GDH on the Deuteron:
 Status and new results from A2@MAMI

Paolo Pedroni

INFN-Sezione di Pavia, Italy
For the A2@MAMI collaboration (Mainz-Germany)

>Physics motivations Why the Gerasimov-Drell-Hearn sum rule is interesting both for the nucleon and the nuclei?
> Experimental set up (A2 tagged photon facility)
> Results

$$
\vec{\gamma} \vec{d} \rightarrow\left\{\begin{array}{c}
X(\text { total inclusive c.s. }) \\
\pi^{0} B(B=n p \text { or } d)
\end{array}\right.
$$

$>$ Outlook

The GDH sum rule

$>$ Proposed in 1966 independently by Gerasimov and Drell-Hearn
> Prediction on the absorption of circularly polarized photons by longitudinally polarized nucleons/nuclei

GDH sum rule:

\checkmark Fundamental check of our knowledge of the γ-Nucleon interaction The only "weak" hypothesis is the assumption that Compton scattering $\gamma \mathrm{N} \rightarrow \gamma^{\prime} \mathrm{N}^{\prime}$ becomes spin independent when $v \rightarrow \infty$ A violation of this assumption can not be easily explained (non pointlike quarks ???)
\checkmark Important comparison for photoreaction models
\checkmark Helicity dependence of partial channels (pion photoproduction) is an essential tool for the study of the baryon resonances (interference terms between different electromagnetic multipoles)
\checkmark Valid for any hadronic system with $k \neq 0\left({ }^{2} \mathrm{H},{ }^{3} \mathrm{He}, \ldots\right)$. Interplay between different degrees of freedom

GDH sum rule predictions

	p	n	d	${ }^{3} \mathrm{He}$
μ	2.79	-1.91	0.86	-2.13
κ	1.79	-1.91	-0.14	-8.37
$I_{G D H}$	204	233	0.65	498
"naive" expectations			≈ 430	≈ 230
		$\approx I_{G D H}^{p}+I_{G D H}^{n}$		$\approx I_{G D H}^{n}$

Difference due to photodisintegration processes

AFS model

Arenhoevel, Fix, Schwamb, PRL 93, 202301 (04)
$\pi \mathrm{NN} \pi \mathrm{N}$ from MAID PWA +nuclear effects
$\pi \pi N N$ EPJA 25,114 (05)
π^{0} d PLB 407,1 (97)
pn NPA 690,682 (01)

$$
\left[I_{G D H}^{d e u t}\right]_{A F S}=27 \mu b
$$

AFS model

Dominant M1 transition from the bound ${ }^{3} S_{1}$ state to the continuum ${ }^{1} S_{0}$ state can only be reached for antiparallel photon and deuteron spins
$\vec{\gamma}^{3} \vec{H} e \rightarrow X$

Model from Golak-Gloeckle

Photodisintegration processes (sensitive to MEC, 3 N forces, ..) give a positive contribution to the sum rule value
\checkmark GDH sum rule on nuclei gives an important "link" between nuclear and nucleon degrees of freedom (photodisintegration processes at a few MeV are correlated by the sum rule to quasi-free pion photoproduction processes in the GeV region)
\checkmark It is very important to experimentally verify its convergence also on nuclei and not only on the nucleon
\checkmark Possible violations/modifications in nuclei?
】
(S. Bass: Acta Phys. Pol. 52, 43 (2021); modifications to GDH due to a smaller nucleon mass inside the nuclear medium ?)

Experimental status -protoon

Experimental status - GDH on nuclei

Deuteron: scarce data above 800 MeV
Helicity dependence of partial channels (total and differential cross sections) needs also to be measured to study nucleon modifcations inside the nuclear medium and as a tool to access free-neutron information

Experimental Set up

Mainz Microtron MAMI: electron beam

A2 Hall: Tagged photon facility

Linearly and Circularly Polarised photons

Polarised proton/deuteron targets 10w

See A. Thomas talk

High stability
Low beam divergence

- Injector $\rightarrow 3.5 \mathrm{MeV}$
- RTM1 $\rightarrow 14.9 \mathrm{MeV}$
- RTM2 $\rightarrow 180 \mathrm{MeV}$
- RTM3 $\rightarrow 883 \mathrm{MeV}$

Very good properties of the secondary photon beam

- $\mathrm{HDSM} \rightarrow 1.6 \mathrm{GeV}$

A2@MAMI: Detector overview

Mainz-Glasgow photon tagging spectrometer

Nucleon polarimeter
Photon beam produced by bremsstrahlung and tagged by a magnetic spectrometer $E_{\gamma}=E_{0}-E_{e^{-}} \quad ; \quad \Delta E_{\gamma}=2-4 \mathrm{MeV}$ (graphite cylinder) also available

Total inclusive cross section

$\sigma_{\text {total }}=$ ppartialchannels (not feasible)
$\widehat{\sigma_{\text {total }}}=\sum$ hadrons (inclusive method)
For each partial reaction channel, at least one reaction product has to be detected with (almost) complete acceptance (solid angle \& efficiency)
a) detector with a very high acceptance/particle detection efficiency (CB+TAPS: 97% of 4π)
b) Suppression of e.m. events (pair prod./Compton)

Threshold Cerenkov detector placed at forward angles (in front of TAPS)

Experimental trigger:

> [1 cluster in CB] or [1 cluster in TAPS without Cherenkov on-line veto]

Energy Threshold $>40 \mathrm{MeV} \quad$ (to suppress e.m. background at forward polar angles)
 (further suppression of e.m. background)

Single pion channels: missing contribution evaluated using GEANT efficieny and helicity dependent different cross section from SAID an MAID PWA (coincident results)

Double pion channels: missing contribution evaluated using GEANT efficiency and assuming helicity asymmetry $\left(\sigma_{P}-\sigma_{A}\right) /\left(\sigma_{P}+\sigma_{A}\right)$ to be the same both in the measured part and in the unmeasured one. For $\Delta \sigma\left(E_{\gamma}\right)=\left(\sigma_{P}-\sigma_{A}\right)$ used both experimental data (when available) or the model from A. Fix (EPJA 25,114 (05))

GDH sum rule on deuteron and ${ }^{3} \mathrm{He}$

$\mathrm{n} \mathrm{p} \quad$ PWIA approach
$\begin{array}{\|c} \mid{ }^{2} \mathrm{H}: \quad \mu \sim \mu_{\mathrm{p}}+\mu_{n} \Rightarrow \uparrow \uparrow \end{array} \mathrm{E}_{\gamma}>\mathrm{m}_{\pi}$
$>{ }^{3} \mathrm{He}: \mu \sim \mu_{\mathrm{n}} \Rightarrow \uparrow \uparrow \downarrow$ (S-state with $\sim 90 \%$ prob.) $\mathrm{I}_{G D H}{ }^{H e 3} \sim 0.87 \cdot \mathrm{I}_{\text {GDH }}{ }^{\text {neutron }}-0.026 \cdot \mathrm{I}_{G D H}$ proton

Conclusions

$>$ New results on the helicity dependence of the γ-deuteron interaction significantly increase/improve both the quality and the quantity of the existing data
$>$ Good agreement with the existing data, when available
> Importance of these new data in providing additional constraints for nuclear and subnuclear models
$>$ Partial reaction channels also give important information on the modification of nucleon properties inside nuclear medium
$>$ Further measurements to improve statistics and to investigate additional partial reaction channels are needed
> Additional data with polarised ${ }^{3} \mathrm{He}$ and ${ }^{6} \mathrm{Li} /{ }^{7} \mathrm{Li}$ targets are also needed

Beam Polarization

Linearly polarized photons

- Diamond radiator needed
o Coherent Bremsstrahlung
- Coherent edges at 350 MeV , 450 Mev , 550 MeV , 650 MeV , 750 Mev , 850 MeV ,

Circularly polarized photons

- Longitudinally polarized electrons needed
- Helicity transfer to photon
- Mott/Moeller measurements: beam polarisation $p_{e} \approx 75-85 \%$

Target Polarization

Longitudinally and Transversally polarized protons/deuterons (Mainz-Dubna target)

- Polarized material: (deuterated) butanol (Bochum)
- Polarization via DNP process
- 70 GHz microwave irradiation at 2.5 T us used to transfer the electron polarization to p / d
$03 \mathrm{He} / 4 \mathrm{He}$ dilution cryostat at 25 mK and holding coil at 0.63 T
- Relaxation time ≈ 2000 hours

$0 \approx 10^{23}$ polarized protons (deuterons) $/ \mathrm{cm}^{2}$
○ $P_{\text {proton }} \approx 90 \% ; \quad P_{\text {deuteron }} \approx 50 \%$
- Carbon target needed for background studies

Polarised ${ }^{3} \mathrm{He}$ gas target

- Cylindrical cell (gas polarised via MEOP)
. Length: 20 cm
diameter: 6 cm
Made of quartz glass (thickness: 2 mm)
Titanium entrance and exit windows ($50 \mu \mathrm{~m}$)
provide the necessary gas tightness (4 bar)
elive long relaxation time ($\sim 20 \mathrm{hrs}$) of the gas polarisation
${ }^{3}{ }^{3} \mathrm{He}$ polarisation measurements carried out via NMR technique; field provided by Helmholtz coils

in collaboration with PI, Mainz

${ }^{3} \mathrm{He}$ magnetic moment

$$
-2.12 \cdot \frac{e \hbar}{2 m_{p}}=(2+k) \frac{e \hbar}{2 m^{3} \mathrm{He}} \Rightarrow \mathrm{k}=-8.35
$$

