\,0.064$ fm (and 0.050 fm), $M_\pi L\gtrsim 4$

Physical point extrapolation

Results depend on the quark masses (equivalently M_{π} and M_{K}) and the lattice spacing.

Fit to the masses and decay constants

$$f_{O}(a, \overline{M}^{2}, \delta M^{2}) = f_{O}^{\text{cont}}(\overline{M}^{2}, \delta M^{2}) \qquad \text{continuum} \\ \times h_{O}(a, am_{\ell}, am_{s}, a^{2}/t_{0}^{*}, a^{2}\overline{M}^{2}, a^{2}\delta M^{2}) \qquad O(a), O(a^{2})$$

where $O \in \{M_\eta, M_{\eta'}, F^8_\eta, F^0_\eta, F^8_{\eta'}, F^0_{\eta'}\}$ and

$$\overline{M}^2 := \frac{1}{3}(2M_K^2 + M_\pi^2) \approx 2B_0\overline{m}, \quad \delta M^2 := 2(M_K^2 - M_\pi^2) \approx 2B_0\delta m,$$

where \overline{m} is the average quark mass, $\delta m = m_s - m_\ell$ and $B_0 = -\langle \overline{u}u \rangle / F^2 > 0$.

- Parametrize quark mass dependence using large- N_c ChPT.
- Same parameters (low energy constants) appear in large-N_c ChPT expressions for the masses and decay constants → perform a simultaneous fit.

Large- N_c ChPT

U(3) EFT, η' becomes a pseudo-Goldstone boson in the t'Hooft limit. Expansion: $p^2 = O(\delta)$, $m = O(\delta)$, $1/N_c = O(\delta)$.

Known up to NNLO, e.g. [Guo,1503.02248] [Bickert,1612.05473], use NLO. Contribution of the η_8/η_0 sector to the leading order Large- N_c ChPT Lagrangian ($\eta^{T} = (\eta_8, \eta_0)$):

$$\mathscr{L} = \dots + \frac{1}{2} \partial_{\mu} \eta^{\mathsf{T}} \partial^{\mu} \eta - \frac{1}{2} \eta^{\mathsf{T}} \mu^{2} \eta, \quad \mu^{2} = \begin{pmatrix} \mu_{8}^{2} & \mu_{80}^{2} \\ \mu_{80}^{2} & \mu_{0}^{2} \end{pmatrix}$$
$$R \mu^{2} R^{\mathsf{T}} = \begin{pmatrix} M_{\eta}^{2} & 0 \\ 0 & M_{\eta'}^{2} \end{pmatrix}, \quad R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

At leading order:

$$\mu_8^2 = 2B_0(m_\ell + 2m_s) = \overline{M}^2 + \frac{1}{3}\delta M^2, \quad \mu_0^2 = 2B_0(2m_\ell + m_s) + M_0^2 = \overline{M}^2 + M_0^2,$$
$$\mu_{80}^2 = -\frac{2\sqrt{2}}{3}B_0(m_s - m_\ell) = -\frac{\sqrt{2}}{3}\delta M^2, \quad \tan(2\theta) = -2\sqrt{2}\frac{\delta M^2}{3M_0^2 - \delta M^2}.$$

and $M_0^2 = 2N_f \chi_{top} / F_{\pi}^2$.

NLO Large-N_c ChPT

$$(\mu_8^{\rm NLO})^2 = \overline{M}^2 + \frac{1}{3} \delta M^2 + \frac{8}{3F^2} (2L_8 - L_5) \delta M^4, (\mu_0^{\rm NLO})^2 = \overline{M}^2 + M_0^2 + \frac{4}{3F^2} (2L_8 - L_5) \delta M^4 - \frac{8}{F^2} L_5 \overline{M}^2 M_0^2 - \tilde{\Lambda} \overline{M}^2 - \Lambda_1 M_0^2, (\mu_{80}^{\rm NLO})^2 = -\frac{\sqrt{2}}{3} \delta M^2 - \frac{4\sqrt{2}}{3F^2} (2L_8 - L_5) \delta M^4 + \frac{4\sqrt{2}}{3F^2} L_5 M_0^2 \delta M^2 + \frac{\sqrt{2}}{6} \tilde{\Lambda} \delta M^2.$$

where $\tilde{\Lambda} = \Lambda_1(\mu) - 2\Lambda_2(\mu)$ is scale-independent and $M_0 = M_0(\mu)$. No chiral logs/ChPT renormalization scale at this order!

$$\begin{split} F_{\eta}^{8} &= F\left[\cos\theta + \frac{4\mathbf{L}_{5}}{3F^{2}}\left(3\cos\theta\overline{M}^{2} + (\sqrt{2}\sin\theta + \cos\theta)\delta M^{2}\right)\right],\\ F_{\eta'}^{8} &= F\left[\sin\theta + \frac{4\mathbf{L}_{5}}{3F^{2}}\left(3\sin\theta\overline{M}^{2} + (\sin\theta - \sqrt{2}\cos\theta)\delta M^{2}\right)\right],\\ F_{\eta}^{0} &= -F\left[\sin\theta\left(1 + \frac{\mathbf{\Lambda}_{1}}{2}\right) + \frac{4\mathbf{L}_{5}}{3F^{2}}\left(3\sin\theta\overline{M}^{2} + \sqrt{2}\cos\theta\delta M^{2}\right)\right],\\ F_{\eta'}^{0} &= F\left[\cos\theta\left(1 + \frac{\mathbf{\Lambda}_{1}}{2}\right) + \frac{4\mathbf{L}_{5}}{3F^{2}}\left(3\cos\theta\overline{M}^{2} - \sqrt{2}\sin\theta\delta M^{2}\right)\right]. \end{split}$$

LECs common to masses and decay constants.

Physical point results: masses

Data points are shifted to remove discretisation effects.

Physical point results: decay constants

Combined, fully correlated fit gives $\chi^2/N_{
m df} \approx 179/122 \approx 1.47$

Systematics

- ► Volume: only large volumes: $L_s^3 > (2.2 \text{ fm})^3 \gg R_\eta^3 \approx R_\pi^3$ [Bernstein,1511.03242] and typically $L_s M_\pi > 4$.
- Lattice spacing: vary parametrization of discretization effects.
- ▶ NLO Large- N_c ChPT: impose cutoffs on the average (non-singlet) pseudoscalar mass: $\overline{M}^2 \leq \overline{M}_{\max}^2$, $12t_0\overline{M}_{\max}^2 \in \{1.2, 1.4, 1.6\}$.

Renormalization: matching to PT done at $\mu \in \{a^{-1}/2, a^{-1}, 2a^{-1}\}$.

$$F^8 = \sqrt{(F^8_\eta)^2 + (F^8_{\eta'})^2}, \quad F^0 = \sqrt{(F^0_\eta)^2 + (F^0_{\eta'})^2}$$

ref		$F^8/{ m MeV}$		$F^0/{ m MeV}$
Benayoun et al. [101]	•	125.2(9)	l I	
Escribano and Frere [102]		139.0(4.6)		 118.8(3.7)
Escribano et al. [103]				
Chen et al. [104]		→ 133.5(3.7)		117.8(5.5)
Escribano et al. [105]	_	112.4(9.2)		105.9(5.5)
Escribano et al. [98]		117.0(1.8)		105.0(4.6)
Leutwyler [6]	•	118		
Feldmann [97]		116.0(3.7)	- - -	107.8(2.8)
Guo et al. [81] NLO-A		113.2(4.4)	- - -	104.9(2.9)
Guo et al. [81] NNLO-B		126(12)	·	109.1(6.0)
Bickert et al. [42] NLO-I	•	116.0(9)		
[42] NNLO w/o Ci ($\mu_{\rm EFT} = 1 {\rm GeV}$)		117.9(1.8)		
[42] NNLO w/ Ci ($\mu_{\rm EFT} = 1 {\rm GeV}$)		109(7)		
Ding et al. [106]	•	123.4	•	116.0
ETMC [19]				
Gu et al. [107] NNLO-A9p(F_{π})		113.1(2.1)	- -	106.0(4.4)
eq. (7.16)	٠	115.2(1.2)	1	
this work $(\mu = 1 \text{GeV})$	*	115.0(2.8)	*	106.0(3.2)
this work $(\mu = 2 \text{GeV})$	*	115.0(2.8)	*	100.1(3.0)
this work $(\mu = \infty)$	*	115.0(2.8)	·*	93.1(2.7)
	110 120	130 140	90 100 110	120

Physical point results

Physical point results

ref		θ_8		θ_0
Benayoun et al. [101]	•	$-20.4(1.0)^{\circ}$	1	 −0.1(1.0)°
Escribano and Frere [102]	-	$-23.8(1.4)^{\circ}$	1	
Escribano et al. [103]		_	1	•—
Chen et al. [104]	-	$-26.7(1.8)^{\circ}$	•	$-11.0(1.0)^{\circ}$
Escribano et al. [105]	_ 	$-21.3(3.5)^{\circ}$		$-11.3(3.9)^{\circ}$
Escribano et al. [98]		$-21.2(1.9)^{\circ}$	-	$-6.9(2.4)^{\circ}$
Leutwyler [6]	•	-20°		● -4°
Feldmann [97]		$-21.2(1.9)^{\circ}$	•	$-9.2(1.7)^{\circ}$
Guo et al. [81] NLO-A	_ 	$-21.5(4.5)^{\circ}$	-	$-7.2(2.5)^{\circ}$
Guo et al. [81] NNLO-B	-	$-27.9(1.7)^{\circ}$		$-6.8(3.8)^{\circ}$
Bickert et al. [42] NLO-I	•	$-21.7(7)^{\circ}$		 −0.5(7)°
[42] NNLO w/o Ci ($\mu_{EFT} = 1 \text{GeV}$)		$-12.6(6.1)^{\circ}$		$-6.3(6.5)^{\circ}$
[42] NNLO w/ Ci ($\mu_{\rm EFT} = 1 {\rm GeV}$)	•	$-34(22)^{\circ}$	•	$-33(24)^{\circ}$
Ding et al. [106]	٠	-21°	1	 −2.8°
ETMC [19]			1	_
Gu et al. [107] NNLO-A9p(F_{π})		$-26.1(2.5)^{\circ}$	•	$-7.0(2.1)^{\circ}$
eq. (7.16)		_	1	_
this work $(\mu = 1 \text{GeV})$	-*-	$-25.8(2.3)^{\circ}$	*	$-8.1(1.8)^{\circ}$
this work $(\mu = 2 \text{GeV})$	-*-	$-25.8(2.3)^{\circ}$	*	$-8.1(1.8)^{\circ}$
this work $(\mu = \infty)$	*	$-25.8(2.3)^{\circ}$	*	$-8.1(1.8)^{\circ}$
	-30 -20	-10	-30 -20 -10	0

 $\tan\theta_8=F_{\eta'}^8/F_{\eta}^8,\quad \tan\theta_0=-F_{\eta}^0/F_{\eta'}^8.$

Physical point results

$$an heta_\ell = F_{\eta'}^\ell / F_\eta^\ell, \quad an heta_s = -F_\eta^s / F_{\eta'}^s.$$

At low scales $\theta_{\ell} \approx \theta_s$. Agreement with ETMC results also for $F^{\ell,s}$.

Large-N_c ChPT LECs

Our LECs in the continuum limit, all errors added in quadrature:

$$\begin{split} \mathcal{M}_0(\mu &= 2 \, \text{GeV}) &= 818(27) \, \text{MeV}, & F &= 87.7(2.8) \, \text{MeV}, \\ \Lambda_1(\mu &= 2 \, \text{GeV}) &= -0.13(5), & L_5 &= 1.66(23) \cdot 10^{-3}, \\ \Lambda_2(\mu &= 2 \, \text{GeV}) &= 0.19(10), & L_8 &= 1.08(13) \cdot 10^{-3}. \end{split}$$

Scale-independent combinations:

$$M_0/\sqrt{1+\Lambda_1} = 877(22)\,{
m MeV}, \quad \tilde{\Lambda} = \Lambda_1 - 2\Lambda_2 = -0.46(19).$$

Scale-independent: F^8 , θ_8 , θ_0 . Scale-dependent: F^0 , F^ℓ , F^s , ϕ_ℓ , ϕ_s .

In the Feldmann-Kroll-Stech model [Feldmann,hep-ph/9907491], NLO LEC $\Lambda_1(\mu) = 0$ and any scale dependence is neglected. Then $\phi = \phi_\ell = \phi_s$ and

$$\sin^2 \phi = \frac{\left(M_{\eta'}^2 - (2M_K^2 - M_{\pi}^2)\right)\left(M_{\eta}^2 - M_{\pi}\right)}{2\left(M_{\eta'}^2 - M_{\eta}^2\right)\left(M_K^2 - M_{\pi}^2\right)}, \quad F^{\ell} = F_{\pi}, \quad F^s = \sqrt{2F_K^2 - F_{\pi}^2}.$$

We find:
$$F^{\ell}(\mu = 2\text{GeV}) = 88(^{5}_{3})$$
 MeV cf. $F_{\pi} = 92.1$ MeV,
 $F^{s}(\mu = 2\text{GeV}) = 124(^{4}_{5})$ MeV cf. $\sqrt{2F_{K}^{2} - F_{\pi}^{2}} \sim 125$ MeV.

$\gamma\gamma^\star \to \eta/\eta'$ form factors

Use $F_{\eta,\eta'}^{0,8}$ to obtain dashed lines:

$$\lim_{Q^2 \to \infty} Q^2 F_{\gamma \gamma^* \to \eta}(Q^2) = 160.5(10.0) \text{ MeV},$$
$$\lim_{Q^2 \to \infty} Q^2 F_{\gamma \gamma^* \to \eta'}(Q^2) = 230.5(10.1) \text{ MeV}.$$

Gluonic matrix elements from fermions

All factors needed to renormalise $\widehat{\omega}$ are not known \rightarrow obtain renormalized gluonic matrix elements through the singlet AWI.

$$\partial_{\mu}\widehat{A}^{0}_{\mu}=\frac{2}{3}\left(2\widehat{m}_{\ell}+\widehat{m}_{s}\right)\widehat{P}^{0}-\frac{2\sqrt{2}}{3}\delta\widehat{m}\,\widehat{P}^{8}+\sqrt{6}\,\widehat{\omega}.$$

 $\delta \hat{m} = \hat{m}_s - \hat{m}_\ell$. Use the singlet decay constants F_n^0 $(n \in \{\eta, \eta'\})$ and pseudoscalar matrix elements H_n^0 and H_n^8

$$\begin{aligned} a_n(\mu) &:= \langle \Omega | 2\widehat{\omega} | n \rangle \\ &= \sqrt{\frac{2}{3}} M_n^2 F_n^0(\mu) + \frac{4}{3\sqrt{3}} \delta\widehat{m} H_n^8 - \frac{2}{3} \sqrt{\frac{2}{3}} (2\widehat{m}_\ell + \widehat{m}_s) H_n^0. \end{aligned}$$

Note that $\widehat{m}H_n^8 = Z_A \widetilde{m} \langle \Omega | P^8 | n \rangle$, $\widehat{m}H_n^0 = Z_A r_P \widetilde{m} \langle \Omega | P^0 | n \rangle$, $r_P = 1 + \mathcal{O}(g^6)$.

Gluonic matrix elements from the singlet AWI

Parametrization is NLO U(3) Large- N_c ChPT. 6 LECs (with priors from analysis of decay constants) plus 3 parameters to account for $\mathcal{O}(a)$ effects. $\chi^2/N_{\rm df} \approx 34/31$. Shown: $\mu = \infty$.

$$\begin{aligned} a_{\eta}(\mu = 2 \,\text{GeV}) &= 0.01700 \left(\substack{40\\69}\right)_{\text{stat}} (48)_{\text{syst}} (66)_{t_0} \,\,\text{GeV}^3, \\ a_{\eta'}(\mu = 2 \,\text{GeV}) &= 0.0381 \left(\substack{18\\17}\right)_{\text{stat}} (80)_{\text{syst}} (17)_{t_0} \,\,\text{GeV}^3. \end{aligned}$$

Systematic error due to difference with prediction obtained using NLO Large- N_c ChPT LECs. Also $\theta_y = -\arctan a_\eta/a_{\eta'} = -24.0(3.3)^\circ$.

Comparison with the literature

Systematics from parametrization, renormalization and scale setting included.

If anomaly dominates [Novikov et al., NPB165(80)55]:

$${\cal R}(J/\psi) = rac{{\sf \Gamma}[J/\psi o \eta' \gamma]}{{\sf \Gamma}[J/\psi o \eta \gamma]} pprox rac{{\sf a}_{\eta'}^2}{{\sf a}_{\eta}^2} \left(rac{{\sf k}_{\eta'}}{{\sf k}_{\eta}}
ight)^3$$

with k_n : momentum of the meson in the rest frame of J/ψ . From this:

$$R(J/\psi, \mu = 2 \text{ GeV}) = 5.03 {\binom{19}{45}}_{\text{stat}} (1.94)_{\text{syst}}, \quad \text{PDG:} \quad R(J/\psi) = 4.74(13).$$

Summary

- Lattice studies of the η and η' mesons are challenging. Enormous progress has been made and results are now extracted at the physical point in the continuum limit.
- Meson masses determined with 1.7% error on M_{η} and 2.3% error on $M_{\eta'}$. Agreement with the experimental masses.
- First direct lattice determination of the η and η' decay constants.
- Determination of gluonic matrix elements via the singlet axial Ward identity.
- ▶ NLO Large-*N_c* ChPT describes all data (two meson masses, four decay constants, two gluonic matric elements) reasonably well with just six LECs, but there are some tensions. NNLO?
- ► The Feldmann-Kroll-Stech model works OK where $\Lambda_1(\mu)$ is small $(\mu \in [0.8, 1.5] \text{ GeV}).$
- Other properties will be computed in the future.