Search for η -mesic Helium with WASA-at-COSY facility

Magdalena Skurzok Jagiellonian University, Krakow, Poland

for WASA-at-COSY Collaboration

EMMI Workshop "Meson and Hyperon Interactions with Nuclei" 13-16.09.2022

Introduction – η -mesic bound state

η interaction with nucleon

For low energies η -N interaction dominated by N^* <u>N* resonance:</u> $m_N^* \approx 1535 \text{MeV}$ $\Gamma \approx 150 \text{MeV}$ $J^P = \frac{1}{2}^-$ Main decay channels: $N^* \to \pi N \text{ (35-55 \%)}$ $N^* \to \eta N \text{ (30-55 \%)}$ $N^* \to \pi \pi N \text{ (1-10 \%)}$

impossible to create the η beams $\Rightarrow \eta$ -N studies based on the investigation of η N scattering amplitude for the processes like π N $\rightarrow \eta$ N, γ N $\rightarrow \eta$ N $\Rightarrow N^*$ domination (coupled mainly to η N and π N)

Coupled channel calculations \Rightarrow fit to available experimental data

EMMI, 15.09.22, M. Skurzok

Attractive and strong interaction between η and nucleon

R. Bhalerao, L. C. Liu, Phys. Lett. B54, 685 (1985)

(a_{ηN}=0.28+i0.19 fm)

Possible existence of $\eta\text{-mesic}$ bound states postulated for atomic nuclei with A>12

Q. Haider, L. C. Liu, Phys. Lett. B172, 257 (1986)

Recent theoretical studies of hadronic- and photoproduction of η meson support the existence of light η -mesic nuclei like $({}^{3}\text{He}-\eta)_{bound}$ $({}^{4}\text{He}-\eta)_{bound}$

 $B_s \in (1,40)$ MeV, $\Gamma \in (1,45)$ MeV

0.18 fm<Re(a_{nN})<1.03fm 0.16 fm<Im(a_nN)<0.49 fm

Phys.Rev.C 104 (2021) 5, L052201

 $dd \rightarrow ({}^{4}\text{He}-\eta)_{bound} \rightarrow {}^{3}\text{He}p\pi^{-}: \sigma = 4.5 \text{ nb} \mid pd \rightarrow ({}^{3}\text{He}-\eta)_{bound} \rightarrow Xp\pi^{-}: \sigma = 80 \text{ nb}$

J.-J. Xie et al., Eur. Phys. J. A 55 no.1, 6 (2019)

J.-J. Xie et al., Phys. Rev. C 95, 015202 (2017) T. Ishikawa et al., Phys.Rev.C 105 (2022) 4, 045201

- M. Skurzok et al., Nucl. Phys. A 993, 121647 (2020)
- N. Ikeno et al., Eur. Phys. J A 53 no. 10, 194 (2017)
- T. Ishikawa et al., Acta. Phys. Polon. B 51, 27 (2020)
- T. Sekihara, H. Fujioka, T. Ishikawa, Phys. Rev. C 97, 045202 (2017)
- A. Fix and O. Kolesnikov, Phys. Rev. C 97, 044001 (2018)
- V. Metag, M. Nanova, E. Paryev, Prog. Part. Nucl. Phys. 97, 199 (2017)
- J. Mares et al., Acta. Phys. Polon. B 51, 129 (2020)
- N. G. Kelkar, H. Kamada, M. Skurzok, Int. J. Mod. Phys. E 28, 1950066 (2019)
- N. G. Kelkar, D. Bedoya Fierro, H. Kamada, M. Skurzok, Nucl. Phys. A 996, 121698 (2020)
- S. D. Bass and P. Moskal, Rev.Mod. Phys. 91, 015003 (2019)
- S. Wycech, W. Krzemien, Acta. Phys. Polon B 45, 745 (2014)
- C. Wilkin, Acta. Phys. Polon. B 45, 603 (2014)

Exp. indications of the existence of the ${}^{3}\text{He-}\eta$ bound state

Strong He- η interaction

strong variation of the phase of s-wave production amplitude with energy

Exp. indications of the existence of the ³He- η bound state

total cross section $pd \rightarrow {}^{3}\text{He-}\eta \qquad \frac{d\sigma(\theta_{\eta})}{d\Omega} = \frac{\sigma_{tot}}{4\pi}(1 - \alpha \cos\theta_{\eta})$

J.-J. Xie, et al., Phys. Rev. C 95, 015202 (2017)

"weakly bound ³He- η state with binding energy of the order of 0.3 MeV and a width of the order of 3 MeV", $a_{\eta 3He} = [-(2.23 \pm 1.29) - i(4.89 \pm 0.57)]$ fm

EMMI, 15.09.22, M. Skurzok

COoler SYnchrotron COSY

- 184 m circumference cooler synchrotron
- Polarized and unpolarized proton and deuteron beam
- Momentum range 0.3 3.7 GeV/c
- Stochastic and electron cooling
- 10^{11} particles in ring luminosities $10^{31} - 10^{32} \ cm^{-2}s^{-1}$
- Ramped beam (search for η-mesic nuclei)

< □ > < □ > < □ > < □ >

WASA-at-COSY experiment

 Pellet Target
 Frozen pellets of hydrogen or deuterium

• Forward Detector

▶ identification of heavier projectiles and target-recoil particles such as p, d and He in forward direction

► angular information about the particles provided by FPC

► PID based on measurement of energy loss in scintillators

• Central Detector

► charged particles momenta reconstructed in magnetic field (MDC)

► PID based on measurement of energy loss in scintillators

Image: A matrix a

▶ photons identified in calorimeter

Status of the search for η -mesic Helium at WASA

$({}^{4}\text{He-}\eta)_{bound}$

• 2008: $dd \rightarrow {}^{3}\text{He}p\pi^{-}$ reaction

P. Adlarson et al., Phys. Rev. C87, 035204 (2013)

• **2010**: $dd \rightarrow {}^{3}\text{He}n\pi^{0}$ and $dd \rightarrow {}^{3}\text{He}p\pi^{-}$ reactions

P. Adlarson et al., Nucl. Phys. A 959, 102-115 (2017)

M. Skurzok, P. Moskal, et al., Phys. Lett. B782, 6-12 (2018)

≙

 η meson absorption and excitation of one of the nucleons to an N^* resonance, which subsequently decays into an N - π pair

$({}^{3}\text{He-}\eta)_{bound}$

2014:

- $\textit{pd}
ightarrow {}^3 ext{He2}\gamma({}^3 ext{He6}\gamma)$

reactions

P. Adlarson et al., Phys. Lett. B 802, 135205 (2020)

decay of the η - meson while it is still "orbiting" around a nucleus

- $pd \rightarrow ppp\pi^{-}(ppn\pi^{0}, dp\pi^{0})$ reactions

P. Adlarson et al., Phys. Rev. C 102, 044322 (2020)

 η meson absorption and excitation of one of the nucleons to an N^* resonance, which subsequently decays into an N - π pair

Papers available at http://koza.if.uj.edu.pl/publications/wasa-at-cosy

Experimental method

Excitation function

 $({}^{4}\text{He-}\eta)_{bound}$ existence manifested by resonant-like structure below η production threshold

EMMI, 15.09.22, M. Skurzok

Search for $({}^{4}\text{He-}\eta)_{bound}$ with WASA-at-COSY

Exp. 186.1 & 186.2, FZ Jülich, Germany, 2008 and 2010

P. Moskal, W. Krzemien, J. Smyrski, COSY proposal No. 186.1 & 186.2

$dd \rightarrow {}^{3}\text{Hen}\pi^{0} \mid dd \rightarrow {}^{3}\text{Hep}\pi^{-}$

• Measurement with the deuteron beam momentum ramped and with the deuteron pellet target

• **Data** were effectively taken with high acceptance (58%)

< ロト < 同ト < ヨト < ヨト

Search for $({}^{3}\text{He-}\eta)_{bound}$ with WASA-at-COSY

Exp. 186.3, FZ Jülich, Germany 2014

P. Moskal, W. Krzemien, M. Skurzok, COSY proposal No. 186.3

 $pd
ightarrow ppp\pi^{-}(ppn\pi^{0}, dp\pi^{0})$ $pd
ightarrow {}^{3} extsf{He}2\gamma \; ({}^{3} extsf{He}6\gamma)$

• Measurement with the proton beam momentum ramped and with the **deuteron** pellet target

• **Data** were effectively taken with high acceptance

EMMI, 15.09.22, M. Skurzok

Kinematical mechanism of the reaction (via N^*)

(日) (四) (日) (日) (日)

Kinematical mechanism of the reaction (via N^*)

EMMI, 15.09.22, M. Skurzok

14 / 59

(日) (四) (日) (日) (日)

Simulation of $({}^{4}\text{He-}\eta)_{bound}$ production and decay

Simulation of $({}^{4}\text{He-}\eta)_{bound}$ production and decay

$$\eta + N \Rightarrow N^*(1535) \Rightarrow N + \pi = \begin{cases} p + \pi^- \\ n + \pi^0 \end{cases}$$

• relative N- π angle in the CM: $\theta_{cm}^{N,\pi} \sim 180^{\circ}$ • low ³He momentum in the CM

Experiment-May 2008

- Channel: $dd \rightarrow ({}^{4}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He}p\pi^{-} \text{ (norm: } dd \rightarrow {}^{3}\text{He}n \text{)}$
- Measurement: beam momentum ramped from 2.185GeV/c to 2.400GeV/c ⇒ the range of excess energy Q∈(-51,22)MeV
- Luminosity: $L=118\frac{1}{nb}$
- Acceptance: A=53%

P. Adlarson et al., Phys. Rev. C87 (2013), 035204 W. Krzemien, Ph. D Thesis, Jagiellonian University (2012)

EMMI, 15.09.22, M. Skurzok

Experiment-Nov/Dec 2010

- **Channels:** $dd \rightarrow ({}^{4}\text{He}-\eta)_{bound} \rightarrow {}^{3}\text{He}\rho\pi^{-}$ $dd \rightarrow ({}^{4}\text{He}-\eta)_{bound} \rightarrow {}^{3}\text{He}n\pi^{0}$ (norm: $dd \rightarrow {}^{3}\text{He}n$ and $dd \rightarrow ppn_{sp}n_{sp}$)
- Measurement: beam momentum ramped from 2.127GeV/c to 2.422GeV/c ⇒ the range of excess energy Q∈(-70,30)MeV
- Luminosity: $L=1200\frac{1}{nb}$
- Acceptance: A=53%

↓ about 10 times higher statistics than in 2008

ANALYSIS:

- Particles identification
- Selection bound state region
- Determination of excitation functions
- Determination the upper limit of the total cross section

Search for $({}^{4}\text{He-}\eta)_{bound}$ in $dd \rightarrow {}^{3}\text{He}N\pi$ reaction | PID

Search for $({}^{4}\text{He}-\eta)_{bound}$ | Selection criteria

EMMI, 15.09.22, M. Skurzok

Determination of the excitation function

EMMI, 15.09.22, M. Skurzok

э

> 3000 2000

1000

Excitation function

Cross section

$$\sigma(Q) = \frac{N(Q)}{L(Q)\epsilon(Q)}$$

- N number of experimental events
- L integrated luminosity
- ϵ full detection efficiency

> 1500 1000

> > 500

Excitation function

Cross section

$$\sigma(Q) = \frac{N(Q)}{L(Q)\epsilon(Q)}$$

- N number of experimental events
- L integrated luminosity
- ϵ full detection efficiency

Determination of the upper limit of the total cross section for $dd \rightarrow ({}^{4}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He}N\pi$ processes at CL=90%

taking into account the isospin relation between the both of the considered channels: $P(N^* \to p\pi^-) = 2P(N^* \to n\pi^0)$

 B_s, Γ - fixed parameters || A, B, C, D - free parameters $|| \sigma_{CL=90\%}^{upp} = k \cdot \sigma_A, k=1.64$ (for CL=90%)

Determination of the upper limit of the total cross section for $dd \rightarrow ({}^{4}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He}p\pi^{-}$ process at CL=90% $\sigma^{upp}_{CL=90\%}$ for $dd \rightarrow ({}^{4}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He}n\pi^{0}$ $\sigma^{upp}_{CL=90\%}$ for $dd
ightarrow ({}^{4}\text{He-}\eta)_{bound}
ightarrow {}^{3}\text{He}p\pi^{-}$ σ^{upp} C_{CL=90%} [nb] 12 12 σ^{upp}_{CL=90%} [nb] 10 Excluded Excluded 4 2 2 0<u></u> 05 10 15 20 45 50 25 30 35 40 15 20 25 30 35 Γ [MeV] Γ [MeV] RESULT: RESULT: $\sigma_{dd \rightarrow (^{4}He-\eta)_{bound} \rightarrow ^{3}Hep\pi^{-}} < 7 \ nb$ $\sigma_{dd \rightarrow (^4He-\eta)_{bound} \rightarrow ^3Hen\pi^0} < 3.5 \ nb$ 2008: $\sigma < 27 \ nb$

P. Adlarson et al., Nucl. Phys. A 959, 102-115 (2017) = → (=) = → (⊂)

25 / 59

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

Systematics

Main contribution: momentum distribution for N^* inside He

assumption that N^* resonance has a momentum distribution identical to the distribution of nucleons inside He

 $N^{*-{}^{3}\!He}$ momentum distribution determined: the elementary $NN^{*} \rightarrow NN^{*}$ interaction constructed within π and η meson exchange model $\Rightarrow N^{*}$ -He potential evaluated by folding NN^{*} interaction with a nuclear density

₩

Details:

N. G. Kelkar, Eur. Phys. J. A 52, 309 (2016) N. G. Kelkar, D. Bedoya Ferro, P. Moskal, Acta Phys. Pol. B 47, 299 (2016)

Comparison with N. Ikeno et al. model prediction

N. Ikeno, H. Nagahiro, D. Jido, S. Hirenzaki, Eur. Phys. J. A 53, 194 (2017)

- total cross sections for the $dd \rightarrow ({}^{4}\text{He-}\eta)_{hound} \rightarrow {}^{3}\text{He}N\pi$ reaction determined based on phenomenological calculations
- the model reproduced the data on the $dd \rightarrow {}^{4}\text{He} \eta$ reaction quite well
- $\sigma = \sigma_{conv} + \sigma_{esc}$
- σ_{conv} determined for different parameters V_0 and W_0 of a spherical η^{-4} He optical potential $V(r) = (V_0 + iW_0) \frac{\rho_{\alpha}(r)}{\rho_{\alpha}(0)}$ (the total cross section in the subthreshold excess energy region where the η meson is absorbed by the nucleus)
- ormalization in the sense that the escape part reproduces the measured cross sections for the $dd \rightarrow {}^{4}\text{He}\eta$ process

Comparison with N. Ikeno et al. model prediction

$$\sigma_{n\pi^{0}}(Q) = \frac{1}{3}A \cdot Theory(Q) + B_{1}Q^{2} + C_{1}Q + D_{1}$$
$$\sigma_{p\pi^{-}}(Q) = \frac{2}{3}A \cdot Theory(Q) + B_{2}Q^{2} + C_{2}Q + D_{2}$$

isospin relation between the both of the considered channels

Theory(Q) - theoretical function after binning with the amplitude normalized to unity $B_{1,2}Q^2 + C_{1,2}Q + D_{1,2}$ - polynomial of the second order

Fit performed for theoretical spectra obtained for different optical potential parameters (V_0, W_0)

Comparison with N. Ikeno et al. model prediction

results obtained for different optical potential parameters (V_0, W_0)

V ₀	W_0	A (fit) [nb]	$\sigma_{upp}^{CL=90\%}$ [nb]
-30	-5	-5.0±3.9	6.5
-30	-20	-2.2 ± 3.5	5.8
-30	-40	0.2±3.8	6.3
-50	-5	0.1±3.8	6.3
-50	-20	$3.3{\pm}4.1$	6.8
-50	-40	6.0±4.2	6.9
-70	-5	$6.4{\pm}4.5$	7.4
-70	-20	$7.9{\pm}4.5$	7.4
-70	-40	7.5±3.7	6.1
-100	-5	6.3±4.5	7.4
-100	-20	$6.9{\pm}3.9$	6.4
-100	-40	$5.3 {\pm} 3.1$	5.2

Contour plot of the theoretically determined conversion cross section in $V_0 - W_0$ plane.

The allowed parameter space ($|V_0| < \sim 60$ MeV and $|W_0| < \sim 7$ MeV) excludes most optical model predictions of η^{-4} He nuclei except for some loosely bound narrow states.

M. Skurzok, P. Moskal, et al., Phys. Lett. B 708, 6 (2018)

Search for $({}^{3}\text{He-}\eta)_{bound}$ with WASA-at-COSY

$$\sigma_{pd \to {}^{3}He-\eta} \approx 25 \sigma_{dd \to {}^{4}He-\eta}$$

About 2 weeks of measurement allowed us to reach sensitivity of few nb $(L \approx 4500 \frac{1}{nb})$ **Measurement:** p_{beam} : 1.468-1.615GeV/c, **Q** \in (-70,30)MeV

Channels:

Via the resonance decay N*:

 pd → (³He-η)_{bound} → pppπ⁻
 pd → (³He-η)_{bound} → ppnπ⁰
 pd → (³He-η)_{bound} → dpπ⁰

Aleksander Khreptak PhD

• Absorption of orbiting η 4) $pd \rightarrow ({}^{3}\text{He}-\eta)_{bound} \rightarrow {}^{3}\text{He} 2\gamma$ 5) $pd \rightarrow ({}^{3}\text{He}-\eta)_{bound} \rightarrow {}^{3}\text{He} 6\gamma$

Oleksandr Rundel PhD

$pd ightarrow ({}^{3} ext{He-}\eta)_{bound} ightarrow dp\pi^{0}$ analysis

Simulations

N. Kelkar et al., Int. J. Mod. Phys. E 28, 1950066 (2019); N. Kelkar et al., Nucl. Phys. A 996, 121698 (2020)

Events selection

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

Upper limit of the total cross section

P. Adlarson et al., Phys. Rev. C 102, 044322 (2020)

Previous result:COSY-11 $\sigma_{pd \rightarrow (^{3}He - \eta)_{bound} \rightarrow ^{3}He \pi^{0}} < 70 \ nb$ J. Smyrski et al., Nucl. Phys. A 790 (2007) 438

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

Simulation of $pd ightarrow ({}^{3}\text{He-}\eta)_{bound} ightarrow {}^{3}\text{He} \ 2\gamma(6\gamma)$

• ³He is spectator
$$|\mathbb{P}_{^{3}He}|^{2} = m^{2}_{^{3}He}$$

• Fermi momentum distribution of the η meson in ³He- η bound system

M. Skurzok et al., Nucl. Phys. A 993, 121647 (2020)

Structure of hypothetical ${}^{3}\text{He-}\eta$ bound state can be described as a solution of Klein-Gordon equation:

$$-\vec{\nabla}^2 + \mu^2 + 2\mu U_{opt}(r) \right] \psi(\vec{r}) = E_{KG}^2 \psi(\vec{r})$$

where: ${\it E_{KG}}$ - Klein -Gordon energy, μ - ${}^{3}{\rm He-}\eta$ reduced mass

optical potential:

$$U_{opt}(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$$

where: $\rho(r)$ - density distr. for $^3\mathrm{He},~\rho_0$ - normal nuclear density

KG equation solved for several sets of (V_0, W_0)

Search for $({}^{3}\text{He}-\eta)_{bound}$ | Selection criteria

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

34 / 59

Events selection - $pd ightarrow ({}^{3}\text{He-}\eta)_{bound} ightarrow {}^{3}\text{He} \; 2\gamma$

EMMI, 15.09.22, M. Skurzok

35 / 59

Excitation function $pd ightarrow ({}^{3}\text{He-}\eta)_{bound} ightarrow {}^{3}\text{He} \; 2\gamma$

Cross section

$$\sigma(Q) = \frac{N(Q)}{L(Q)\epsilon(Q)}$$

- N number of experimental events
- L integrated luminosity
- ϵ full detection efficiency

Excitation function $pd \rightarrow ({}^{3}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He} 6\gamma$

Cross section

$$\sigma(Q) = \frac{N(Q)}{L(Q)\epsilon(Q)}$$

- N number of experimental events
- L integrated luminosity
- ϵ full detection efficiency

ppn_{sp} ntegrated luminosity, nb⁻¹ 100 3He+eta 80 60 40 20 0 -20 -60 -40 Q_{3Hen}, MeV

20

Determination of the upper limit of the total cross section for $pd \rightarrow ({}^{3}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He2}\gamma(6\gamma)$ processes at CL=90%

Determination of the upper limit of the total cross section for $pd \rightarrow ({}^{3}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He}2\gamma(6\gamma)$ process at CL=90%

EMMI, 15.09.22, M. Skurzok

INDICATION:-)

slight indication of the signal from the bound state for $\Gamma > 20$ MeV and $B_s \in (0, 15)$ MeV (100 < V_0 < 70MeV and $|W_0| > 20MeV) \Downarrow$ However, the observed indication is within the range of the systematic error \Downarrow we cannot make a definite conclusion here on possible bound state formation

Previous result: COSY-11 $\sigma_{pd} \rightarrow (^{3}He - \eta)_{bound} \rightarrow ^{3}He\pi^{0} < 70 \ nb$ J. Smyrski et al., Nucl. Phys. A 790 (2007) 438 P. Adlarson et al., Phys. Lett. B 802, 135205 (2020) $\equiv b \in \mathbb{R} = 2000$ (Murzok Search for η -mesic Helium with WASA 39/59

Summary of the search for η -mesic Helium at WASA

$(^{4}\text{He-}\eta)_{bound}$	$\frac{(^{3}\text{He}-\eta)_{bound}}{(^{3}\text{He}-\eta)_{bound}}$
• 2008 : $dd \rightarrow {}^{3}\text{He}p\pi^{-}$ reaction	• 2014 : $pd \rightarrow {}^{3}\text{He}2\gamma$ and $pd \rightarrow {}^{3}\text{He}6\gamma$ reactions
$\sigma_{dd ightarrow (^4He-\eta)_{bound} ightarrow ^3Hep \pi^-} < 27~nb$	$\sigma_{\it pd ightarrow (^{3}He - \eta)_{bound} ightarrow ^{3}He2\gamma(6\gamma)} < 15~nb$
• 2010 : $dd \rightarrow {}^{3}\text{He}n\pi^{0}$ and $dd \rightarrow {}^{3}\text{He}p\pi^{-}$ reactions	2014, and a day from the
$\sigma_{dd ightarrow (^4He-\eta)_{bound} ightarrow ^3Hep \pi^-} < 7 ~nb$	• 2014 : $pd \rightarrow dp\pi^{\circ}$ reaction
$\sigma_{dd ightarrow (^4He-\eta)_{bound} ightarrow ^3Hen\pi^0} < 3.5 ~nb$	$\sigma_{pd \to (^{3}He - \eta)_{bound} \to dp\pi^{0}} < 24 \ nb$

Summary and Conclusions

- Search for η -mesic helium was carried out using the ramped beam technique.
- No bound state signal visible in 2008 data (upper limit of the total cross section for the bound state production determined)
- 2010 measurement doesn't show a narrow signal of η -mesic nuclei in $dd \rightarrow {}^{3}\text{He}n\pi^{0}$ and $dd \rightarrow {}^{3}\text{He}p\pi^{-}$ channels
- 2014 measurement doesn't show a narrow signal of η -mesic nuclei in $pd \rightarrow {}^{3}\text{He}2\gamma$, $pd \rightarrow {}^{3}\text{He}6\gamma$ and $pd \rightarrow dp\pi^{0}$ channels
- The upper limits for $dd \rightarrow ({}^{4}\text{He}-\eta)_{bound} \rightarrow {}^{3}\text{He}p\pi^{-}$ and $dd \rightarrow ({}^{4}\text{He}-\eta)_{bound} \rightarrow {}^{3}\text{He}n\pi^{0}$ reaction in order of **few nb**!
- The upper limits for $pd \rightarrow {}^{3}\text{He}2\gamma(6\gamma)$ reactions < 15 nb!
- The upper limit for $pd \rightarrow dp\pi^0$ reactions < 24 nb!

Thank you for attention

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

Selection criteria

Determination of the excitation function

Excitation function

 $\sigma(Q) = \frac{N(Q)}{\varepsilon(Q) \cdot L(Q)}$

N – number of experimental events ε – reconstruction efficiency L – integrated luminosity

Number of events

Integrated luminosity

 $pd \rightarrow ppn_{spectator}$

Upper limit of the total cross section

B_n = -30 MeV, Γ = 15 MeV

Fit with a Breit–Wigner function combined with a first order polynomial:

$$\frac{A \cdot \frac{\Gamma^2}{4}}{(Q - B_s)^2 + \frac{\Gamma^2}{4}} + BQ + C$$

Breit-Wigner (signal) + pol1 (background)

 B_s and Γ are fixed parameters; A, B, C are free parameters. $\sigma_{CL=90\%}^{upp} = k \cdot \sigma_A, \ k = 1.64 \ (CL = 90\%)$

Events selection - $pd ightarrow ({}^{3}\text{He-}\eta)_{bound} ightarrow {}^{3}\text{He} \; 2\gamma$

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

æ

Forschungszentrum Jülich, Germany

EMMI, 15.09.22, M. Skurzok

COoler SYnchrotron COSY

EMMI, 15.09.22, M. Skurzok

< □ > < 同 > < 回 > < 回 > < 回 >

Motivation

- Search for new kind of nuclear matter
- Investigation of η interaction with nucleons inside a nuclear matter
- Information about η meson structure: the η meson binding inside nuclear matter is very sensitive to the singlet component (η-η' mixing) in the wave function of the η meson η-η' mixing ⇒ binding increase
 D. Base and D. Madral. Bay. Med. Blue. 01, 015002 (2010)
 - S. D. Bass and P. Moskal, Rev. Mod. Phys. 91, 015003 (2019)
 - S. D. Bass, A. W. Thomas, Phys. Lett. B634, 368 (2006)
 - S. Hirenzaki, H. Nagahiro, Acta Phys. Polon. B45, 619 (2014)

 Study of N*(1535) properties in medium (probe of testing different N*(1535) models)

- S. Hirenzaki et al., Acta Phys. Polon. B41, 2211 (2010)
 D. Jido, H. Nagahiro, S. Hirenzaki, Phys. Rev. C66, 045202 (2002)
- Z.-W. Liu et al., Phys. Rev. Lett. 116, 082004 (2016)

Properties of η meson

mass	$547.862\pm0.017\text{MeV}$		
width	$1.31\pm0.05~\text{keV}$		
$I^G(J^{PC})$	0+(0-+)		
n is an eigenstate to	P. C. G and CP		
$\stackrel{\prime}{C} \eta>=+1 \eta>$	P $ \eta>=-1$ $ \eta>$		
Decay modes	Branching ratio		
Charged modes	28.10±0.34 %		
$\eta \to \pi^+\pi^-\pi^0$	22.92±0.28 %		
$\eta \to \pi^+\pi^-\gamma$	4.22±0.16 %		
other modes	0.76 %		
Neutral modes	72.912±0.34 %		
$\eta ightarrow 2\gamma$	39.41±0.20 %		
$\eta ightarrow 3\pi^0$	32.68±0.23 %		

P. A. Zyla et al. (PDG), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

$$\eta_1 = \frac{1}{\sqrt{3}} (d\overline{d} + u\overline{u} + s\overline{s}),$$

$$\eta_8 = \frac{1}{\sqrt{6}} (d\overline{d} + u\overline{u} - 2s\overline{s}).$$

The observed η particle is the combination of the η_1 and η_8 states:

 $|\eta>=\eta_8 cos heta-\eta_1 sin heta, \ heta=$ -15.5 $^\circ\pm 1.3^\circ$

Hadronic decays (3π) (isospin breaking: $m_u - m_d$) Radiative decays $(\gamma \gamma \ (\pi \pi))$ (Semi-) leptonic decays (/ / (γ)) $\eta \rightarrow e^+e^-\gamma$ $\eta \rightarrow e^+e^-e^+e^-$

・ 何 ト ・ ヨ ト ・ ヨ ト

Exp. indications of the existence of the ³He- η bound state

total cross section $pd \rightarrow {}^{3}\text{He-}\eta \qquad \gamma^{3}\text{He-}\eta^{3}$

J. Smyrski, et al., Phys. Lett. 649, 258 (2007) T. Mersmann, et al., Phys. Rev. Lett. 98, 242301 (2007) J.-J. Xie, et al., Phys. Rev. C 95, 015202 (2017) B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2014)

Simulation of $pd ightarrow ({}^{3}\text{He-}\eta)_{bound} ightarrow dp\pi^{0}$

52 / 59

æ

(日) (四) (日) (日) (日)

Simulation of $pd ightarrow ({}^{3}\text{He-}\eta)_{bound} ightarrow dp\pi^{0}$

Breit-Wigner formula

$$N(\sqrt{s_{pd}}) = \frac{\Gamma^2/4}{\left(\sqrt{s_{pd}} - (m_\eta + m_{3He} - B_s)\right)^2 + \Gamma^2/4} B_s \in (0, 40) \ MeV; \Gamma \in (5, 50) \ MeV$$

N. Kelkar et al., Int. J. Mod. Phys. E 28, 1950066 (2019); N. Kelkar et al., Nucl. Phys. A 996, 121698 (2020)

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

Exp. indications of the existence of the ⁴He- η bound state

EMMI, 15.09.22, M. Skurzok

Analysis of $pd ightarrow ({}^{3}\text{He-}\eta)_{bound} ightarrow {}^{3}\text{He} \; 2\gamma$ process

• ³He spectator

• $P_{^{3}He}: p_{^{3}He} = \sqrt{m_{^{3}He}^2 + p_{^{fermi}}^2},$ distributed isotropically

•
$$P_{\eta_{bound}} = P_p + P_d - P_{^3He} \Rightarrow m_{\eta_{bound}} = |P_{\eta_{bound}}|$$

(V_0, W_0) [MeV]	$(B_{\rm s},\Gamma_{\rm abs})$ [MeV]	$\mathrm{BR}^*_{\eta o 2\gamma}$	$BR^*_{\eta \to 3\pi^0}$
-(75,20)	(4.06, 15.66)	3.30×10^{-5}	2.73×10^{-5}
-(90,20)	(11.16, 20.65)	2.50×10^{-5}	2.07×10^{-5}
-(75,1)	(5.96, 0.76)	6.78×10^{-4}	5.62×10^{-4}
-(90,1)	(12.67, 1.02)	5.06×10^{-4}	4.20×10^{-4}

æ

イロト イヨト イヨト

Events selection - $pd \rightarrow ({}^{3}\text{He-}\eta)_{bound} \rightarrow {}^{3}\text{He} 6\gamma$

Events selection - $pd \rightarrow ({}^{3}\text{He} - \eta)_{bound} \rightarrow {}^{3}\text{He} 6\gamma$

EMMI, 15.09.22, M. Skurzok

Search for η -mesic Helium with WASA

58 / 59

æ

Purple and green - predictions based on the few body formalism with an optical model, where the complex η -nucleon scattering amplitude is obtained from (GW) a K-matrix description of the pN, ppN, η N and γ N coupled channels and fit to existing data (purple dot) and (CS) η N amplitudes calculated within a chirally motivated separable potential model with the pa-rameters of the model fitted to N \rightarrow Nand N \rightarrow Ndata. (green dot).

N. Barnea, B. Bazak, E. Friedman, A. Gal, Phys. Lett. B, 771 (2017), 297

Blue- results obtained for a class of potentials including Gaussian, exponential and Hulthen (at E=0, l>0).

Red dots - predictions of very narrow and weakly bound states of 4He- η , with binding energies and widths in the range of \approx 2–230 keV and \approx 8–64 keV respectively, that are found by solving the Klein Gordon equation. These states correspond to the optical potential parameters $|V_0|$ in the range from 58 MeV to 65 MeV and $W_0 = 0.5$ MeV.