η and η' physics at ELSA

EMMI Workshop "Meson and Hyperon Interactions with Nuclei" 2022

Farah Afzal for the CBELSA/TAPS collaboration 15.09.2022

Baryon spectroscopy

Theoretical description of nucleon excitation spectra

Discrepancy between theory and experiment: missing resonances, ordering of states

Quark model with experimental data

Quark model with experimental data

- Discrepancy between theory and experiment: missing resonances, ordering of states •
- most resonances observed in πN scattering \rightarrow experimental bias?

Worldwide effort to get high precision data (ELSA, MAMI, JLab, SPring-8, ...)

- Photoproduction reactions are an excellent tool to probe excitation spectra!
- Resonances contribute with different strength to distinct channels
- How can we disentangle contributing resonances?

[[]A. Thiel, F. Afzal, Y. Wunderlich, Prog. Part. Nucl. Phys. 125 (2022) 103949]

$$rac{d\sigma}{d\Omega_0}(W, heta) \propto \sum_{
m spins} | < f | {\cal F} |i>|^2$$

$$rac{d\sigma}{d\Omega_0}(W, heta) \propto \sum_{ ext{spins}} | < f |\mathcal{F}|i>|^2$$

Photoproduction amplitude \mathcal{F} \leftrightarrow 4 complex amplitudes e.g. CGLN amplitudes: F_1, F_2, F_3, F_4

$$rac{d\sigma}{d\Omega_0}(W, heta) \propto \sum_{ ext{spins}} | < f |\mathcal{F}|i>|^2$$

Photoproduction amplitude \mathcal{F} \leftrightarrow 4 complex amplitudes e.g. CGLN amplitudes: F_1, F_2, F_3, F_4

- PWA: e.g. $F_1 = \sum_{l=0}^{\infty} (IM_{l+} + E_{l+})P'_{l+1} + [(l+1)M_{l-} + E_{l-}]P'_{l-1}$
 - $E_{l\pm}(W), M_{l\pm}(W)$: Multipoles
 - $P'_{l+1}(\cos \theta_{cm})$: Legendre polynomials

$$rac{d\sigma}{d\Omega_0}(W, heta) \propto \sum_{
m spins} | < f | {\cal F} |i>|^2$$

Photoproduction amplitude \mathcal{F} \leftrightarrow 4 complex amplitudes e.g. CGLN amplitudes: F_1, F_2, F_3, F_4

- PWA: e.g. $F_1 = \sum_{l=0}^{\infty} (IM_{l+} + E_{l+})P'_{l+1} + [(l+1)M_{l-} + E_{l-}]P'_{l-1}$
 - $E_{l\pm}(W), M_{l\pm}(W)$: Multipoles
 - $P'_{l\pm 1}(\cos \theta_{cm})$: Legendre polynomials
- $\sigma \sim |E_{0+}|^2 + |E_{1+}|^2 + |M_{1+}|^2 + |M_{1-}|^2 + \dots$

 \rightarrow unpolarized cross section is sensitive to dominant contributing resonances

Polarization observables in the 2-body kinematic system for the photoproduction of a pseudoscalar meson

Photon polarization		Target polarization			Rec pola	oil nu Irizati	icleon on	Target and recoil polarizations				
		х	Y	Z(beam)	X,	Y'	Z'	X' X	X' Z	Z' X	Z' Z	
unpolarized linear circular	σ -Σ -	- H F	T (-P -	-) -G -E	- O _{x'} C _{x'}	P (-T) -	O _{z'} C _{z'}	T _{x'} (-L _z) -	L _{x'} (T _{z'}) -	T _{z'} (L _x) -	L _{z'} (-T _{x'}) -	

Polarization observables in the 2-body kinematic system for the photoproduction of a pseudoscalar meson

Photon polarization		Target polarization			Rec pola	oil nu trizatio	cleon on	Target and recoil polarizations				
		Х	Y	Z(beam)	X'	Y'	Z'	X' X	X' Z	Z' X	Z' Z	
unpolarized linear circular	σ -Σ -	- H F	T (-P) -	-) -G -E	- O _{x'} C _{x'}	P (-T) -	O _{z'} C _{z'}	T _{x'} (-L _z) -	L _{x'} (T _{z'}) -	T _{z'} (L _x) -	L _{z'} (-T _x)	

 $\sigma, \Sigma, T, P+4$ double pol. observables needed for a unique solution [W. Chiang and F. Tabakin, Phys. Rev., C55 (1997) 2054-2066]

$$\sigma \sim |E_{0+}|^2 + |E_{1+}|^2 + |M_{1+}|^2 + |M_{1-}|^2 + \dots$$

$$\Sigma \sim \underbrace{-2E_{0+}^*E_{2+} + 2E_{0+}^*E_{2-} - 2E_{0+}^*M_{2+} + 2E_{0+}^*M_{2-}}_{+\cdots} + \cdots$$

 $\langle S, D \rangle$ \rightarrow Polarization observables are sensitive to interference terms!

 \rightarrow Interferences with the dominant S-wave (E_{0+}) important in η photoproduction!

data data -pπ⁰ -pπ⁰ 12000 4000 nπ⁰ nπ⁰ nπ+ nπ¹ _pπ⁻ - pπ⁻ 10000-12000 -pŋ -pn nn nn -pη' pn' 10000--nη' nn' 8000--pω **-**ρω nω nω 8000 -K⁺Λ K⁺Λ 6000-K⁺Σ K⁺Σ $K^0\Sigma^+$ $K^0\Sigma^+$ 6000 -K⁰Λ K⁰Λ -K⁺Σ⁻ -K⁺Σ⁻ 4000-=K⁰Σ $=K^{0}\Sigma$ 4000 2000 2000 2000 2020 year 2005 2010 2015 2000 2005 2010 2015 2020 year

Unpolarized cross section

Polarization observables

[A. Thiel, F. Afzal, Y. Wunderlich, Prog. Part. Nucl. Phys. 125 (2022) 103949]

Results from ELSA

Physics Institute, University of Bonn

6

The Electron Stretcher Accelerator (ELSA)

Physics Institute, University of Bonn

The Electron Stretcher Accelerator (ELSA)

Physics Institute, University of Bonn

 η photoproduction off protons

Precise beam asymmetry Σ data in $\gamma p \rightarrow p\eta$

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{\max}} (a_{L_{\max}}(W))_{k}^{\check{\Sigma}} \cdot P_{k}^{2}(\cos\theta) \text{ , i.e. } L_{\max} = 2;$$

Truncated PWA

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{\max}} (a_{L_{\max}}(W))_k^{\check{\Sigma}} \cdot P_k^2(\cos\theta) \text{ , i.e. } L_{\max} = 2;$$

 $(a_{L_{\max}})_k^{\Sigma}$ defined by matrices with $\langle \ell_1, \ell_2 \rangle$ -interference blocks

$$\underbrace{(a_2)_2^{\breve{\Sigma}}}_{2} = \begin{bmatrix} E_{0+}^* & E_{1+}^* & \dots & M_{2-}^* \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{3}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & -\frac{36}{7} & -\frac{1}{7} & \frac{9}{7} & -\frac{9}{7} \\ \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{97}{7} & -\frac{1}{2} & \frac{18}{5} & \frac{5}{14} \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & -\frac{7}{7} & \frac{1}{2} & \frac{5}{14} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} E_{0+} \\ E_{1+} \\ M_{1+} \\ M_{1-} \\ E_{2+} \\ E_{2-} \\ M_{2+} \\ M_{2-} \end{bmatrix}$$

Truncated PWA

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{\max}} (a_{L_{\max}}(W))_{k}^{\check{\Sigma}} \cdot P_{k}^{2}(\cos\theta) \text{ , i.e. } L_{\max} = 2;$$

 $(a_{L_{\max}})_k^{\Sigma}$ defined by matrices with $\langle \ell_1, \ell_2 \rangle$ -interference blocks

$$\begin{split} \underbrace{(a_2)_{2}^{\hat{\Sigma}}}_{2} &= \begin{bmatrix} E_{0+}^{*} & E_{1+}^{*} & \dots & M_{2-}^{*} \end{bmatrix} \begin{bmatrix} \frac{0}{0} & \frac{0}{-\frac{3}{2}} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{3}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & -\frac{36}{7} & -\frac{1}{7} & \frac{9}{7} & -\frac{9}{7} \\ \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{9}{7} & -\frac{1}{2} & \frac{116}{7} & \frac{9}{14} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{9}{7} & -\frac{1}{2} & \frac{116}{7} & \frac{9}{14} \\ \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{9}{7} & -\frac{1}{2} & \frac{116}{9} & \frac{9}{14} \\ \end{bmatrix} \end{split}$$

$$= \frac{1}{14} \begin{bmatrix} E_{2-}^{*} \left(-7E_{2-} +7E_{0+} -2E_{2+} +7M_{2-} -7M_{2+} \right) + 7E_{0+}^{*} \left(E_{2-} +E_{2+} +M_{2-} -M_{2+} \right) \\ + E_{2+}^{*} \left(-2E_{2-} +7E_{0+} -18(4E_{2+} +M_{2-} -M_{2+}) \right) + M_{2-}^{*} \left(7E_{2-} +7E_{0+} -18E_{2+} \\ +21M_{2-} + 9M_{2+} \right) + M_{2+}^{*} \left(-7E_{2-} -7E_{0+} +9(2E_{2+} +M_{2-} +4M_{2+}) \right) \\ + 7 \left(E_{1+}^{*} \left(-3E_{1+} -M_{1-} +M_{1+} \right) + M_{1-}^{*} \left(M_{1+} -E_{1+} \right) + M_{1+}^{*} \left(E_{1+} +M_{1-} +M_{1+} \right) \right) \end{bmatrix}$$

Truncated PWA

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{\max}} (a_{L_{\max}}(W))_{k}^{\check{\Sigma}} \cdot P_{k}^{2}(\cos\theta) \text{ , i.e. } L_{\max} = 2;$$

 $(a_{L_{\max}})_k^{\Sigma}$ defined by matrices with $\langle \ell_1, \ell_2 \rangle$ -interference blocks

Y. Wunderlich, F. Afzal, A. Thiel and R. Beck, EPJ A 53: 86 (2017)

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

 $p\eta'$ channel needs to be included in PWA to describe data Evidence for $N(1895)\frac{1}{2}^{-}(S_{11})$ resonance due to strong $p\eta'$ cusp in $p\eta$ S wave

 $p\eta'$ channel needs to be included in PWA to describe data Evidence for $N(1895)\frac{1}{2}^{-}(S_{11})$ resonance due to strong $p\eta'$ cusp in $p\eta$ S wave

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

Full angular coverage is very important for $\langle S, G \rangle$ interference

$$\check{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

Full angular coverage is very important for < S, G > interference

E_{0+} multipole of $p\eta$

F. Afzal et al., Phys. Rev. Lett. 125, 152002 (2020)

E_{0+} multipole of $p\eta$

- PWA predictions (BnGa, JüBo, ηMAID) can not describe backward peak in data!
- New fits of BnGa and η MAID have included the $p\eta'$ cusp in the *S* wave
- However, JüBo does not!

F. Afzal et al., Phys. Rev. Lett. 125, 152002 (2020)

$N^* ightarrow p\eta$ branching ratios

Combined analysis of the polarization observables σ, G, E, T, P, H in $\gamma p \rightarrow p \eta$ [J. Mueller et al., Phys. Lett. B 803 (2020), p. 135323]

	$N(1535)\frac{1}{2}^{-}$	$N(1650)\frac{1}{2}^{-}$
BnGa refit	0.41 ± 0.04	0.33 ± 0.04
PDG 2017	0.32 - 0.52	0.14 - 0.22

Large and heavily discussed difference in the $p\eta$ -branching ratio of $N(1535)\frac{1}{2}^{-}$ and $N(1650)\frac{1}{2}^{-}$ now significantly reduced!

 η photoproduction off neutrons

Measurements off neutrons - Narrow structure in $n\eta$

- Complicated to measure due to no free neutrons ightarrow helium, deuterium, deuterated butanol targets
- · Nuclear Fermi motion effects eliminated by a complete kinematic reconstruction of the final state
- FSI estimated through comparison of quasi-free and free proton data

UNIVERSITÄT BONN

Measurements off neutrons - Narrow structure in $n\eta$

Narrow peak observed in $\gamma n \rightarrow n\eta$

at ${\it W}=(1670\pm5)$ MeV with $\Gamma=(30\pm15)$ MeV

[L. Witthauer et al., Eur. Phys. J. A (2017) 53:58]

Measurements off neutrons - Narrow structure in $n\eta$

Narrow peak observed in $\gamma n \rightarrow n\eta$

Spin dependent cross sections

 $\sigma_{1/2(3/2)} = \sigma_0 \cdot (1 \pm E)$

Structure only present in $\sigma_{1/2}^n$!

Intrinsic resonance/ interference effects?

Upgrade of the CBELSA/TAPS experiment

- Each CsI(TI) crystal readout with 2 APDs instead of PIN photodiodes
- Crystal Barrel $heta > 12^\circ$ included in first level trigger
- high trigger acceptance for complete neutral final states

Upgrade of the CBELSA/TAPS experiment - Preliminary results of new data

- More data taken for T, P, H with coherent edges at 1300 MeV, 1600 MeV
- Selection of exclusive reaction possible now

 η^\prime photoproduction off protons

$p\eta'$ photoproduction - cross section data

BnGa: A.V. Anisovich et al., Phys.Lett. B 772 (2017) 247-252

ηMAID2018: L. Tiator et al., Eur. Phys. J. A 54.12 (2018)

UNIVERSITÄT BONN

Beam asymmetry in $p\eta'$ photoproduction (GRAAL and CLAS data)

- Unexpected strong angular dependence observed near threshold (W=1896MeV) in GRAAL data
- Angular dependence sensitive to < P, D >, < S, F > and < D, F > interference terms
- Angular dependence described by introducing a narrow resonance: BnGa: $N(1900)\frac{3}{2}^{-}(D_{13})$ or $N(1900)\frac{5}{2}^{-}(D_{15})$ A.V. Anisovich et al., Phys.Lett.B 785 (2018) 626-630 η MAID2018: $N(1902)\frac{1}{2}^{-}(S_{11})$ L. Tiator et al., Eur. Phys. J. A 54.12 (2018)

Beam asymmetry in $p\eta'$ photoproduction (CBELSA/TAPS data)

- $\eta'
 ightarrow \gamma\gamma$ (BR: 2.2%)
- 8000 selected events
- Unbinned maximum likelihood fit used to get $\boldsymbol{\Sigma}$
- comparison between Frequentist and Bayesian approach: $p(\Sigma, a, b, \Sigma^{bg}, a^{bg}, b^{bg} | \phi, p_{\gamma}) \propto \mathcal{L}(\phi, p_{\gamma} | \Sigma, a, b, \Sigma^{bg}, a^{bg}, b^{bg}) \cdot \pi(\Sigma, a, b, \Sigma^{bg}, a^{bg}, b^{bg})$
- Good agreement between CBELSA/TAPS (\blacktriangle) and CLAS (\blacksquare)
- BnGa (- -) and ηMAID2018 (- -) can describe data

Helicity asymmetry in $p\eta'$ photoproduction (CBELSA/TAPS)

- · Helicity asymmetry obtained with circ. pol. photon beam and long. pol. target
- Strong contribution to $\sigma_{1/2} \rightarrow$ strong contributions from S_{11} and P_{11} waves
- Significant contributions to $\sigma_{3/2}$ at W=2050 MeV

• Outlook: More data for *T*, *P*, *H* will be analyzed!

- Real and imaginary part of the S_{11} amplitude were fit by BnGa using

$$\begin{split} \mathcal{A} &= \frac{ak}{1 - ika + Rk^2 a/2 + dk^4 a} \qquad k = \frac{\sqrt{(s - (M_p + M_{\eta'})^2)(s - (M_p - M_{\eta'})^2)}}{2\sqrt{s}} \\ & a = a_{p\eta'} : p\eta' \text{ scattering length} \\ \mathcal{R}: \text{ range of th } \eta' \rho \text{ interaction} \\ d: \text{ parameter representing higher-order terms} \\ \sqrt{s} = M_{\eta'} \rho; \text{ invariant mass} \\ k: \eta' \text{ momentum in the } \eta' \rho \text{ rest frame} \end{split}$$

•
$$|a_{p\eta'}| = (0.403 \pm 0.020 \pm 0.060)$$
 fm

- $\delta_{N\pi} = (87 \pm 2)^{\circ}$
 - \rightarrow real part of the scattering length is small compared to imaginary part
 - \rightarrow disfavors $\eta' p$ bound states

BnGa: A.V. Anisovich et al., Phys.Lett.B 785 (2018) 626-630

Impact of photoproduction data on PDG in the last two decades

BONN	

Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta'$
N	$1/2^+$	****										
N(1440)	$1/2^{+}$	****	****	****	****	***	-			-		
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	***	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*	-		
N(1680)	$5/2^+$	****	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	**	***	***	*	*		2	-		
N(1710)	$1/2^+$	****	***	***	*_		***	**	*	*	*	
N(1720)	$3/2^+$	****	****	****	***	*	*	****	*	*_	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^+$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	***
N(1900)	$3/2^{+}$	** **	****	**	**	*	*	**	**	-	*	**
N(1990)	$7/2^+$	**	* *	**			*	*	*			
N(2000)	$5/2^+$	**	**	*_	**	*	*	2.00	2		*	
N(2040)	$3/2^{+}$	*		*								
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^+$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*	*			
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^{-}$	**		**								
N(2600)	$11/2^{-}$	***		***								
N(2700)	$13/2^{+}$	**		**								

- mostly *πN* data were used until 2010
- photoproduction data is now used by most PWA groups and new fit values for resonance parameters have entered the PDG
- Still a lot of work to do!

More information in A. Thiel, F. Afzal, Y. Wunderlich, Prog. Part. Nucl. Phys. 125 (2022) 103949

Summary and Outlook

Summary:

- High precision polarization data measured at the CBELSA/TAPS experiment for $p\eta$ final state \rightarrow Sensitivity up to *G*-waves reached! $p\eta'$ cusp observed in the beam asymmetry Σ data!
- Significant contributions to confirming poorly known states like $N(1895)\frac{1}{2}^{-1}$
 - \rightarrow Upgraded to a 4star resonance in PDG
- Improved precision of resonance properties \rightarrow BR
 - \rightarrow Our knowledge of the spectrum and the properties of baryons is steadily increasing!
- Still a lot of interesting, not understood observations, like narrow structure in $n\eta$
- Beam and helicity asymmetry extracted for the $p\eta'$ final state
- $p\eta'$ scattering length results disfavors $\eta'p$ bound states

Outlook:

• APD-Upgrade of the Crystal Barrel detector at the CBELSA/TAPS experiment successfully completed \rightarrow Ongoing analysis of different final states ($N\pi^0$, $N\eta$, $N\eta'$, $N\omega$, $N\pi^0\pi^0$, $N\pi^0\eta$...) and PWA of the data

Truncated PWA using "complete" data set of polarization observables

Goal: Extract multipoles model independent

- 6 single energy fits from threshold, 750 MeV to 1250 MeV
- Complete data set ($\sigma_{0,MAMI}$, T_{MAMI} , F_{MAMI} , E_{MAMI} , Σ_{GRAAL} , $G_{CBELSA/TAPS}$) .

 E_{*}^{lab}/MeV

Method:

- Fit the angular distributions of observables, parametrized by $\check{\Omega}^{\alpha}_{\text{theo}}(W,\theta) = \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \mathcal{A}^{\alpha}_{k}(W) P_{k}^{\beta_{\alpha}}(\cos \theta)$
- Frequentist Ansatz: Minimize the function
 $$\begin{split} &\chi^2_{\mathcal{M}} = \\ &\sum_{i,j} \left[(a_L^{\mathsf{Fit}})_i - < \mathcal{M}_{\ell} | (C_L)_i | \mathcal{M}_{\ell} > \right] C_{ij}^{-1} \left[(a_L^{\mathsf{Fit}})_i - < \mathcal{M}_{\ell} | (C_L)_i | \mathcal{M}_{\ell} > \right] \end{split}$$
- Bayesian Ansatz: $p(\Theta \mid \mathbf{y}) = p(\mathbf{y} \mid \Theta) \ \pi(\Theta)$
- Conditional likelihood distribution
- Priors π(Θ): broad uniform distributions for multipoles
- Monte Carlo maximum likelihood estimation
- Extract multipoles at single energies

Method:

- Fit the angular distributions of observables, parametrized by $\check{\Omega}^{\alpha}_{\text{theo}}(W,\theta) = \rho \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} \mathcal{A}^{\alpha}_{k}(W) P_{k}^{\beta_{\alpha}}(\cos \theta)$
- Frequentist Ansatz: Minimize the function
 $$\begin{split} &\chi^2_{\mathcal{M}} = \\ &\sum_{i,j} \left[(a_L^{\mathsf{Fit}})_i - < \mathcal{M}_{\ell} | (C_L)_i | \mathcal{M}_{\ell} > \right] C_{ij}^{-1} \left[(a_L^{\mathsf{Fit}})_i - < \mathcal{M}_{\ell} | (C_L)_i | \mathcal{M}_{\ell} > \right] \end{split}$$
- Bayesian Ansatz: $p(\Theta \mid \mathbf{y}) = p(\mathbf{y} \mid \Theta) \ \pi(\Theta)$
- Conditional likelihood distribution
- Priors π(Θ): broad uniform distributions for multipoles
- Monte Carlo maximum likelihood estimation
- Extract multipoles at single energies

Results:

