Hyperons with HADES

Rafał Lalik

Jagiellonian University Faculty of Physics, Astronomy and Applied Computer Science

mailto:rafal.lalik@uj.edu.de

EMMI Workshop September 16th 2022

HADES – High Acceptance Dielectron Spectrometer

Major HADES upgrades:

- RPC (2010)
- Pion Tracker (2014)
- ECAL (2017-2021)
- RICH upgrade (2018)
- Forward Detector (2021)
- ▶ iTOF (2021)
- new START (2021)

Particle identification: dEdx, β vs momentum

Previous experiments:

- various HI beams (Ar+KCl, Au+Au, Ag+Ag)
- light system beams:
 - p+p@3.5 GeV ('07)
 - p+Nb@3.5 GeV ('07)
 - π⁻+p /π⁻+A ('14)
 - p+p@4.5 GeV ('22)

EMMI WOrkshop, Kitzbühel, 16.09.2022

Hyperons in Heavy Ions Collisions at HADES

 $\overline{\mathbb{X}}$

- ► 2012: Au+Au @ 1.23 AGeV ($\sqrt{s_{NN}} = 2.42 \text{ GeV}$) 7 billion events
- ► 2019: Ag+Ag @ 1.58 AGeV (√s_{NN} = 2.55 GeV) 14 billion events
- Strangenes production close to free NN threshold: $N+N \rightarrow Y+ N+ K - \sqrt{s_{NN}} = 2.55 \text{ GeV}$ $N+N \rightarrow N+ N+ K+ \overline{K} - \sqrt{s_{NN}} = 2.86 \text{ GeV}$
- Strangeness exchange process: Y+ $\pi \rightarrow N + \overline{K}$
- Production of Hypernuclei favored by baryon dominance of the fireball:
 - 1. Produce Λ
 - 2. Λ must find nucleons
- Sweet spot for hypernuclei production is below 10 GeV – FAIR energies

 $\tau = 262 \pm 2 \pm 3 \text{ ps}$ compatible with PDG

 $\tau = 91 \pm 1 \pm 1 \text{ ps}$ compatible with PDG

hypertriton $- {}^{3}_{\Lambda}H$

- mass = 2991 MeV c⁻²
- binding energy $B(^{3}_{\Lambda}\text{H}) = 0.79 \text{ MeV/A}$
- decay branches:

decay channel	BR [%]
$^{3}_{\Lambda}\text{H}\rightarrow ^{3}\text{He}$ + π^{-}	27
$^{3}_{\Lambda}H \rightarrow t + \pi^{0}$	13
$^{3}_{\Lambda}$ H \rightarrow d + p+ π^{-}	40
$^{3}_{\Lambda}H \rightarrow d + n + \pi^{0}$	20

world average lifetime 211 ± 9 ps

hyperhydrogen-4 – $^{4}_{\Lambda}H$

- mass = 3923 MeV c⁻²
- \blacktriangleright binding energy $B({}^4_\Lambda H)$ = 2.63 MeV/A \approx 3.3 B($^3_\Lambda H)$
- decay branches:

decay channel	BR [%]
$^{4}_{\Lambda}\text{H}{ ightarrow}^{4}\text{He}$ + π^{-}	50
$^{4}_{\Lambda}H \rightarrow t + p + \pi^{-}$	33
$^{4}_{\Lambda}$ H \rightarrow t + n+ π^{0}	17

world average lifetime 218 ± 5 ps

First measurement at mid-rapidity at this energy

lifetime of 256 \pm 22 \pm 36 ps compatible with free Λ

lifetime of 222 \pm 8 \pm 13 ps compatible with earlier measurements

Lowest energy at which Hypernuclei were ever reconstructed in HIC

Au+Au: PLB 793 (2019) 457-463 Mult / $\langle A_{p_{art}} \rangle$ $\alpha = 1.45 \pm 0.03$ χ^2 /NDF = 27.62/10 = 2.76 Λ^0 K^{+} 10-4 K⁻ x 4 φ x 40 $\overline{\langle A_{Part}^{400} \rangle}$ 80 90100 300 200

EMMI WOrkshop, Kitzbühel, 16.09.2022

Au+Au: PLB 793 (2019) 457-463 Mult / $\langle A_{p_{art}} \rangle$ $\alpha = 1.45 \pm 0.03$ χ^2 /NDF = 27.62/10 = 2.76 Λ^0 K^+ 10-4 K⁻ x 4 φ x 40 $\overline{\langle A_{Part}^{400} \rangle}$ 80 90100 300 200

R. Lalik

Hyperons and strange baryonic resonances in p+p @3.5 GeV

id	$\rm pp {\rightarrow}$ reaction	$\sigma_0^{(id)}$ cross section [µb]	∡ var.	$\measuredangle(a)$	(a_{4})	Н	notes	fit result	
			3-body channels						
1	ΛpK^+	$35.26 \pm 0.43 \begin{array}{c} +3.55 \\ -2.83 \end{array}$	$\theta_{\Lambda}^{\rm cms}$	0.798	0.134	~	[16]	38.835 ± 0.026	т
2	$\Sigma^0 pK^+$	$16.5 \pm 20 \%$	$\theta_{\Sigma^0}^{\mathrm{cms}}$	0.034 ± 0.241	_		[21]+calc.	19.800 ± 0.094	Т
3	$\Lambda \Delta^{++} K^0$	$29.45 \pm 0.08 \stackrel{+1.67}{_{-1.46}} \pm 2.06$	$\theta_{\Delta^{\pm\pm}}^{\rm cms}$	1.49 ± 0.3	_	~	[13]	32.10 ± 0.11	т
4	$\Sigma^0 \Delta^{++} K^0$	$9.26 \pm 0.05 \stackrel{+1.41}{_{-0.31}} \pm 0.65$	$\theta_{\Delta + +}^{cms}$	0.08 ± 0.02		\checkmark	[13]	8.5 ± 2.1	1
5	$\Lambda \Delta^+ K^+$	$9.82 \pm 20 \%$	$\theta_{\Delta^+}^{\rm cms}$	from Λ	$\Delta^{++}K^0$		res. mod.	11.78 ± 0.15	т
6	$\Sigma^0 \Delta^+ \mathrm{K}^+$	$3.27 \pm 20 \%$	$\theta_{\Delta^+}^{\rm cms}$	from Σ^0	$^{0}\Delta^{++}K^{0}$		res. mod.	2.6 ± 1.3	1
7	$\Sigma(1385)^{+}nK^{+}$	$22.42 \pm 0.99 \pm 1.57 \begin{array}{c} +3.04 \\ -2.23 \end{array}$	$\theta_{\Sigma^{\pm}*}^{\mathrm{cms}}$	1.427 ± 0.3	0.407 ± 0.108	~	[17]	17.905 ± 0.075	1
8	$\Delta(2050)^{++}$ n	33 % feeding for $\Sigma^* nK^+$	$\theta_{\rm n}^{\rm cms}$	1.27	0.35	\checkmark	[17]	8.82 ± 0.13	т
9	$\Sigma(1385)^+ pK^0$	$14.05 \pm 0.05 \stackrel{+1.79}{_{-2.14}} \pm 1.00$	$\theta_{\Sigma+*}^{cms}$	1.42 ± 0.3		\checkmark	[13]	16.101 ± 0.072	т
10	$\Sigma(1385)^0 pK^+$	$6.0 \pm 0.48 \stackrel{+1.94}{_{-1.06}}$	$\theta_{\Sigma^{0}*}^{cms}$	from $\Sigma(1)$	$385)^{+}nK^{+}$	\checkmark	[17]	7.998 ± 0.069	т
11	$\Lambda(1405) \mathrm{pK^+}$	$9.2 \pm 0.9 \pm 0.7 \stackrel{+3.3}{-1.0}$		_	_	~	[18]	7.7 ± 3.0	1
12	$\Lambda(1520) \mathrm{pK^+}$	$5.6 \pm 1.1 \pm 0.4 \ ^{+1.1}_{-1.6}$	_		_	\checkmark	[18]	7.2 ± 3.6	Т
13	$\Delta^{++}\Lambda(1405)K^0$	$5.0 \pm 20 \%$	_		_		[23]	6.0 ± 1.6	т
14	$\Delta^{++}\Sigma(1385)^{0}K^{0}$	$3.5 \pm 20 \%$					[23]	4.90 ± 0.46	т
15	$\Delta^+\Sigma(1385)^+K^0$	$2.3 \pm 20 \%$					[23]	3.2 ± 1.1	т
16	$\Delta^+\Lambda(1405){ m K}^+$	$3.0 \pm 20 \%$					compl. to above	4.2 ± 1.9	т
17	$\Delta^+\Sigma(1385)^0K^+$	$2.3\pm20\%$	_		—		compl. to above	3.2 ± 1.1	Т
			4-body channels						
18	$\Lambda p \pi^+ K^0$	$2.57 \pm 0.02 \stackrel{+0.21}{_{-1.98}} \pm 0.18$				<	[13]	2.8 ± 1.5	т
19	$\Lambda n\pi^+ K^+$	from $\Lambda p \pi^+ K^0$						2.8 ± 1.5	Т
20	$\Lambda p \pi^0 K^+$	from $\Lambda p \pi^+ K^0$						2.8 ± 1.4	Т
21	$\Sigma^0 p \pi^+ K^0$	$1.35 \pm 0.02 \stackrel{+0.10}{_{-1.35}} \pm 0.09$				\checkmark	[13]	1.48 ± 0.76	Т
22	$\Sigma^0 n \pi^+ K^+$	from $\Sigma^0 p \pi^+ K^0$						1.48 ± 0.84	Т
23	$\Sigma^0 p \pi^0 K^+$	from $\Sigma^0 p \pi^+ K^0$		—				1.48 ± 0.75	т

Phys. Rev. C 95, (015207), 2017

New results from 3.5 GeV

- though 15 years old, data from p+p @3.5 GeV still can help us a lot
- ► new reactions are analyzed → new analysis tools for HADES are being developped (HADES + PANDA cooperation):

- → Neural networks (K. Sumara, W. Esmail, K. Nowakowski)
- → Kinematic refit (W. Esmail, J. Riegier. J. Regina)

Cold matter effects on $\Lambda(1520)$

• is $\Lambda(1520)$ a $\Sigma(1385)\pi$ molecule? counts 16.0 MeV • studies of in-medium modifications of $\Lambda(1405)$ 25 Λ(1520)-pole 80 20 Po - --Im $[\Sigma]_{\pi \Sigma(1385)}$ [MeV] $\rho_0/2$ - -60 $\rho_0/4$ 15 vacuum 40 20 10 5 1500 1550 1400 1450 1600 1650 1700 M^{inv}_{p π- π+ π-}[MeV] 1.55 1.6 1.3 1.35 1.45 1.5 P_o[GeV] $M \left[\text{MeV} / c^2 \right]$ σ [MeV/ c^2] $\Gamma [MeV/c^2]$ of $\Lambda(1520)$ 1504.5 ± 4.7 14.7 ± 6.7 15.6 ± 1.0 p+p Phys. Rev. C 73, 045213 (2006) 1507.7 ± 3.3 14.7 ± 6.7 34.6 ± 5.2 p+Nb

G-PAC 44: HADES III Production and decay of hyperons, and inclusive hadron and dilepton production in p+p reaction at 4.5 GeV

- 1. Hyperon electromagnetic decays $Y{\rightarrow}\Lambda\gamma^*$ and $Y{\rightarrow}\Lambda\gamma$
- 2. Hyperon hadronic decays
- 3. Production of double $(\Xi^-, \Lambda\Lambda)$ and hidden strangeness (ϕ)
- 4. Inclusive hadron and dilepton production as a reference for p+A and heavy-ion data

p+p experiment executed in February-March 2022

Production and electromagnetic decay of hyperons: a feasibility study with HADES as a Phase-0 experiment at FAIR

HADES + HADES@PANDA collaborations

Eur.Phys.J.A57,138(2021)

Hyperons electromagnetic form factors with HADES

Electromagnetic transitions form-factors (eTFF)

- Sensitive probe of hyperon internal structure
- Measurements of eTFF

- \rightarrow Space-like region $|Q^2|>0$ is inaccessible for excited hyperons (as a target or beam)
- → Time-like high |Q²| is probed by electron-positron anihillation (BaBar, CLEO-C, BESIII)
- \rightarrow Time-like low $|Q^2|$ available via Dalitz decays

HADES is an excellent experiment for a Dalitz decay measurements

Phys.Rev. C95 (2017) no.6, 065205

i.e. Δ (1232) \rightarrow Ne⁺e⁻ (measured by HADES) with Σ (1385)⁰ $\rightarrow \Lambda$ e⁺e⁻- (flavor sym. partner of Δ in SU(3))

Importance of pion cloud at small q^2

Hyperon electromagnetic/hadronic decays

- Tests VDM hypothesis (coupling to ρ,ω) for hyperons.
- $\pi\pi$ decays complementary to dileptons.

- Independent Λ (1520) reconstruction via $\Lambda \pi^- \pi^+$ decay (BR = 6 %), and
- Σ(1385) via Λπ (BR = 87 %)

EMMI WOrkshop, Kitzbühel, 16.09.2022

Radiative decay $Y \rightarrow \Lambda e^+e^-$

Projections for HADES with p+p @4.5 GeV; Expected: ~300 events/Y

Hadronic decay Λ (1520) $\rightarrow \Lambda \pi^+ \pi^- + X$

Complementary to Dalitz decay

- Y internal structure sensitive to $\Lambda_{\Upsilon} / \Sigma^0_{\Upsilon}$ transition rates
- ∑(1385)⁰ and Λ(1520)→Λ_Υ measured by CLAS

Σ^0 production

Reconstruction of Σ^0 as reference for Λ production and feed-down in $Y{\rightarrow}\Lambda e^+e^-$

Recent HADES results for $\Sigma^0 \rightarrow \Lambda_Y$ with p+p @3.5 GeV (t.b.p)

Radiative decays of $Y \rightarrow \Lambda \gamma$

Hyperon hadronic decays - $\Lambda(1405)$

- > $\Sigma\pi$ decays of $\Lambda(1405)$ are sensitive tests of its structure
- Line shape of $\Lambda(1405)$ ruled by two poles:
- Σ - π (pp beams [HADES, ANKE])
- K-N (K beams [LEPS] and electro-production [CLAS])
- Λ (1405) measured in HADES in pp@3.5 GeV via $\Sigma^{\pm}\pi^{\mp}$
- ▶ $\Sigma^{\pm}\pi^{\mp}$ also allowed for $\Sigma(1385)^{+} \rightarrow$ overlap of mass peaks
- ECAL allows to measure $\Lambda(1405)$ via $\Sigma^0 \pi^0 \rightarrow p\pi^- 3\gamma$, which is not allowed for $\Sigma(1385)^0$
- HADES can improve statistical precision by two orders of magnitude

Double strangeness reactions – Ξ^- production

- Motivated by HADES-puzzle of Ξ[−] enhancement in p+Nb and Ar+KCI
- Production through intermediate high mass (>2 GeV c⁻²) baryonic or hyperon resonance ?? → pp data needed

EMMI WOrkshop, Kitzbühel, 16.09.2022

Double strangeness reactions – $\Lambda\Lambda$ production

- Sensitive to Y-N and Y-Y interaction
- Complementary to PANDA program of $\Lambda\Lambda$ at p+p
- HADES measured pΛ correlations (Phys.Rev. C94 (2016) no.2, 025201), coherent studies with ALICE for pΛ and ΛΛ (Phys. Rev. C 99, 024001)
- ALICE identified 6M Λ and Λ, but only a small fraction in the interesting region of k[?] < 200 MeV c⁻¹
- In HADES smaller contribution from feed-down of higher excited states, and smaller source-size corrections

Electromagnetic hyperon decays ($\Lambda\gamma^*$ and $\Lambda\gamma$)							
$\begin{array}{ c c c c c }\hline \Sigma(1385)^0 \rightarrow \Lambda e^+ e^- & \Lambda(1520) \rightarrow \Lambda e^+ e^- \\\hline 302 & 352 \\\hline \end{array}$		∑(1385)→Λγ 1484		Λ(1520)→Λγ 1559			
Hyperon hadronic decays							
$\begin{array}{c} \Lambda(1405) \rightarrow \Sigma^0 \pi^0 \rightarrow \Lambda \ 3\gamma \\ 3.6 \times 10^4 \end{array}$	Λ(1405) 7.2 >	$ \begin{array}{c c} & & & \\ \hline b \end{pmatrix} \rightarrow \Sigma^{\pm} \pi^{\mp} & & & \\ \times 10^4 & & & \\ \hline 5.2 \times 10^5 \end{array} $					
Production of double and hidden strangeness							
$\Xi^- \rightarrow \Lambda \pi^-$ (4.7 - 47.6) × 10 ⁴	Λ 17) × 10 ⁴		$\varphi \rightarrow K^+K^-$ 3.1×10^6				
Inclusive measurement of hadrons and dielectrons							
$\begin{array}{c c c c c c c c } M_{\rm ee} < 0.15{\rm GeV}/c^2 & M_{\rm ee} > \\ 5.72 \times 10^6 & 7 \end{array}$	$0.15 \mathrm{GeV}/c^2$ $.41 \times 10^5$	$\omega \rightarrow e^+e^-$ 5.8 × 10 ⁴	$\phi \rightarrow e^+e^-$ 1.86 × 10 ³	$M_{\rm ee} > 1.1 {\rm GeV}/c^2$ 69			

Summary

- HADES has rich hyperon program in HIC and elementary reactions.
- HADES can provide first data of hyperon Dalitz decay.
- ► The p+p@3.5 GeV, p+p@4.5 GeV and Au+Au and Ag+Ag for HIC data are still being analyzed.

