

Universality in Hypernuclei

Hans-Werner Hammer Technische Universität Darmstadt

EMMI Workshop "Meson and Hyperon Interactions with Nuclei", Kitzbühel, 14-16 September 2022

September 13, 2022 | Department of Physics | Institut für Kernphysik | H.-W. Hammer | 1

Outline

- Universality
- Threshold bound states, the unitary limit, and Efimov physics
- Applications to the Hypertriton
- Summary and Outlook

References:

HWH, Nucl. Phys. A **705** (2002) 173 Hildenbrand, HWH, Phys. Rev. C **100** (2019) 034002, ibid. **102** (2020) 039901(E)

Universality in Physics

Universality: Physical systems with different short-distance behavior exhibit identical behavior at large distances

Universality in Physics

Universality: Physical systems with different short-distance behavior exhibit identical behavior at large distances

- Ultracold atoms: interaction at sufficiently low energies described by scattering length a
- Properties of dilute homogeneous BEC:

(Source: http://jilawww.colorado.edu/bec/)

$$ho a^3 \ll 1$$

Tail wagging the dog

Universality: low-energy physics controlled by tail of wave function

Tail wagging the dog

(idiomatic) A minor or secondary part of something controlling the whole. (cf. http://en.wiktionary.org/wiki/tail_wagging_the_dog)

Physics Near the Unitary Limit

- Consider short-ranged, resonant S-wave interactions
- Unitary limit: $a
 ightarrow \infty$, $\ell \sim r_e
 ightarrow 0$

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k\cot\delta}_{-1/a+r_ek^2/2+\dots} -ik\right]^{-1} \sim i/k$$

Scattering amplitude scale invariant, saturates unitarity bound

Physics Near the Unitary Limit

- Consider short-ranged, resonant S-wave interactions
- Unitary limit: $a
 ightarrow \infty$, $\ell \sim r_e
 ightarrow 0$

$$\mathcal{T}_2(k,k) \propto \begin{bmatrix} \underbrace{k \cot \delta}_{-1/a+r_e k^2/2+\dots} -ik \end{bmatrix}^{-1} \sim i/k$$

- Scattering amplitude scale invariant, saturates unitarity bound
- Use as starting point for description of few-body physics
 - **a** Natural expansion parameter: $|a| \gg \ell \sim r_e, I_{vdW}, ... \Rightarrow \ell/|a|, k\ell,...$
 - Universal dimer with energy $E_d = -1/(ma^2)$ (a > 0)
 - Reproduce tail of the wave function: $\psi(\mathbf{r}) \propto \frac{e^{-r/a}}{r}$
 - Corrections in higher orders

Broken Scale Invariance

- Three-boson system near the unitary limit (Efimov, 1970)
- Hyperspherical coordinates: $R^2 = (r_{12}^2 + r_{13}^2 + r_{23}^2)/3$
- Schrödinger equation simplifies for $|a| \gg R \gg l$:

Broken Scale Invariance

- Three-boson system near the unitary limit (Efimov, 1970)
- Hyperspherical coordinates: $R^2 = (r_{12}^2 + r_{13}^2 + r_{23}^2)/3$
- Schrödinger equation simplifies for $|a| \gg R \gg l$:

$$-\frac{\hbar^2}{2m}\left[\frac{\partial^2}{\partial R^2} + \frac{\mathbf{s}_0^2 + 1/4}{R^2}\right]f(R) = \underbrace{-\frac{\hbar^2\kappa^2}{m}}_{E}f(R)$$

- Singular Potential: renormalization required
- Boundary condition at small R: breaks scale invariance
 - ⇒ "3-body force"
 - \implies scale invariance is anomalous
 - \implies observables depend on boundary condition and a
- Universality concept must be extended for such systems

Three-Body Force

- Three-body parameter: Λ_{*},...

Limit Cycle: Efimov Physics

Universal spectrum of three-body states (Efimov, 1970)

- Window of universality
- **Discrete scale invariance for fixed angle** ξ
- **Geometrical spectrum for** $1/a \rightarrow 0$

$$B_3^{(n)}/B_3^{(n+1)} \xrightarrow{1/a \to 0} e^{2\pi/s_0} = 515.035...$$

- Ultracold atoms ⇒ variable scattering length ⇒ loss resonances
- Nuclei ⇒ universal correlations and scaling relations
 - Applications: ³H, ³He, ⁴He, halo nuclei

Hypernuclear Physics

Extension of nuclear chart to third dimension: strangeness

$\wedge d\text{-}\textbf{System}$ and the Hypertriton

TECHNISCHE UNIVERSITÄT DARMSTADT

Hypertriton

- **n** $p\Lambda$ bound state with $J^P = \frac{1}{2}^+$, I = 0
- Λd separation energy: $B^{\Lambda} = (0.13 \pm 0.05)$ MeV
- total binding energy: $B_3^{\Lambda} = 2.35 \text{ MeV}$
- EFT for large scattering lengths
 - \implies shallow hypertriton follows naturally
- Leading order EFT ⇒ S-wave interactions
 - $\ \ \, ^3S_1(NN) + \Lambda \qquad \longrightarrow \quad a_d \sim 1/\gamma_d$
 - $\ \ \, ^3S_1(\Lambda N)+N \qquad \longrightarrow \quad a_3\sim 1/\gamma_3$
 - $\ \, ^{1}S_{0}(\Lambda N) + N \qquad \longrightarrow \quad a_{1} \sim 1/\gamma_{1}$
- Scattering lengths large compared to interaction range

(NN $\rightarrow \pi$ -exchange, $\Lambda N \rightarrow 2\pi$ -exchange)

Low-Energy AN-System

- ΛN system unbound
- (Old) effective range analyses inconclusive (few data at relatively high energies)
 - $0 > a_1 > -15 \text{ fm}$ $0 < r_1 < 15 \text{ fm}$
 - $-0.6 \text{ fm} > a_3 > -3.2 \text{ fm}$ 2.5 fm $< r_3 < 15 \text{ fm}$
- Extractions using hyperon-nucleon potentials
 - $a_1 \approx -2.9 \text{ fm}, \qquad a_3 \approx (-1.5... 1.7) \text{ fm}, \qquad \gg R \sim 1/(2m_\pi)$

(NLO chiral EFT: Haidenbauer et al., Nucl. Phys. A 915 (2013) 24)

Characteristic three-body momentum

$$\gamma_3^{\wedge} \sim 2\sqrt{|\textit{MB}_3^{\wedge} - \gamma_d^2|/3} pprox$$
14 MeV $\ll \sqrt{m_{\wedge}(m_{\Sigma} - m_{\wedge})} pprox$ 300 MeV

 $\Rightarrow \Lambda \Sigma$ conversion is short range \implies captured in ΛNN three-body force

Integral Equations

• Integral equations for hypertriton (I = 0)

$$\overline{(T_A)} = \overline{(T_B)}^3 + \overline{(T_A)}^1 + \overline{(T_B)}^1 + \overline{(T_B)}^1 + \overline{(T_C)}^1$$

$$\overline{(T_B)}^3 = \overline{(T_C)}^3 + \overline{(T_A)}^3 + \overline{(T_B)}^3 + \overline{(T_C)}^1 + \overline{(T_C)}^1$$

$$\overline{(T_C)}^1 = \overline{(T_C)}^1 + \overline{(T_A)}^1 + \overline{(T_B)}^1 + \overline{(T_C)}^1$$

HWH, Nucl. Phys. A 705 (2002) 173; Hildenbrand, HWH, Phys. Rev. C 100 (2019) 034002

- Strong cutoff dependence
 - \implies renormalize with $\wedge np$ three-body force
- Side remark: similar behavior for $I = 1 \implies \Lambda nn$ not excluded "a priori" in pionless EFT

Renormalization

Scaling factor and three-body force

• $M/M_{\Lambda} \approx 0.84 \Rightarrow$ limit cycle with $s_0 = 1.0076$

- Scaling factor: $exp(\pi/s_0) \approx 22.60$
- Three-body parameter: $B_3^{\wedge} = 2.22 + 0.13 \text{ MeV} \Rightarrow \Lambda_*^{l=0} = 6.372 \text{ MeV}$
- No room for excited states....

∧d Scattering

Hildenbrand, HWH, Phys. Rev. C 100 (2019) 034002, ibid. 102 (2020) 039901(E)

- Exact value of γ_i not determined by B^Λ₃
- Phase shifts independent of $\gamma_i \iff \text{shallowness of hypertriton}$
- Low-energy parameters:

$$a_{\Lambda d} = 15.4 \text{ fm}$$
 and $r_{\Lambda d} = 1.3 \text{ fm}$

∧np Phillips Line

• Correlation between hypertriton triton binding energy and $S = 1/2 \Lambda d$ scattering length (cf. Phillips '68)

Hildenbrand, HWH, Phys. Rev. C 100 (2019) 034002, ibid. 102 (2020) 039901(E)

- Sensitivity to specific values of γ_i only for deeper binding
- Hypertriton wave function can also be extracted \Rightarrow matter radii

Hypertriton Wave Function

Hypertriton wave function for different spectator particles

Hildenbrand, HWH, Phys. Rev. C 100 (2019) 034002

Next step: calculate matter radii

Hypertriton Radii

+3.04/-1.33	+0.40/-0.23	+0.41/-0.23	+0.00/-0.03
+0.03/-0.02	+0.03/-0.03	+0.03/-0.03	+0.03/-0.04

Hildenbrand, HWH, Phys. Rev. C 100 (2019) 034002

• Two-body
$$\Lambda d$$
 EFT: $\sqrt{\langle r_{\Lambda-NN'}^2 \rangle} = 10.3 \text{ fm} \implies \text{works very well!}$

∧d Universality

- Low-energy aspects of hypertriton can be described in EFT with Ad degrees of freedom
 - \implies simple correlation between size and B_{Λ}

Summary

- Universality in unitary limit
- Discrete Scale Invariance ⇔ Efimov physics
 - Effective field theory for hypertriton

•••••

- Three-body calculation of hypertriton
 - Hypertriton can be considered Efimov state
 - Little sensitivity to exact values of ∧N scattering lengths
 - $\Lambda\Sigma$ conversion $\Longrightarrow \Lambda NN$ three-body force
 - Matter radius well described in EFT with Λd dof
- Low-energy aspects of Hypertriton can be described in EFT with Ad degrees of freedom
 - Bypertriton lifetime (Hildenbrand, HWH, Phys. Rev. C 102 (2020) 064002)
 - \implies talk by F. Hildenbrand on Friday