Light hypernuclei within chiral EFT

Hoai Le, IAS-4 \& IKP-3, Forschungszentrum Jülich, Germany
EMMI Workshop, Kitzbuehel, Austria, September 14-16, 2022
collaborators: Johann Haidenbauer, Ulf-G Meißner, Andreas Nogga

Outline

- Baryon-Baryon (BB) interactions in chiral effective field theory (EFT)
- Numerical approach:
- Jacobi no-core shell model (J-NCSM) for S=-1
- Similarity Renormalization Group (SRG)
- Results:
- A separation energy in ${ }^{4} \mathrm{He},{ }^{5} \mathrm{He},{ }^{7} \mathrm{Li}$ with NLO13 \& NLO19 potentials
- CSB results: $\left({ }^{4} \mathrm{He},{ }^{4} \mathrm{H}\right),\left({ }^{7} \mathrm{Be},{ }^{7} \mathrm{Li}{ }^{*}\right),\left({ }^{8} \mathrm{Be},{ }^{8} \mathrm{Li}\right)$
- Summary

BB interactions in χ EFT

(adapted from H. Krebs CD workshop, 18th November 2021)

- LECs are determined via a fit to experiment:
- $\sim 5000 \mathrm{NN}+\mathrm{Nd}$ scattering data $+{ }^{2} \mathrm{H},{ }^{3} \mathrm{H} /{ }^{3} \mathrm{He} \longrightarrow \mathrm{NN}$ forces up to $\mathrm{N}^{4} \mathrm{LO}+, 3 \mathrm{NF}$ up to $\mathrm{N}^{2} \mathrm{LO}$ (P. Reinert et al EPJA (2018), P. Maris et al PRC 103(2021))
- 26 YN data $+{ }_{\Lambda}^{3} \mathrm{H} \longrightarrow$ YN forces up to NLO (NLO13, NLO19) and $\mathrm{N}^{2} \mathrm{LO}$ (YNN forces contribute) (J. Haidenbauer et al NPA 915(2013), EPJA 56(2019), HYP2022 talk+ proceeding)

Jacobi-NCSM approach

diagonalize the A-body translationally invariant hypernuclear Hamiltonian

$$
\mathrm{H}=\mathrm{T}_{r e l}+\mathrm{V}^{\mathrm{NN}}+\mathrm{V}^{\mathrm{YN}}+\mathrm{V}^{\mathrm{NNN}}+\mathrm{V}^{\mathrm{YNN}}+\Delta M
$$

in a finite A-particle harmonic oscillator (HO) basis

- basis states for $S=-1$ systems:

$$
|\underbrace{(\mathrm{A}-1) \mathrm{N}}_{\Lambda(\Sigma)}\rangle\rangle=|\mathcal{N} J T, \underbrace{\mathcal{N}_{A-1} J_{A-1} T_{A-1}}_{\text {antisym. }(A-1) N}, \underbrace{n_{Y} l_{Y} I_{Y} t_{Y} ;}_{\Lambda(\Sigma) \text { state }} ;\left(J_{A-1}\left(l_{Y} s_{Y}\right) I_{Y}\right) J,\left(T_{A-1} t_{Y}\right) T\rangle
$$

- intermediate bases for evaluating Hamiltonian:

- basis truncation: $\mathcal{N}=\mathcal{N}_{A-1}+2 n_{\lambda}+\lambda \leq \mathcal{N}_{\max } \Rightarrow E_{b}=E_{b}\left(\omega, \mathcal{N}_{\text {max }}\right)$
\rightarrow extrapolate in ω - and \mathcal{N}-spaces to obtain converged results

Similarity Renormalization Group (SRG)

Idea: continuously apply unitary transformation to H to suppress off-diagonal matrix elements
\rightarrow observables (binding energies) are conserved due to unitarity of transformation
F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$
\begin{array}{ll}
\frac{d V(s)}{d s}=\left[\left[T_{r e l}, V(s)\right], H(s)\right], & H(s)=T_{r e l}+V(s)+\Delta M \\
s=0 \rightarrow \infty & V(s)=V_{12}(s)+V_{13}(s)+V_{23}(s)+V_{123}(s), \quad V_{123} \equiv V_{N N N}\left(V_{Y N N}\right)
\end{array}
$$

- separate SRG flow equations for 2-body and 3-body interactions: (S.K. Bogner et al PRC75 (2007),

$$
\begin{aligned}
\frac{d V^{N N}(s)}{d s} & =\left[\left[T^{N N}, V^{N N}\right], T^{N N}+V^{N N}\right] \\
\frac{d V^{Y N}(s)}{d s} & =\left[\left[T^{Y N}, V^{Y N}\right], T^{Y N}+V^{Y N}+\Delta M\right] \\
\frac{d V_{123}}{d s}= & {\left[\left[T_{12}, V_{12}\right], V_{31}+V_{23}+V_{123}\right] } \\
& +\left[\left[T_{31}, V_{31}\right], V_{12}+V_{23}+V_{123}\right] \\
& +\left[\left[T_{23}, V_{23}\right], V_{12}+V_{31}+V_{123}\right]+\left[\left[T_{\text {rel }}, V_{123}\right], H_{s}\right]
\end{aligned}
$$

K. Hebeler PRC85 (2012))

Eqs.(1)

SRG-induced 3BFs are generated even if $V_{123}^{\text {bare }}=0$

- Eqs.(1) are solved by projecting on a 3N (YNN) Jacobi-momentum basis:

$$
\begin{aligned}
& \left|p_{12} \alpha_{12}\right\rangle \equiv\left|p_{12},\left(l_{12} s_{12}\right) J_{12}\left(t_{1} t_{2}\right) t_{12} m_{t 12}\right\rangle ; \quad\left((-1)^{\left.l_{12}+s_{12}+t_{12}=-1\right)}\right. \\
& \left|p_{12} q_{3} \alpha J T ; \alpha_{12} I_{3} t_{3}\right\rangle \equiv\left|p_{12} q_{3},\left(\left(l_{12} s_{12}\right) J_{12}\left(l_{3} s_{3}\right) I_{3}\right) J\left(\left(t_{1} t_{2}\right) T_{12} t_{3}\right) T\right\rangle
\end{aligned}
$$

A=3-5 hypernuclei with SRG-induced YNN

NN:SMS $\mathrm{N}^{4} \mathrm{LO}+(450)$

\rightarrow contributions of SRG-induced YNNN forces to $B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H},{ }_{\Lambda}^{5} \mathrm{He}\right)$ are negligible (R. Wirth, R. Roth PRL117 (2016), PRC100 (2019))

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent
- NLO13 characterised by a stronger $\Lambda N-\Sigma N$ transition potential (especially in ${ }^{3} S_{1}$)
\longrightarrow manifest in higher-body observables (J.Haidenbauer et al., NPA 915 2019))

NN: SMS $\mathrm{N}^{4} \mathrm{LO}+(450)$
YN: NLO
\rightarrow NLO13-500

* NLO13-550
\cdots NLO13-600
\rightarrow NLO13-650
-t NLO19-500
-*- NLO19-550
-*- NLO19-600
- - NLO19-650
(HL, J. Haidenbauer, U. Meißner,
A. Nogga EPJA (2020))
- $B_{\Lambda}(\mathrm{NLO} 19)>B_{\Lambda}(\mathrm{NLO} 13) \longrightarrow$ possible contribution of chiral YNN force

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent
- NLO13 characterised by a stronger $\Lambda N-\Sigma N$ transition potential (especially in ${ }^{3} S_{1}$)
\longrightarrow manifest in higher-body observables (J.Haidenbauer et al., NPA 915 2019))

NN:SMS $\mathrm{N}^{4} \mathrm{LO}+(450)$
$+3 \mathrm{~N}: \mathrm{N}^{2} \mathrm{LO}(450)$
+SRG-induced YNN
${ }^{(2)}$ M. Agnello PLB 681(2009)
${ }^{(1)}$ M. Juric NPB 52(1973)

- ${ }_{\Lambda}^{4} \mathrm{H}\left(1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He},{ }_{\Lambda}^{7} \mathrm{Li}$ are fairly well described by NLO19(500); NLO13 underbinds these systems
- YNN contributes at N2LO. Using decuplet saturation scheme \rightarrow YNN is promoted to NLO (2LECs)
\rightarrow use $B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H} /{ }_{\Lambda}^{4} \mathrm{He}\left(0^{+}, 1^{+}\right)\right.$) or $B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H} / \mathrm{He}\left(0^{+}\right),{ }_{\Lambda}^{5} \mathrm{He}\left(1 / 2^{+}\right)\right)$to fix the additional 2LECs (work in progress)
(Schulz et al, (2016); Yamamoto et al, (2015))

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right) \\
& =-83 \pm 94 \mathrm{keV} \\
\Delta E\left(0^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right) \\
& =233 \pm 92 \mathrm{keV}
\end{aligned}
$$

\longrightarrow Coulomb contribution almost cancels in B_{Λ}
(Bodmer et al, 1985)

- 2 additional LECs (at LO) contributing to CSB are adjusted to $\Delta E\left(0^{+}, 1^{+}\right)$

$(\mathrm{fm} / / \mathrm{keV})$	$a_{s}^{\Lambda p}$	$a_{s}^{\Lambda n}$	δa_{s}	$a_{t}^{\Lambda p}$	$a_{t}^{\Lambda n}$	δa_{t}	$\Delta E\left(0^{+}\right) \Delta E\left(1^{+}\right)$	
NLO19(500) no CSB	$\mathbf{- 2 . 9 1}$	$\mathbf{- 2 . 9 1}$	$\mathbf{0}$	$\mathbf{- 1 . 4 2}$	$\mathbf{- 1 . 4 1}$	$\mathbf{- 0 . 0 1}$	$\mathbf{3 4}$	$\mathbf{1 0}$
CSB1(500)	$\mathbf{- 2 . 6 5}$	$\mathbf{- 3 . 2 0}$	$\mathbf{0 . 5 5}$	$\mathbf{- 1 . 5 8}$	$\mathbf{- 1 . 4 7}$	$\mathbf{- 0 . 1 1}$	$\mathbf{2 4 9}$	$\mathbf{- 7 5}$
CSB1(550)	-2.64	$\mathbf{- 3 . 2 1}$	0.57	-1.52	$\mathbf{- 1 . 4 1}$	-0.11	252	-72
CSB1(600)	-2.63	-3.23	0.6	-1.47	-1.36	-0.09	243	-67
CSB1(650)	-2.62	-3.23	0.61	-1.46	-1.37	-0.09	250	-69

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))
$\rightarrow \quad$ CSB in singlet $\left({ }^{1} S_{0}\right)$ is much larger than in triplet $\left({ }^{3} S_{1}\right)$

- predictions for A=4 are independent of cutoff, same results for NLO13
- predictions for CSB in $\mathrm{A}=7,8$ multiplets ?

CSB in A=4 doublet: ${ }_{\Lambda}^{4} \mathrm{H},{ }_{\Lambda}^{4} \mathrm{He}$
(Schulz et al, (2016); Yamamoto et al, (2015);
${ }^{(1)}$ Star collaboration (2022))

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right) \\
& =-83 \pm 94 \mathrm{keV} \\
& =-160 \pm 140 \pm 100^{(1)} \mathrm{keV} \\
\Delta E\left(0^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right) \\
& =233 \pm 92 \mathrm{keV} \\
& =160 \pm 140 \pm 100^{(1)} \mathrm{keV}
\end{aligned}
$$

what could be consequence on CSB in $A=7,8$?

- 2 additional LECs (at LO) contributing to CSB are adjusted to $\Delta E\left(0^{+}, 1^{+}\right)$

$(\mathrm{fm} / / \mathrm{keV})$	$a_{s}^{\Lambda p}$	$a_{s}^{\Lambda n}$	δa_{s}	$a_{t}^{\Lambda p}$	$a_{t}^{\Lambda n}$	δa_{t}	$\Delta E\left(0^{+}\right) \Delta E\left(1^{+}\right)$	
NLO19(500) no CSB	$\mathbf{- 2 . 9 1}$	$\mathbf{- 2 . 9 1}$	$\mathbf{0}$	$\mathbf{- 1 . 4 2}$	$\mathbf{- 1 . 4 1}$	$\mathbf{- 0 . 0 1}$	$\mathbf{3 4}$	$\mathbf{1 0}$
CSB1(500)	$\mathbf{- 2 . 6 5}$	$\mathbf{- 3 . 2 0}$	$\mathbf{0 . 5 5}$	$\mathbf{- 1 . 5 8}$	$\mathbf{- 1 . 4 7}$	$\mathbf{- 0 . 1 1}$	$\mathbf{2 4 9}$	$\mathbf{- 7 5}$
CSB1(550)	-2.64	$\mathbf{- 3 . 2 1}$	0.57	$\mathbf{- 1 . 5 2}$	$\mathbf{- 1 . 4 1}$	-0.11	252	-72
CSB1(600)	-2.63	-3.23	0.6	-1.47	-1.36	-0.09	243	-67
CSB1(650)	-2.62	-3.23	0.61	-1.46	-1.37	-0.09	250	-69

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))
$\rightarrow \quad$ CSB in singlet $\left({ }^{1} S_{0}\right)$ is much larger than in triplet $\left({ }^{3} S_{1}\right)$

- predictions for A=4 are independent of cutoff, same results for NLO13
- predictions for CSB in $\mathrm{A}=7,8$ multiplets ?

CSB in A=7 isotriplet: ${ }_{\Lambda}^{7} \mathrm{He},{ }_{\Lambda}^{7} \mathrm{Li}^{*},{ }_{\Lambda}^{7} \mathrm{Be}$

	NLO19(500)	NLO13(500)	Exp ${ }^{(2)}$ counter	
${ }_{\Lambda}^{7} \mathrm{Be}$	5.54 ± 0.22	4.30 ± 0.47	5.16 ± 0.08	$\boldsymbol{?}$
${ }_{\Lambda}^{7} \mathrm{Li}^{*}$	$\mathbf{5 . 6 4} \pm \mathbf{0 . 2 8}$	4.42 ± 0.58	5.26 ± 0.03	$\mathbf{5 . 5 3} \pm \mathbf{0 . 1 3}$
${ }_{\Lambda}^{7} \mathrm{He}$	$\mathbf{5 . 6 4} \pm \mathbf{0 . 2 7}$	4.39 ± 0.54		$\mathbf{5 . 5 5} \pm \mathbf{0 . 1}$

NN:SMS $\mathrm{N}^{4} \mathrm{LO}+(450)$
$+3 \mathrm{~N}: \mathrm{N}^{2} \mathrm{LO}(450)$
+SRG-induced YNN
Separation energies in $A=7$ isotriplet

${ }^{(1)}$ A. Gal PLB 744 (2015)
(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)
\rightarrow - NLO19(500) predicts rather accurately separation energies in $A=7$ isotriplet

- NLO13 \& NLO19 CSB results for A=7 are comparable to experiment

CSB in A=8 doublet: ${ }_{\Lambda}^{8} \mathrm{Be},{ }_{\Lambda}^{8} \mathrm{Li}$

	$\lambda_{Y N}$	${ }_{\Lambda}^{8} \mathrm{Be}$	${ }_{\Lambda}^{8} \mathrm{Li}$
NLO13	0.765	5.56 ± 0.25	5.57 ± 0.30
NLO19	0.823	7.15 ± 0.10	7.17 ± 0.10
Hiyama et al.		6.72	6.80
Exp. emulsion		6.84 ± 0.05	6.80 ± 0.03
Exp. counter		$\boldsymbol{?}$	$\boldsymbol{?}$

Separation energies in $\mathrm{A}=8$ doublet, computed at λ that reproduces $B_{\Lambda}\left({ }_{\Lambda}^{5} \mathrm{He}\right)$

YN	ΔT	$\Delta \mathrm{NN}$	$\Delta \mathrm{YN}$			$\Delta E_{\Lambda}^{\text {pert }}$
			${ }^{1} S_{0}$	${ }^{3} S_{1}$	total	
NLO13	12.2	8	-2.1	0	-4.0	$16.2(50)$
CSB1	$\mathbf{1 1 . 9}$	$\mathbf{7}$	$\mathbf{9 9 . 8}$	$\mathbf{5 5 . 5}$	$\mathbf{1 5 8 . 8}$	$\mathbf{1 7 7 . 7 (5 0)}$
NLO19	6.6	-11	-0.9	0	-1.9	$-6.3(50)$
CSB1	$\mathbf{6 . 3}$	$\mathbf{- 1 1}$	$\mathbf{6 2}$	$\mathbf{7 9 . 1}$	$\mathbf{1 4 7 . 3}$	$\mathbf{1 4 2 . 6 (5 0)}$
$\operatorname{Hiyama}^{(1)}$						160
$\operatorname{Gal}^{(2)}$	11	-81			119	49
$\operatorname{Exp}^{(3)}$						40 ± 60

NN:SMS $\mathrm{N}^{4} \mathrm{LO}+(450)$
$+3 \mathrm{~N}: \mathrm{N}^{2} \mathrm{LO}(450)$
+SRG-induced YNN
${ }^{(1)}$ E. Hiyama et al., PRC 80 (2009)
${ }^{(2)}$ A. Gal PLB 744 (2015)
${ }^{(3)}$ E. Botta et al., NPA 960 (2017)

- CSB1 fits lead to a larger CSB in A=8 doublet as compared to experiment
\rightarrow experimental CSB result for $A=8$ could be larger than $40 \pm 60 \mathrm{keV}$?
CSB estimated for $A=4$ could still be too large or have different spin-dependence?

Fitting LECs to new Star measurement

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right) \\
& =-83 \pm 94 \mathrm{keV} \Rightarrow(\mathrm{CSB} 1) \\
& =-160 \pm 140 \pm 100 \mathrm{keV} \Rightarrow(\mathrm{CSB} 1 \mathrm{~A}) \\
\Delta E\left(0^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right) \\
& =233 \pm 92 \mathrm{keV} \Rightarrow(\mathrm{CSB} 1) \\
& =160 \pm 140 \pm 100 \mathrm{keV} \Rightarrow(\mathrm{CSB} 1 \mathrm{~A})
\end{aligned}
$$

	NLO19(500)	CSB1	CSB1A
$a_{s}^{\Lambda p}$	-2.91	-2.65	-2.58
$a_{s}^{\Lambda n}$	-2.91	-3.20	-3.29
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{s}}$	$\mathbf{0}$	$\mathbf{0 . 5 5}$	$\mathbf{0 . 7 1}$
$a_{t}^{\Lambda p}$	-1.42	-1.57	-1.52
$a_{t}^{\Lambda n}$	-1.41	-1.45	-1.49
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{t}}$	$\mathbf{- 0 . 0 1}$	$\mathbf{- 0 . 1 2}$	$\mathbf{- 0 . 0 3}$

	${ }_{\Lambda}^{4} \mathrm{He}-{ }_{\Lambda}^{4} \mathrm{H}$			
0^{+}	${ }^{7}{ }_{\Lambda}{\mathrm{Be}-{ }_{\Lambda}^{7} \mathrm{Li}^{*}}$	${ }_{\Lambda}^{7} \mathrm{Li}^{*}-{ }_{\Lambda}^{7} \mathrm{He}$	${ }_{\Lambda}^{8} \mathrm{Be}-{ }_{\Lambda}^{8} \mathrm{Li}$	
NLO19	-7.5	-10.5	-34.3	-14.3

$$
\begin{aligned}
& \mathrm{NN}: \mathrm{N}^{4} \mathrm{LO}^{+}(450) ; \lambda_{N}=1.6 \mathrm{fm}^{-1} \\
& \mathrm{YN}: \mathrm{NLO} 19(500) ; \lambda_{Y N}=0.823 \mathrm{fm}^{-1} \\
& B_{\Lambda}\left({ }_{\Lambda}^{5} \mathrm{He}, \mathrm{NLO} 19\right)=3.35 \pm 0.03 \mathrm{MeV}
\end{aligned}
$$

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)
\rightarrow CSB1A fit predicts reasonable CSB in both $A=7$ and $A=8$ systems

Summary

study ${ }_{\Lambda}^{4} \mathrm{H}\left(0^{+}, 1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He},{ }_{\Lambda}^{7} \mathrm{Li}$ hypernuclei using chiral 2B \& 3N interactions + SRG-induced YNN

- NLO19 potential reproduces fairly well experimental values for ${ }_{\Lambda}^{4} \mathrm{H}\left(1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He}$ and ${ }_{\Lambda}^{7} \mathrm{Li}$
- NLO13 underbinds A=4-7 hypernuclei
\rightarrow difference in predictions of NLO13 \& NLO19 will be removed by appropriate chiral YNN force
study CSB in $A=7$ isotriplet and $A=8$ doublet using $\chi 2 B F s+3 B F s:$
- CSB1 fit reproduces experimental results for $A=4 \& 7$ systems but lead to a somewhat larger than the experimental CSB for the ${ }_{\Lambda}^{8} \mathrm{Be},{ }_{\Lambda}^{8} \mathrm{Li}$ doublet
- CSB1A fit yields reasonable CSB for $\mathrm{A}=7$ \& 8 systems

Thank you for the attention!

		${ }_{\Lambda}^{8} \mathrm{Be}$	${ }_{\Lambda}^{8} \mathrm{Li}$	${ }_{\Lambda}^{5} \mathrm{He}$
	YNN_SRG		5.75 ± 1.08	2.22 ± 0.06
NLO13	$\lambda=0.765$	5.56 ± 0.25	5.57 ± 0.30	2.22 ± 0.04
	YNN_SRG		7.33 ± 1.15	3.32 ± 0.03
NLO19	$\lambda=0.823$	7.15 ± 0.10	7.17 ± 0.10	3.35 ± 0.02
Experiment [4]		6.84 ± 0.05	6.80 ± 0.03	3.12 ± 0.02

