Light hypernuclei within chiral EFT

Hoai Le, IAS-4 & IKP-3, Forschungszentrum Jülich, Germany EMMI Workshop, Kitzbuehel, Austria, September 14-16, 2022

collaborators: Johann Haidenbauer, Ulf-G Meißner, Andreas Nogga

Outline

- Baryon-Baryon (BB) interactions in chiral effective field theory (EFT)
- Numerical approach:
 - Jacobi no-core shell model (J-NCSM) for S=-1
 - Similarity Renormalization Group (SRG)
- Results:
 - A separation energy in ${}^{4}_{\Lambda}$ He, ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li with NLO13 & NLO19 potentials
 - CSB results: $({}^{4}_{\Lambda}\text{He}, {}^{4}_{\Lambda}\text{H}), ({}^{7}_{\Lambda}\text{Be}, {}^{7}_{\Lambda}\text{Li}^{*}), ({}^{8}_{\Lambda}\text{Be}, {}^{8}_{\Lambda}\text{Li})$
- Summary

$\mathsf{BB}_{\mathsf{TWO-nucleon force}}^{\mathsf{WO-nucleon force}} \text{ in } \chi \mathsf{EFT}$

Three-nucleon force Three-nucleon force

Jacobi-NCSM approach

3

diagonalize the A-body translationally invariant hypernuclear Hamiltonian

$$H = T_{rel} + V^{NN} + V^{YN} + V^{NNN} + V^{YNN} + \Delta M$$

in a finite A-particle harmonic oscillator (HO) basis
basis states for $S = -1$ systems:
$$\stackrel{(A-1)N}{(A-1)N} = [\mathcal{N}JT, \mathcal{N}_{A-1}J_{A-1}T_{A-1}, \underbrace{n_Yl_YI_Y}_{(A-1}(l_Ys_Y)I_Y)J, (T_{A-1}t_Y)T) \\ \underline{A(\Sigma)} = [\mathcal{N}JT, \underbrace{\mathcal{N}_{A-1}J_{A-1}T_{A-1}}_{antisym(A-1)N}, \underbrace{n_Yl_YI_Y}_{(X(\Sigma) state}, (A-3)N \bigoplus^{N} for NN, YN forces (A-2)N \bigoplus^{N} for NN, YN forces (A-3)N \bigoplus^{N} for 3N, YNN forces (A-3)N \bigoplus^{N} for 3N for 3N$$

basis truncation: $\mathcal{N} = \mathcal{N}_{A-1} + 2n_{\lambda} + \lambda \leq \mathcal{N}_{max} \Rightarrow E_b = E_b(\omega, \mathcal{N}_{max})$

 \rightarrow extrapolate in ω - and \mathcal{N} -spaces to obtain converged results

(HL, J. Haidenbauer, U. Meißner, A. Nogga EPJA (2020))

(A-

Similarity Renormalization Group (SRG)

Again, the transitions from these internet the Hamiltonian ma

→ observables (binding energies) are conserved due to unitarity of transformation $C_{YN}(\mathbf{p}) = \sum_{C_{\alpha}C_{\alpha'}} \delta_{\alpha_{A-2}\alpha'_{A-2}} \langle \alpha^{*(Y)} | \gamma \rangle \langle \gamma' | \alpha'^{*(Y)} \rangle$

F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$\frac{dV(s)}{ds} = \left[\left[T_{rel}, V(s) \right], H(s) \right], \qquad H(s) = T_{rel} + V(s) + \Delta M \qquad \qquad \times \sum_{\substack{m_{I_{YN}} \\ m_{l_{YN}}, m_{l'_{YN}} \\ m_{l_{YN}}, m_{l'_{YN}} \\ s = 0 \to \infty \qquad \qquad V(s) = V_{12}(s) + V_{13}(s) + V_{23}(s) + V_{123}(s), \qquad V_{123} \rightleftharpoons J_{ANN} (V_{VYNN}) m_{I_{YN}} m_{I_{YN$$

S

separate SRG flow equations for 2-body and 3-body interactions:

$$\begin{aligned} \frac{dV^{NN}(s)}{ds} &= \left[\left[T^{NN}, V^{NN} \right], T^{NN} + V^{NN} \right] \\ \frac{dV^{YN}(s)}{ds} &= \left[\left[T^{YN}, V^{YN} \right], T^{YN} + V^{YN} + \Delta M \right] \\ \frac{dV_{123}}{ds} &= \left[\left[T_{12}, V_{12} \right], V_{31} + V_{23} + V_{123} \right] \\ &+ \left[\left[T_{31}, V_{31} \right], V_{12} + V_{23} + V_{123} \right] \\ &+ \left[\left[T_{23}, V_{23} \right], V_{12} + V_{31} + V_{123} \right] + \left[\left[T_{rel}, V_{123} \right], H_{123} \right] \end{aligned}$$

 $\times \left(l_{YN} s_{YN} I_{YN}, m_{l_{YN}} m_{I_{YN}} - m_{l_{YN}} \right)$

 $\times \,\delta_{\tau_Y t_Y} R_{n_Y N l_Y N}(p) R_{n'_Y N} l'_{Y N}(p)$

 $|\alpha \rangle = |N JI, \alpha_{YN} \alpha_{A-2}; ((\iota_{YN} S_{YN}) J_{YN})$

UÜLICH

(S.K. Bogner et al PRC75 (2007) K. Hebeler PRC85 (2012))

C Transformation between two dif Jacobi coordinates

Generally, for describing a system of three clusters, for example of the cluster 1 or 2 or 3 can be of the **SCS** (users are illustrated in Fig

SRG-induced 3BFs are
generated even if
$$V_{123}^{\text{bare}} = 10^{(12)}$$

Eqs.(1) are solved by projecting on a 3N (YNN) Jacobi-momentum basis:

 $|p_{12} \alpha_{12}\rangle \equiv |p_{12}, (l_{12} s_{12}) J_{12} (t_1 t_2) t_{12} m_{t12}\rangle; \quad ((-1)^{l_{12} + S_{12} + t_{12}} = -1)$ $|p_{12} q_3 \alpha J T; \alpha_{12} I_3 t_3\rangle \equiv |p_{12} q_3, ((l_{12} s_{12}) J_{12} (l_3 s_3) I_3) J ((t_1 t_2) T_{12} t_3) T\rangle$

A=3-5 hypernuclei with SRG-induced YNN

► contributions of SRG-induced YNNN forces to $B_{\Lambda}({}^{4}_{\Lambda}H, {}^{5}_{\Lambda}He)$ are negligible

(R. Wirth, R. Roth PRL117 (2016), PRC100 (2019))

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent
- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in ${}^{3}S_{1}$)
 - manifest in higher-body observables

(J.Haidenbauer et al., NPA 915 2019))

 $B_{\Lambda}(NLO19) > B_{\Lambda}(NLO13) \longrightarrow$ possible contribution of chiral YNN force

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent
- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in ${}^{3}S_{1}$)
 - → manifest in higher-body observables

(J.Haidenbauer et al., NPA 915 2019))

	4Λ I	H	$^{5}_{\Lambda}$ He	$^{7}_{\Lambda}$ Li	NN:SMS N ⁴ LO+(450)
	0+	1+	$1/2^+$	$(1/2^+, 0)$	+3N: N ² LO(450)
NLO13(500)	1.551 ± 0.007	0.823 ± 0.003	2.22 ± 0.06	5.28 ± 0.68	+SRG-induced YNN
NLO19(500)	1.514 ± 0.007	1.27 ± 0.009	3.32 ± 0.03	6.04 ± 0.30	
Fyp	$2.16 \pm 0.08^{(1)}$	$1.07 \pm 0.08^{(1)}$	$3.12 \pm 0.02^{(1)}$	$5.85 \pm 0.13(10)^{(2)}$	⁽²⁾ M. Agnello PLB 681(2009)
ПУР				$5.58 \pm 0.03^{(1)}$	⁽¹⁾ M. Juric NPB 52(1973)

- ${}^{4}_{\Lambda}H(1^{+})$, ${}^{5}_{\Lambda}He$, ${}^{7}_{\Lambda}Li$ are fairly well described by **NLO19(500)**; NLO13 underbinds these systems
- YNN contributes at N2LO. Using decuplet saturation scheme YNN is promoted to NLO (2LECs)
- \longrightarrow USE $B_{\Lambda}({}^{4}_{\Lambda}H/{}^{4}_{\Lambda}He(0^{+},1^{+}))$ or $B_{\Lambda}({}^{4}_{\Lambda}H/He(0^{+}), {}^{5}_{\Lambda}He(1/2^{+}))$ to fix the additional **2LECs** (work in progress)

 $\Delta E(1^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 1^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 1^+)$ = -83 + 94 keV

$$\Delta E(0^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 0^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 0^+)$$
$$= 233 \pm 92 \text{ keV}$$

Coulomb contribution almost cancels in B_{Λ}

(Bodmer et al, 1985)

2 additional LECs (at LO) contributing to CSB are adjusted to $\Delta E(0^+, 1^+)$

	-55	$(\mathrm{fm}/\mathrm{keV})$	$a_s^{\mathbf{\Lambda}p}$	$a_s^{\mathbf{\Lambda}n}$	δa_s	$a_t^{\mathbf{\Lambda}p}$	$a_t^{\mathbf{A}n}$	δa_t	$\Delta E(0^+)$	$\Delta E(1^+)$
	-75 -72 -67	NLO19(500) no CSB	An -2.91	-2.91	0	-1.42	-1.41	-0.01	34	10
tio Z_j	on to the CS interaction. T	B. CSB1(500)	-2.65	-3.20	0.55	-1.58	-1.47	-0.11	249	-75
or	the CSB Δ	$E_{A}SB1(550)$	-2.64	-3.21	0.57	-1.52	-1.41	-0.11	252	-72
e	that this is a	l© \$B1(600)	-2.63	-3.23	0.6	-1.47	-1.36	-0.09	243	-67
f lv	the expectation lower accuration in the second seco	CSB1(650)	-2.62	-3.23	0.61	-1.46	-1.37	-0.09	250	-69

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))

to the CSB CSB in singlet (${}^{1}S_{0}$) is much larger than in triplet (${}^{3}S_{1}$)

predictions for A=4 are independent of cutoff, same results for NLO13

of the expectation predictions for CSB in A=7,8 multiplets ?

	~ ~ ~									
_	-55	(fm//keV)	$a_s^{\mathbf{\Lambda}p}$	$a_s^{\mathbf{A}n}$	δa_s	$a_t^{\mathbf{A}p}$	$a_t^{\mathbf{A}n}$	δa_t	$\Delta E(0^+)$	$\Delta E(1^+)$
	-75		A 10			U	U		. ,	
	70	NLO19(500)								
	-72	1.2010(000)	-2.91	-2.91	0	-1.42	-1.41	-0.01	34	10
ų	-67	no CSB								
ıt	ion to the CS	\$B								
V	interaction.	CSB1(500)	-2.65	-3.20	0.55	-1.58	-1.47	-0.11	249	-75
Ē.	or the CSB Λ	HCSB1(550)	-2.64	-3.21	0.57	-1.52	-1.41	-0.11	252	-72
Ĩ			2.01	0.21	0.01	1.02	1.11	0.11	202	12
đ	e that this is a	E SB1(600)	-2.63	-3.23	0.6	-1.47	-1.36	-0.09	243	-67
2 9	the expectat	ion Di (aro)	0.00	0.00	0.01	1 10	1 0 5	0.00	250	<u> </u>
		CSB1(650)	-2.62	-3.23	0.61	-1.46	-1.37	-0.09	250	-69
ΕI	v lower accura	l CV.								

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))

ation to the CSB. and Ap_{a} screet energy CSB in singlet (${}^{1}S_{0}$) is much larger than in triplet (${}^{3}S_{1}$)

 $E_{\Lambda}^{[n]}$ predictions for A=4 are **independent of cutoff**, same results for NLO13

of the expectation predictions for CSB in A=7,8 multiplets ?

CSB in A=7 isotriplet: ${}^{7}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li*, ${}^{7}_{\Lambda}$ Be

	NLO19(500)	NLO13(500)	E	$xp^{(2)}$.
			emulsion	counter
$^{7}_{\Lambda}\mathrm{Be}$	5.54 ± 0.22	4.30 ± 0.47	5.16 ± 0.08	?
$^7_{\Lambda}{ m Li}^*$	5.64 ± 0.28	4.42 ± 0.58	5.26 ± 0.03	5.53 ± 0.13
$^7_{\Lambda}{ m He}$	5.64 ± 0.27	4.39 ± 0.54		5.55 ± 0.1

Separation energies in A=7 isotriplet

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	pert 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
NI 012 6 9 94 1 0 0 179	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2(30)
CSB1 7.8 -24 -49.3 25.5 -24 -40	.2(30)
$^{7}_{\Lambda}$ Be, $^{7}_{\Lambda}$ Li*) NLO19 5.8 -40 -0.6 0 0 -34.5	2(30)
CSB1 5.8 -41 -43.1 42.1 -0.3 -35.	2(30)
Gal ⁽¹⁾ 3 -70 50 -17	
$ \operatorname{Exp}^{(2)} $ -10	0 ± 90

NN:SMS N⁴LO+(450) +3N: N²LO(450) +SRG-induced YNN

⁽¹⁾A. Gal PLB 744 (2015)

⁽²⁾E. Botta et al., NPA 960 (2017)

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

- NLO19(500) predicts rather accurately separation energies in A=7 isotriplet
 - NLO13 & NLO19 CSB results for A=7 are comparable to experiment

CSB in A=8 doublet: ${}^{8}_{\Lambda}$ Be, ${}^{8}_{\Lambda}$ Li

	λ_{YN}	$^{8}_{\Lambda}\mathrm{Be}$	$^{8}_{\Lambda}$ Li
NLO13	0.765	5.56 ± 0.25	5.57 ± 0.30
NLO19	0.823	7.15 ± 0.10	7.17 ± 0.10
Hiyama et al.		6.72	6.80
Exp. emulsion		6.84 ± 0.05	6.80 ± 0.03
Exp. counter		?	?

Separation energies in A=8 doublet, computed at λ that reproduces $B_{\Lambda}(^{5}_{\Lambda}\text{He})$

YN	ΔT	Δ NN	ΔYN			$\Delta E_{\Lambda}^{pert}$
			${}^{1}S_{0}$	${}^{3}S_{1}$	total	
NLO13	12.2	8	-2.1	0	-4.0	16.2(50)
CSB1	11.9	7	99.8	55.5	158.8	177.7(50)
NLO19	6.6	-11	-0.9	0	-1.9	-6.3(50)
CSB1	6.3	-11	62	79.1	147.3	142.6(50)
$Hiyama^{(1)}$						160
$\operatorname{Gal}^{(2)}$	11	-81			119	49
$\operatorname{Exp}^{(3)}$						40 ± 60

NN:SMS N⁴LO+(450) +3N: N²LO(450) +SRG-induced YNN ⁽¹⁾E. Hiyama et al., PRC 80 (2009) ⁽²⁾A. Gal PLB 744 (2015) ⁽³⁾E. Botta et al., NPA 960 (2017)

- **CSB1** fits lead to a larger CSB in A=8 doublet as compared to experiment
 - experimental CSB result for A=8 could be larger than 40 ± 60 keV?

CSB estimated for A=4 could still be too large or have different spin-dependence?

JÜLICH FORSCHUNGSZENTRUM

Fitting LECs to new Star measurement

 $\Delta E(1^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 1^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 1^+)$ = - 83 ± 94 keV \Rightarrow (CSB1) = - 160 ± 140 ± 100 keV \Rightarrow (CSB1A) $\Delta E(0^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 0^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 0^+)$ = 233 ± 92 keV \Rightarrow (CSB1)

 $= 160 \pm 140 \pm 100 \text{ keV} \Rightarrow (\text{CSB1A})$

	NLO19(500)	CSB1	CSB1A
$a_s^{\Lambda p}$	-2.91	-2.65	-2.58
$a_s^{\Lambda n}$	-2.91	-3.20	-3.29
δa_s	0	0.55	0.71
$a_t^{\Lambda p}$	-1.42	-1.57	-1.52
$a_t^{\Lambda n}$	-1.41	-1.45	-1.49
δa_t	-0.01	-0.12	-0.03

	$^4_{\Lambda}{ m He}$	$-\frac{4}{\Lambda}H$	$^{7}_{\Lambda}\mathrm{Be} - ^{7}_{\Lambda}\mathrm{Li}^{*}$	$^7_{\Lambda}\mathrm{Li}^* - ^7_{\Lambda}\mathrm{He}$	$^{8}_{\Lambda}\mathrm{Be} - ^{8}_{\Lambda}\mathrm{Li}$
	0^{+}	1^{+}			
NLO19	-7.5	-10.5	-34.3	-14.3	-11
CSB1	209.5	-70.5	-26.3	-3.3	135
CSB1A	129.5	-134.5	-83.3	-62.3	74
Exp			-100 ± 90	-20 ± 230	40 ± 60

NN : N⁴LO⁺(450); $\lambda_N = 1.6 \text{ fm}^{-1}$ YN : NLO19(500); $\lambda_{YN} = 0.823 \text{ fm}^{-1}$ $B_{\Lambda}({}^{5}_{\Lambda}\text{He}, \text{NLO19}) = 3.35 \pm 0.03 \text{ MeV}$

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

CSB1A fit predicts reasonable CSB in both A=7 and A=8 systems

Summary

study ${}^{4}_{\Lambda}$ H(0⁺,1⁺), ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li hypernuclei using chiral 2B & 3N interactions + SRG-induced YNN

- NLO19 potential reproduces fairly well experimental values for ${}^{4}_{\Lambda}H(1^{+})$, ${}^{5}_{\Lambda}He$ and ${}^{7}_{\Lambda}Li$
- NLO13 underbinds A=4-7 hypernuclei
- → difference in predictions of NLO13 & NLO19 will be removed by appropriate chiral YNN force

study CSB in A=7 isotriplet and A=8 doublet using χ 2BFs + 3BFs:

- **CSB1** fit reproduces experimental results for A=4 & 7 systems but lead to a somewhat larger than the experimental CSB for the ${}^8_{\Lambda}$ Be, ${}^8_{\Lambda}$ Li doublet
- **CSB1A** fit yields reasonable CSB for A=7 & 8 systems

Thank you for the attention!

		$^{8}_{\Lambda}\mathrm{Be}$	$^{8}_{\Lambda}$ Li	$^{5}_{\Lambda}\mathrm{He}$
	YNN_SRG		5.75 ± 1.08	2.22 ± 0.06
NLO13	$\lambda = 0.765$	5.56 ± 0.25	5.57 ± 0.30	2.22 ± 0.04
	YNN_SRG		7.33 ± 1.15	3.32 ± 0.03
NLO19	$\lambda = 0.823$	7.15 ± 0.10	7.17 ± 0.10	3.35 ± 0.02
Experiment [4]		6.84 ± 0.05	6.80 ± 0.03	3.12 ± 0.02