

Institut für Kernphysik

Nuclear frozen spin targets for GDH-Experiments

- 1.-Target Technology:
- 2.-Experimental setup at A2:
- 3.-Target Materials

Spin alignment in solid state material γ- beam + Tagger + CrystalBall@MAMI + Frozen Spin Target

EMMI Workshop Meson and Hyperon Interactions with Nuclei 14-16 September 2022 Kitzbühel, Austria Andreas Thomas

Polarized Target Technology

Polarization = Orientation of Spins in a magnetic field

 $P = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$ Ideally: All spins in field direction P=100%

Complicated interplay between

Polarising force ~ magnetic field B and Depolarising force ~ thermal motion o

thermal motion of spin particles (temperature T – relaxation)

Trick: Transfer of the high electron polarization to the nucleon via μ-wave irradiation (DNP)

DNP at 200mK and 2.5T with 70GHz microwaves. Frozen spin target (25mKelvin, 0.6T). Secondary particles punch through holding coil. All directions of polarization.

Longitudinal (Solenoid)

Internal Holding Field (1.2K, 0.6T)

A2 Tagging system (Glasgow, Mainz)

1. Production and energy measurement of the Bremsstrahlung photons.

Glasgow Tagging Spectrometer EPJ A 37, 129 (2008)

2. Determination of the degree of polarization of the electron beam (Moeller Polarimeter). Circularly pol. photons.

$$A = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} = a\vec{p}_{t}\vec{p}_{b}\cos(z)$$

3. Coherent production of linearly polarized photons on a diamond radiator

4π photon Spectrometer @ MAMI

Helicity Dependence E of Meson Photoproduction on the Proton and Neutron

Helicity dependent total cross section

Unfortunately, in pure H_2 or D_2 the spin align antiparallel at low temperatures. However, there are experimental effords to polarice HD-ice, but the technology is very complicated.

Frozen Spin Target with chemical compounds and doping are used.

30mm Ammonia

Butanol

LiD

Small beads or spheres with dimension of 1-3mm are used and cooled in liquid 3He/4He mixture.

Target materials

Saturated electrons of target material not polarized (Pauli principle)

Free electrons

Radicals in material by chemical or radiative doping

 $\frac{\#radicals}{10} \approx 10^{-4}$ # protons

Dilution factor (e.g. $f_{Butanol}=10/74$) determines quality of target material

LiD

Η

Radical is produced by electron irradiation at ~100Kelvin. GDH sum rule for nuclei

$$\int_{0}^{\infty} \frac{\sigma_{a}(\omega) - \sigma_{p}(\omega)}{\omega} d\omega = -4\pi\kappa^{2} \frac{e^{2}}{m^{2}} S$$

	К	$\omega_{\rm L}[{\rm MHz}]$	I _{GDH} [µB]
Proton	1.79	106.7	-204
Neutron	-1.91		-233
Deuteron	-0.14	16.4	-0.65
³ Helium	-8.38	81.3	-497
⁶ Lithium	-0.53	15.7	-0.53
⁷ Lithium	19.84	41.5	-510

Deuteron

channels on quasifree neutron

Partial reaction

³Helium
GDH-Integral
with small

systematic error **PPN**

ΡN

 $P(Neutron) \sim 0.92 P(Deuteron)$

 $I_{\text{exp}}^{d} \approx I_{GDH}^{n} + I_{GDH}^{p} + I_{nucl.eff.}$

 $I_{\text{exp}}^{he} \approx I_{GDH}^{n} + \alpha \cdot I_{GDH}^{p} + I_{nucl.eff.}^{'}$ ≈ 0.1

Helicity dependent deuteron photodesintegration

- •Nucleon Nucleon Interaction
- •Meson Exchange currents
- •Final State Interaction
- •Relativistic Effects, Retardation

Polarised frozen spin targets are a well developed tool to investigate Spin physics in 4π detector systems.

The complicated technology for the different components (target material, cryogenics, magnets,...) needs an active support and developement from an international community.

R&D for polarised active szintillator target for threshold production and Compton is on the way.
Semi active targets with d-Butanol filling and scintillators in the milli-

Kelvin target chamber are another option.

Thank You!

Active Polarized Target

T=45mKelvin after 5 days by ${}^{3}\text{He}/{}^{4}\text{He}$ mixture $\leftarrow \lor$ Vacuum in beampipe