On η and η' as QCD bound states and their relation to confinement, chiral symmetry breaking and U_A(1) anomaly

Reinhard Alkofer

Institute of Physics, University of Graz

EMMI workshop on *Meson and hyperon interactions with nuclei* Kitzbühel, September 14-16, 2022

Motivation: Why studying hadrons?

Understanding hadrons from QCD

- is a fascinating challenge by itself!
- will solve long-standing puzzles as, e.g., confinement!
- will provide deepened insight into fundamental physics!
- ...
- is needed for astrophysics, cosmology, high-energy particle physics, etc..
- Precision experiments to detect BSM physics rely:
 - on precise theoretical predictions within the SM,
 - and in turn on determination of SM parameters,
 - which implies, directly and indirectly, the need for precise calculations of the effects of hadron structure (*i.e.*, minimise "hadronic uncertainties").

Estimating the reliability of a non-perturbative calculation (and thus provide an estimate of the systematic error) can only be achieved based on an understanding of the investigated physics.

Thanks to Steven and Stefan for their excellent talks!

... will focus here on some complementary aspects ...

R. Alkofer (Graz)

Motivation: Why studying η and η' mesons?

The η and η' mesons are special:

• "Relatives" to the Goldstone bosons of Dynamical Chiral Symmetry Breaking (D χ SB),

i.e., pions and kaons

• Properties, in particular the masses, influenced by a specific property of the gluon vacuum via the axial anomaly / $U_A(1)$ anomaly.

Two competing effects with different flavour structure:

[Shore, Witten, Veneziano, ...]

• Mixing of η and η' mesons

s.t. avoided crossing occurs

as function of interaction strength related to $U_A(1)$ anomaly

With isospin breaking taken into account: η and η' mix with π^0 .

Motivation: Why studying η and η' mesons?

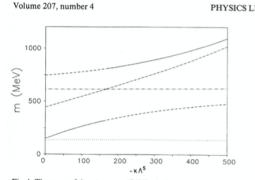


Fig. 1. The mass of the η' -meson (full line), the η -meson (dashed line) and the π^0 -meson (dotted line) as functions of the coupling strength κ of the 't Hooft determinant. Shown is also the η_0 -"mass" (dash-dotted line) and the η_s -"mass" (dash-double-dotted line). [The "mass" of the state $(u\bar{u}-d\bar{d})/\sqrt{2}$ is not shown because on this scale it is not distinguishable from the π^0 -mass except for very small κ .]

H. Reinhardt & RA, PLB 207 (1988) 482

Motivation: Why studying η and η' mesons?

 The specific realisation of DχSB and the U_A(1) anomaly in QCD, *i.e.*, for the given quark current masses / Higgs-Yukawa couplings, is related to certain aspects of <u>confinement</u>.

Colour confinement vs. "separation-of-charge" confinement [J. Greensite et al.]:

- Colour confinement is a consequence of gauge invariance, (more precisely: unbroken BRST(-like) charge) also present in Higgs phase and thus electroweak theory (*cf.* FMS mechanism)
- Dynamical "separation-of-charge" confinement refers to a strong counter-action if one tries to separate colour charges.

(Hadrons locally colour-less!)

Basic Facts about $U_A(1)$ anomaly

- U_A(1) always anomalous in Poincaré-invariant vector-like gauge theories with vanishing vacuum angle (Θ = 0)
 (C. Vafa & E. Witten, NPB234 (1984) 173; PRL 53 (1984) 535)
- But: Strength is determined by specific dynamics which is based on gauge group and matter content.

Topological approach:

Randomly distributed winding number spots with top. susc. $\neq 0$

Functional approach:

For momentum-space Green functions encoded in **infrared behaviour** because related to boundary conditions in (Euclidean) space-time.

A B F A B F

Basic Facts about $U_A(1)$ anomaly

- U_A(1) always anomalous in Poincaré-invariant vector-like gauge theories with vanishing vacuum angle (Θ = 0)
 (C. Vafa & E. Witten, NPB234 (1984) 173; PRL 53 (1984) 535)
- But: Strength is determined by specific dynamics which is based on gauge group and matter content.

Topological approach:

Randomly distributed winding number spots with top. susc. $\neq 0$ $\stackrel{Index theorem}{\Longrightarrow}$ percolating quark zero modes $\implies U_A(1)$ anomalous.

Functional approach:

For momentum-space Green functions encoded in **infrared behaviour** because related to boundary conditions in (Euclidean) space-time.

A B b 4 B b

Basic Facts about $U_A(1)$ anomaly

- U_A(1) always anomalous in Poincaré-invariant vector-like gauge theories with vanishing vacuum angle (Θ = 0)
 (C. Vafa & E. Witten, NPB234 (1984) 173; PRL 53 (1984) 535)
- But: Strength is determined by specific dynamics which is based on gauge group and matter content.

Topological approach:

Randomly distributed winding number spots with top. susc. $\neq 0$ $\stackrel{Index theorem}{\longrightarrow}$ percolating quark zero modes $\implies U_A(1)$ anomalous.

Functional approach:

For momentum-space Green functions encoded in **infrared behaviour** because related to boundary conditions in (Euclidean) space-time.

"Zoo" of topological gauge-field configurations:

- Instantons with integer winding number Q, localised in spacetime
- Kran-van-Baal Calarons with integer Q, several centers
- Chromomagnetic Monopoles with integer Q, (world)lines in spacetime
- Writhing points of Center Vortices with non-integer Q (1/4), correlated along lines and surfaces

If any of these are present in sufficient density: $D\chi SB$.

Non-vanishing autocorrelation of winding number spots, called topological susceptibility χ , provides contribution to U_A(1) anomaly. From η and η' mass: $\chi \approx (180 \text{ MeV})^4$.

8/18

- . . .

< 日 > < 同 > < 回 > < 回 > < □ > <

No gluonic long-range correlation for instantons \implies Instantons are not confining! (The attached quark zero modes percolate $\implies \chi \neq 0$.)

Center vortices: Indications that they are confining field configurations.

Thus: Relation of $U_A(1)$ anomaly to confinement unclear in topological approach.

A B F A B F

How to describe $U_A(1)$ anomaly in functional approaches as, *e.g.* Dyson-Schwinger–Bethe-Salpeter equations or FRG with dynamical hadronisation?

Adding topological field configurations on top of functional equations is double counting! *Cf.* Bloch waves, QED₂ (Schwinger model), etc..

In complete, translationally-invariant and local gauge: Gluon propagator is positivity violating! Coloured gluons are confined not confining!

In Landau gauge: Quark-gluon vertex, including its $D\chi$ SB-induced parts, is decisive ingredient to make **4-quark function infrared divergent**. (Can be shown for so-called scaling solution in 3PI approach at 3-loop level.)

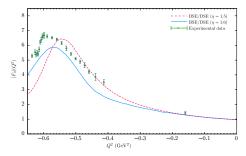
"Separation-of-charge" confinement and $D\chi SB$

From a first-principle Dyson-Schwinger–Bethe-Salpeter calculation for SU(3) Yang-Mills theory in 3PI approach at 3-loop level: Glueball masses and amplitudes ("wave functions") determined. [M.Q. Huber, C.S. Fischer, H. Sanchis-Alepuz, 2020 - 2022]

- Very good agreement with lattice calculations.
- Prediction of higher-spin glueballs.¹

NB: Lowest-lying pseudoscalar glueball, $m \approx 2.6$ GeV, likely to massive to play a significant role for the η and η' .

¹In a Poincaré-invariant continuum approach spin is a good quantum number whereas lattice has hypercubic symmetry.

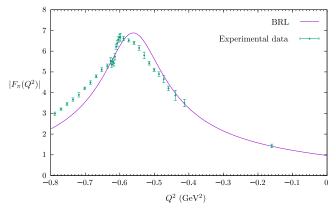


UN

Functional approaches: A note on current status

Dyson-Schwinger–Bethe-Salpeter calculation with some assumptions and some modelling but genuine QCD d.o.f. up to a level where intermediate resonances and two-pion states are consistently back-coupled:

Pion time-like form factor [A. Miramontes, H. Sanchis-Alepuz, RA, 2021]


Absolute value of the pion form factor in the time-like $Q^2 < 0$ domain for $\eta = 1.5$ and $\eta = 1.6$, only leading π BS amplitude in 2- π -exchange kernels.

R. Alkofer (Graz)

Pion time-like form factor

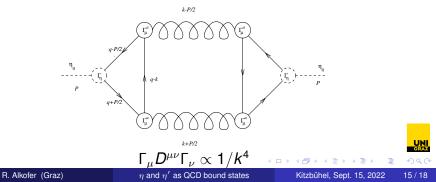
Absolute value of the pion form factor, $Q^2 < 0$, $\eta = 1.5$ with all BS amplitudes in 2- π -exchange kernels taken into account (requires 10 × CPU time) [A. Miramontes, unpublished]

extracted pole position: $M_{\rho} = 755 \text{ MeV}, \Gamma_{\rho} = 123 \text{ MeV}$ (before: 100 MeV, expt.: 149 MeV).

R. Alkofer (Graz)

 η and η' as QCD bound states

UN


$U_A(1)$ anomaly and η' mass from IR divergent correlation functions

R.A., C. S. Fischer, R. Williams, Eur. Phys. J. A 38 (2008) 53.

 $U_A(1)$ symmetry anomalous $\Rightarrow \eta$ and η' masses $\gg \pi$ mass Where is this encoded in the Green functions?

(J. B. Kogut and L. Susskind, Phys. Rev. D 10 (1974) 3468.)

E.g. in:

η^\prime mass from IR divergent 4q correlation functions

However: Infinitely many diagrams (n-gluon exchange) contribute!

Nevertheless:

Calculate contribution from **diamond diagram only** employing DSE results for the gluon and quark propagators and quark-gluon vertex (provides correct pseudoscalar and vector meson masses):

 $\chi^2 \approx (160 \text{MeV})^4$ vs. phenomenological value $(180 \text{MeV})^4$, together with BS amplitudes for η and η' analogous to pions and kaons results in: $m_\eta = 479 \text{MeV}, m_{\eta'} = 906 \text{MeV}, \theta = -23^0$.

Conclusion: (Fluct.) topologically non-trivial fields \Leftrightarrow IR singular correlations! Mutually consistent ways to generate Witten-Venezanio mechanism Quark confinement \Rightarrow D χ SB and U_A(1)anomaly!

R. Alkofer (Graz)

 η and η' as QCD bound states

- \odot Two ways to determine topological susceptibility in QCD, and thus to calculate the η and η' masses and their mixing:
 - Determine the autocorrelation of fluctuations around topologically non-trivial gluon field configurations.
 - Employ a functional approach with infrared divergent four quark correlation function.
- \odot Both ways elucidate the relation to D χ SB.
- © Functional approach indicates relation to confinement.

Further studies:

- Anomalous γ-3π form factor for space-like and time-like s, t, u (on-going; A. Miramontes, G. Eichmann, C.S. Fischer, RA)
- Redo computation of diamond diagram with recent results for quark-gluon vertex and integrate into "unquenching the glueballs", *i.e.*, a calculation of mesons and glueballs including their mixing.

17/18

The up/down quark mass ratio from the RG or "Why has the down quark twice the mass of the up quark?"

- Up & down Higgs-Yukawa couplings / masses "run" equally, *i.e.*, depend equally on RG scale k under strong and weak interactions but:
- $e_u = \frac{2}{3}e \& e_d = -\frac{1}{3}e$ implies different flow under QED.
- Encoded in anomalous mass dimensions

$$\frac{\partial \log m_q}{\partial \log k} = \gamma_{QCD}^m + \gamma_W^m + \gamma_{QED}^m + \text{mixed terms}$$
with $\gamma_{QED}^m = -\frac{3e_q^2}{8\pi^2} \left(1 - \frac{m_q^2}{k^2}\log(1 + \frac{k^2}{m_q^2})\right)$

$$\frac{\partial \log(m_u/m_d)}{\partial \log k} = 0_{\text{from QCD}} + 0_{\text{from W}} - \frac{e^2}{8\pi^2} + \frac{e^2}{12\pi^2k^2} \left(4m_u^2 - m_d^2\right) + \dots$$

$$As \ m_{u,d} \ll \Lambda_{QCD}, v_{\text{Higgs}} \text{ neglect mixed terms.}$$

$$\Rightarrow \frac{m_u}{m_d} \approx \frac{1}{2}k^{-e^2/8\pi^2} \approx \frac{1}{2} - \frac{e^2}{16\pi^2}\log k.$$

• with renormalised $\hat{m}_q = Z_m m_q \Longrightarrow \hat{m}_u / \hat{m}_d = 1/2$.

