

Experimental evidence for an attractive N φ interaction

Emma Chizzali

EMMI Workshop *Meson and Hyperon Interactions with Nuclei*, Kitzbuehel 16/09/2022

Motivation

- Fundamental input for studying
 - Meson properties in nuclear matter
 - Modification of QCD condensates relervant to chiral symmetry
- Not well constrained so far

H. Gao, T.S.H. Lee & V. Marinov, Phys Rev C 63 (2001) 022201
Y. Koike & A. Hayashigaki, Prog Theor Phys 98 (1997) 631
F. Kling, N. Kaiser & W. Weise, Nucl.Phys. A 624 (1997) 527-563
IS, L. Pentchev, & A.I. Titov, Phys Rev C 101 (2020)
W.C. Chang *et al*, Phys Lett B 658, 209 (2008)

$$C(k^*) = \mathcal{N} \frac{N_{same}(k^*)}{N_{mixed}(k^*)} = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition theoretical definition
$$\sum_{\substack{\text{S. E. Koonin, Physics Letters B 70 (1977) 43-47\\\text{S. Pratt, Phys. Rev. C 42 (1990) 2646-2652}}$$

Relative momentum $\vec{k}^* = \frac{1}{2} |\vec{p}_1^* - \vec{p}_2^*|$ and $\vec{p}_1^* + \vec{p}_2^* = 0$
Relative distance $\vec{r}^* = \vec{r}_1^* - \vec{r}_2^*$

EMMI Workshop 2022 | Emma Chizza

3

TECHNISCHE UNIVERSITÄT MÜNCHEN

EMMI Workshop 2022 | Emma Chizzali

1

Δ

UNIVERSITÄT MÜNCHEN

Relative distance $\vec{r}^* = \vec{r}_1^* - \vec{r}_2^*$

EMMI Workshop 2022 | Emma Chizzali

5

6

High multiplicity (HM) **pp collisions** at $\sqrt{s} = 13$ TeV

Excellent PID with ALICE Detector \rightarrow charged particles measured directly with purities ~ 99%

Raw correlation function

Includes additional background contributions besides the one arising from genuine FSI interaction

Raw correlation function

- Non-femtoscopic background Minijet contribution estimated with PYTHIA 8 + baseline
- Combinatorial background obtained from sidebands of φ meson invariant mass spectrum

Raw correlation function

- Non-femtoscopic background Minijet contribution estimated with PYTHIA 8 + baseline
- Combinatorial background obtained from sidebands of D meson invariant mass spectrum
- \rightarrow Combined to total background used to extract genuine correlation function from data

Spin averaged scattering parameters

• Observation of **attractive** $p-\phi$ interaction

EMMI Workshop 2022 | Emma Chizzali

Spin averaged scattering parameters

C(K*)

- Observation of **attractive** $p-\phi$ interaction
- Spin-averaged scattering parameters extracted by employing the analytical Lednicky-Lyuboshits approach
 R. Lednicky and V.L. Lyuboshits, Sov. J. Nucl. Phys. 53 (1982) 770
- Imaginary contribution to the scattering length f₀ accounts for inelastic channels

 $d_0=7.85\pm1.54(stat.)\pm0.26(syst.) fm$ Re(f₀)=0.85±0.34(stat.)±0.14(syst.) fm Im(f₀)=0.16±0.10(stat.)±0.09(syst.) fm

 Elastic p-φ coupling dominant contribution to the interaction in vacuum ALICE Collab., PRL **127** (2021) 172301

18

Spin averaged scattering parameters

- Observation of **attractive** $p-\phi$ interaction
- Spin-averaged scattering parameters extracted by employing the analytical Lednicky-Lyuboshits approach
 R. Lednicky and V.L. Lyuboshits, Sov. J. Nucl. Phys. 53 (1982) 770
- Imaginary contribution to the scattering length f₀ accounts for inelastic channels

 $d_0=7.85\pm1.54(stat.)\pm0.26(syst.)$ fm Re(f₀)=0.85±0.34(stat.)±0.14(syst.) fm Im(f₀)=0.16±0.10(stat.)±0.09(syst.) fm

- Elastic $p-\phi$ coupling dominant contribution to the interaction in vacuum
- Zero effective range approximation (d₀=0 fm)

 $Re(f_0)=0.29\pm0.05(stat.)\pm0.03(syst.) fm$ $Im(f_0)=0.15\pm0.04(stat.)\pm0.06(syst.) fm$

EMMI Workshop 2022 | Emma Chizzali

In medium properties

- Scattering length can be related to first order optical potential $U(r) \approx \frac{1}{2m} 4\pi\rho \frac{b}{1+b/d_0} \approx \frac{1}{2m} 4\pi\rho \ b$ with $b = f_0 \left(1 + \frac{m_{\phi}}{m_{proton}}\right)$ V.A. Baskov et al. arXiv:nucl-ex/0306011v1 (2003)
- Real part related to mass-shift V(r) $\approx \Delta m$
- Imaginary part related to width W(r) $\approx -\Gamma/2$
- Similar to results of E325 Collab. of $\Delta m =-(35 \pm 7)$ MeV and $\Gamma = -(7 \pm 4)$ MeV

KEK-PS E325 Collab., Phys. Rev. Lett. 98 (2007) 042501

What we know so far

To avoid theoretical

- separated Re/Im

- Sign

JNIVERSITÄT

What we know so far

JNIVERSITÄT

Accessing both spin states

Work in collaboration with Raffaele Del Grande, Takumi Doi, Laura Fabbietti, Tetsuo Hatsuda, Yuki Kamiya and Yan Lyu

Yan Lyu *et al* arXiv:2205.10544 [hep-lat]

EMMI Workshop 2022 | Emma Chizzali

Studying both spin states

JNIVERSITÄI

Yan Lyu et al arXiv:2205.10544 [hep-lat]

⁴S_{3/2} channel

- Dominated by elastic scattering states
- Modelled using HAL QCD potential Yan Lyu et al arXiv:2205.10544 [hep-lat]
- Potential at physical-pion mass

Yan Lyu et al arXiv:2205.10544 [hep-lat]

²S_{1/2} channel

- Shows signs of open channels
- S-wave fall-apart decay into $\Lambda K~(^2S_{1/2})$ and $\Sigma K~(^2S_{1/2})$
- No potential available from lattice QCD yet, due to possible effects from open channels
- Modelled using complex potential

$$V_{\frac{1}{2}}(r) = V_{LATTICE, MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\alpha_{Im}}{r} e^{-m_K \cdot r}$$

Imaginary Part of Pot

Kaon exchange considered to give most significant contribution to coupling of decay channels

Real Part of Pot $V_{LATTICE, MOD}(r) = \beta \cdot V_{short}(r) + V_{2\pi}(r)$

Real Potential only in ²S_{1/2}

UNIVERSITÄT MÜNCHEN

Complex ²S_{1/2} Potential

$$V_{\frac{1}{2}}(r) = V_{LATTIC,MOD}(r) + i \cdot \sqrt{f(r;b_3)} \cdot \frac{\alpha_{Im}}{r} e^{-m_K \cdot r}$$

- Attractive real part of potential ($\beta > 0$)
- Minimum for α_{Im} =0 MeV and β =7.0
- Sizable imaginary part

 α_{lm}

TECHNISCHE UNIVERSITÄT MÜNCHEN

Summary and outlook

• First measurement of the $p-\phi$ correlation function

ALICE Collab., PRL 127 (2021) 172301

- Attractive $p-\phi$ interaction dominated by elastic contributions in vacuum (spin-averaged scattering parameters)
- Study p-φ interaction in S=1/2 using the published lattice potential for S=3/2 Yan Lyu *et al* arXiv:2205.10544 [hep-lat]
- Results for now suggest
 - Strongly attractive potential with bound state in S=1/2
 - Room for absorbtion term due to possble sizable imaginary contirbution

Additional material

EMMI Workshop 2022 | Emma Chizzali

Analysis details

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at √s = 13 TeV
- Excellent PID with ALICE Detector
 - Proton candidates measured directly (purity ~99%)
 - φ meson reconstruction
 - Decay channel $\phi \to K^+K^-$
 - Candidates consist of
 - Combinatorial background \rightarrow random • combination of uncorrelated kaons

MÜNCHEN

Analysis details

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at √s = 13 TeV
- Excellent PID with ALICE Detector
 - Proton candidates measured directly (purity ~99%)
 - φ meson reconstruction
 - Decay channel $\phi \to K^+K^-$
 - Candidates consist of
 - Combinatorial background \rightarrow random combination of uncorrelated kaons
 - Signal \rightarrow real ϕ mesons

ΝÜΝCΗΕΝ

Analysis details

- LHC Run 2 dataset (2016-2018)
- High multiplicity (HM) pp collisions at $\sqrt{s} = 13$ TeV
- Excellent PID with ALICE Detector
 - Proton candidates measured directly (purity ~99%)
 - ϕ meson reconstruction
 - Decay channel $\phi \to K^+K^-$
 - Candidates consist of
 - Combinatorial background → random combination of uncorrelated kaons
 - Signal \rightarrow real ϕ mesons
 - Purity of φ meson candidates ${\sim}66\%$

ΜÜΝCΗΕΝ

Correction for ϕ contamination

- Lack of experimental data of pure combinatorial BG $C_{p-KK}(k^*)$
- Measured signal $C_{p-KK,exp}(k^*)$ does not describe pure combinatorial background due to phi contamination in sidebands
 - Consists of 7% genuine p-phi ($\alpha = 0.07$) and 93% actual combinatorial p-KK background
 - Additionally MJ, BL etc.
- $C_{p-KK,exp}(k^*) = (1-\alpha) \cdot \frac{C_{p-KK}(k^*)}{C_{p-KK}(k^*)} + \mathcal{N} \cdot (MJ_{p-\phi}(k^*) + BL) \cdot \alpha \cdot C_{gen}(k^*)$
 - Rearrange in terms of $C_{p-KK}(k^*)$ and enter into equation of CF model

Model and correction

Original:

 $C_{tot}(k^*) = \mathcal{N} \cdot \left(MJ_{p-\phi}(k^*) + BL \right) \cdot \left(\lambda_{gen} \cdot C_{gen}(k^*) + \lambda_{flat} \cdot C_{flat}(k^*) \right) + \lambda_{p-KK} \cdot C_{p-KK}(k^*)$

Modification due to lack of pure experimental data of combinatorial BG $C_{p-KK}(k^*)$:

$$C_{tot}(k^*) = \mathcal{N} \cdot \left(MJ_{p-\phi}(k^*) + BL \right) \cdot \left[\left(\lambda_{gen} - \frac{\lambda_{p-KK} \cdot \alpha}{(1-\alpha)} \right) \cdot C_{gen}(k^*) + \lambda_{flat} \cdot C_{flat}(k^*) \right] + \frac{\lambda_{p-KK}}{(1-\alpha)} \cdot C_{p-KK,exp}(k^*)$$
Data parametrized by a polynomial of fifth order
$$Data \text{ parametrized by a double Gaussian}$$

• Particle emission from Gaussian core source

- Particle emission from Gaussian core source
- Core radius effectively increased by shortlived strongly decaying **resonances** ($c\tau \approx r_{core}$)
- Universal source model constrained from pp pairs (well-known interaction) ALICE Collab., *Physics Letters B*, **811** (2020) 135849

38

- Particle emission from Gaussian core source
- Core radius effectively increased by shortlived strongly decaying resonances (cτ ≈ r_{core})
- Universal source model constrained from pp pairs (well-known interaction) ALICE Collab., *Physics Letters B*, **811** (2020) 135849

TECHNISCHE UNIVERSITÄT MÜNCHEN

- Particle emission from Gaussian core source
- Core radius effectively increased by shortlived strongly decaying **resonances** ($c\tau \approx r_{core}$)
- Universal source model constrained from pp pairs (well-known interaction) ALICE Collab., *Physics Letters B*, **811** (2020) 135849
- Gaussian core source scales with $\langle m_T \rangle$
 - r_{core} = 0.98 ± 0.04 fm
- Effects from short-lived resonances
 - no relevant contribution from strongly decaying resonances feeding to the φ
 - Sizable amount of protons from decay of e.g. Delta resonances (only ~33% primordial protons)
 - effective Gaussian size: r_{eff} = 1.08 ± 0.05 fm

Lednicky-Lyuboshits Model

$$C(k^*) = \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)}{r_{eff}} \right|^2 \left(1 - \frac{d_0}{2\sqrt{\pi}r_{eff}} \right) + \frac{2\Re f(k^*)}{\sqrt{\pi}r_{eff}} F_1(2k^*r_{eff}) - \frac{\Im f(k^*)}{r_{eff}} F_2(2k^*r_{eff}) \right]$$

Analytical approach to model CF for strong final state interaction within effective range expansion R. Lednicky and V.L. Lyuboshits, *Sov. J. Nucl. Phys.* **53** (1982) 770

- Isotropic source of Gaussian profile $S(r^*)$
- Scattering amplitude: $f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} ik^*\right)^{-1}$
 - Effective range d_0 and scattering length f_0
- Spin averaged scattering parameters

Scattering length

Different sign
conventionFigure 2.6: Reduced wave-function u(r) for zero-energy ($k^* \approx 0$) as function of r for a repulsive
potential (a), an attractive potential (b) and increased attractive potential (c). The intercept of the
outside u(r) with the r-axis gives the scattering length a. Figures taken from [113].

In medium properties

- Scattering length can be related to first order optical potential $U(r) \approx \frac{1}{2m} 4\pi\rho \frac{b}{1+b/d_0} \approx \frac{1}{2m} 4\pi\rho \ b$ with $b = f_0 \left(1 + \frac{m_{\phi}}{m_{proton}}\right)$ V.A. Baskov et al. arXiv:nucl-ex/0306011v1 (2003)
- Real part related to mass-shift V(r) $\approx \Delta m$
- Imaginary part related to width W(r) $\approx -\Gamma/2$
- Similar to results of E325 Collab. of $\Delta m =-(35 \pm 7)$ MeV and $\Gamma = -(7 \pm 4)$ MeV

KEK-PS E325 Collab., Phys. Rev. Lett. 98 (2007) 042501

N-φ coupling constant

- Yukawa-type of potential with real parameters Phys. Rev. Lett. 98 (2007) 042501
 - $V(r) = -A \cdot \frac{e^{-\alpha r}}{r}$
- CF obtained numerically using CATS framework D.L. Mihaylov et al, *Eur. Phys. J.* C78 (2018) no.5, 394

Strength A = $0.021 \pm 0.009(\text{stat.}) \pm 0.006(\text{syst.})$ Inverse range $\alpha = 65.9 \pm 38.0(\text{stat.}) \pm 17.5(\text{syst.})\text{MeV}$

• Extraction of N– ϕ coupling constant as \sqrt{A}

 $g_{\phi N}=0.14\pm0.03(stat.)\pm0.02(syst.)$

Link to Y−Y interaction g_{φY} ∝ g_{φN}
 S. Weissborn et al., Nuclear Physics A, 881 (2012) 62-77

UNIVERSITÄT MÜNCHEN

Relativistic mean fiel model

Info on φΛ Coupling

Lattice potential ⁴S_{3/2}

- $N\phi({}^{4}S_{3/2})$ potential at Euclidean time 12, 13 and 14
- Attractive core, Pauli exclusion does not operate due to no common quarks
- Long-ranged attractive tail, hints of pion dynamics
- Weak *t* dependence

UNIVERSITÄT MÜNCHEN

What about ²S_{1/2}

- Two body channels
- Time dependence of potential
 - clear open channel effect in ${}^{2}S_{1/2}$ case

TECHNISCHE UNIVERSITÄT

MÜNCHEN

Parametrization of the ⁴S_{3/2} potential

MÜNCHEN

Pionmass variation

- Pion mass of 146.4 MeV used in lattice calculations unphysical → leads to larger scattering parameters
- To estimate potential at physical pion mass:
 - Fit of lattice potential performed using pion mass of 146.4 MeV
 - Changing pion mass to the isospin-average of 138.0 MeV, while potential parameters remain fixed from fit to data

Scattering parameters

• Scattering parameters extracted from phase-shift using effective range expansion

$$k^* \cot \delta_0(k^*) \xrightarrow[k^* \to 0]{} \frac{1}{f_0} + \frac{1}{2} d_0 k^{*2} + \mathcal{O}(k^{*4})$$

 \rightarrow f₀~-1.43 fm and d₀~0.7fm

• Strongly attractive potential with repulsive scattering lenght and small d_0 \rightarrow possible N ϕ bound state in S=1/2 with $E_B \sim 18-30$ MeV

$$E_B = \frac{1}{\mu d_0^2} \left(1 - \sqrt{1 + 2\frac{d_0}{f_0}} \right) \sim \frac{1}{2\mu f_0^2}$$

• Predicted by theory $E_B < 10 \text{ MeV}$

H. Gao, T.-S. H. Lee, and V. Marinov, Phys. Rev. C 63, 022201(R) F. Huang, Z.Y. Zhang, and Y.W. Yu, Phys. Rev. C 71, 064001 (2006) S. Liska, H. Gao, W. Chen, X. Qian, Phys. Rev. C 75, 058201 (2007)