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Outline

• Baryon-Baryon (BB) interactions in chiral effective field theory ( EFT)

• Numerical approach:  

‣ Jacobi no-core shell model (J-NCSM) for S=-1 

‣ Similarity Renormalization Group (SRG)

• Results:  
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BB interactions in EFTχ

• LECs are determined via a fit to experiment:

‣ ~5000 NN + Nd scattering data  +           NN forces up to , 3NF up to  2H, 3H/3He N4LO+ N2LO

‣  ~36 YN data +               YN forces up to  (NLO13, NLO19) and  (YNN forces contribute) 3
ΛH NLO N2LO
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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(adapted from H. Krebs CD workshop, 18th November 2021) 

+2 NNN LECs, +5 NN LECs Λ

(P. Reinert et al EPJA (2018),  P. Maris et al PRC 103(2021))

(J. Haidenbauer et al NPA 915(2013), EPJA 56(2019),  HYP2022 talk+ proceeding)
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Jacobi-NCSM approach

H = Trel + VNN + VYN + VNNN + VYNN + ΔM

diagonalize the A-body translationally invariant hypernuclear Hamiltonian

in a finite A-particle harmonic oscillator (HO) basis ΛN ↔ ΣN
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where the summations over intermediate states are applied
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• basis truncation:   

extrapolate in - and -spaces to obtain converged results  ω 𝒩

⇒ Eb = Eb(ω, 𝒩max)𝒩 = 𝒩A−1 + 2nλ + λ ≤ 𝒩max

• intermediate bases for evaluating Hamiltonian:
for NN, YN forces
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4

for 3N, YNN forces

4.1 Separation of NN , Y N and Y Y pairs
We now proceed to evaluate the Hamiltonian matrix elements for the wavefunction defined in eq. (4.6)

h (⇡JT )|H| (4.7)

|
�
↵⇤(Y1N)

�⇤(Y2)i = |↵⇤(Y1N)i ⌦ |Y2i

= |NJT,↵⇤(Y1N)
A�1 ñY2 ĨY2 t̃Y2 ; (J

⇤(Y1N)
A�1 (l̃Y2sY2)ĨY2)J, (T

⇤(Y1N)
A�1 t̃Y2)T i

⌘

N

N

Y1Y2

(4.8)
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3N

(HL, J. Haidenbauer, U. Meißner, A. Nogga EPJA (2020))
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Similarity Renormalization Group (SRG)
Idea:  continuously apply unitary transformation to H to suppress off-diagonal matrix elements

F.J. Wegner NPB 90 (2000).  S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

dV(s)
ds

= [[Trel, V(s)], H(s)], H(s) = Trel + V(s) + ΔM

V(s) = V12(s) + V13(s) + V23(s) + V123(s), V123 ≡ VNNN (VYNN)

 observables (binding energies) are conserved due to unitarity of transformation 

•    separate SRG flow equations for 2-body and 3-body interactions:

• Eqs.(1) are solved by projecting on a 3N (YNN) Jacobi-momentum basis: 

(S.K. Bogner et al PRC75 (2007), 
K. Hebeler PRC85 (2012))

dVNN(s)
ds

= [[TNN, VNN], TNN + VNN]
dVYN(s)

ds
= [[TYN, VYN], TYN + VYN + ΔM]

dV123

ds
= [[T12, V12], V31 + V23 + V123]

+[[T31, V31], V12 + V23 + V123]
+[[T23, V23], V12 + V31 + V123] + [[Trel, V123], Hs]

Eqs.(1)

SRG-induced 3BFs are 
 generated even if Vbare

123 = 0

|p12 α12⟩ ≡ |p12, (l12s12)J12 (t1t2)t12 mt12⟩; ((−1)l12 + S12 + t12 = − 1)

|p12 q3 α J T; α12 I3t3⟩ ≡ |p12 q3, ((l12s12)J12 (l3s3)I3)J ((t1t2)T12 t3)T ⟩

Appendix C Jacobi coordinates for an A-body system

A

A � 1

6

5

4

3

2

1

r12 r3

r4 r5

r6

rA�1

rA

(C.3)

Figure C.1: A possible set of Jacobi coordinates for an A-body system

C.1 Orthogonal transformation between two sets of
three-cluster Jacobi coordinates

Generally, for describing a system of three clusters, for example 1,2 and 3, one can use di↵erent sets
of Jacobi coordinates in which either cluster 1 or 2 or 3 is the outer spectator. These three di↵erent
sets of intrinsic Jacobi coordinates are illustrated in Fig. C.2

Likewise, for calculating the YN correlation function

CY N (p) = ��|�(p � pY N )P�Y |�� (55)

one needs to employ the intermediate states |�� =
����(Y N)

�
which single out a pair of YN,

|��(Y N)� =
��NJT,�Y N �A�2; ((lY NSY N )JY N (�JA�2)JA�1)J, (tY NTA�2)T �

�
�� � (56)

Again, the transitions from these intermediate states
�

to the basis states
�� �

are given by
??, which are employed to compute the Hamiltonian matrix elements in the S = �1 sector. The
correlation function eq. (55) finally reads
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�

���

�

���
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��(Y )
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(57)

C Transformation between two di�erent sets of three-cluster
Jacobi coordinates

Generally, for describing a system of three clusters, for example 1,2 and 3, one can use di�erent sets of
Jacobi coordinates, in which either cluster 1 or 2 or 3 can be the spectator. All possible arrangements
of these 3 clusters are illustrated in Fig

2
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C Transformation between two di�erent sets of three-cluster
Jacobi coordinates

Generally, for describing a system of three clusters, for example 1,2 and 3, one can use di�erent sets of
Jacobi coordinates, in which either cluster 1 or 2 or 3 can be the spectator. All possible arrangements
of these 3 clusters are illustrated in Fig

2
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(23)
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Figure C.2: Three di↵erent sets of three-clusters Jacobi coordinates. The left figure depicts a Jacobi set
(denoted as |↵i(12)3), where the third particle is a spectator. The middle figure shows another set ( |↵i(13)2) that
singles out particle 2 as a spectator. In the third set (left figure) particle 1 is then an outer spectator, denoted
as |↵i(23)1.

In terms of a single-particle HO basis, each set of Jacobi coordinates in Fig. C.2, for example

156

p12
q3

s = 0 → ∞
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A=3-5 hypernuclei with SRG-induced YNN

4
ΛH(0+,1/2) 5

ΛHe(1/2+,0)

contributions of SRG-induced YNNN forces to  are negligible BΛ(4
ΛH, 5

ΛHe)

NN:SMS +(450)N4LO
3N: (450)N2LO

3
ΛH(1/2+,0) 3

ΛH(1/2+,0)

(R. Wirth, R. Roth PRL117 (2016), PRC100 (2019))
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Impact of YN interactions on BΛ(A ≤ 7)

4.5 E↵ects of the YN NLO13 and NLO19 on light hypernuclei

(a) (b)

(c) (d)

(e)

Figure 4.27: ⇤-separation energies �YN , (a) 4
⇤He(0+), (b) 4

⇤He(1+), (c) 5
⇤He( 1

2
+), (d) 7

⇤Li(1/2+), (e) 7
⇤Li(3/2+)

as functions of SRG-YN flow parameter �YN . Black lines with grey bands represent experimental B⇤ and
the uncertainties, respectively. Calculations are based on the chiral SMS N4LO+(450) with the SRG-NN
evolution parameter of �NN = 1.6 fm-1 in combination with the YN-NLO13 (red solid lines) and YN-NLO19
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NN: SMS +(450)N4LO

(HL, J. Haidenbauer, U. Meißner, 
  A. Nogga EPJA (2020))

YN: NLO

possible contribution of chiral YNN force• BΛ(NLO19) > BΛ(NLO13)

• NLO13 and NLO19 are almost phase equivalent

• NLO13 characterised by a stronger  transition potential (especially in )  ΛN − ΣN 3S1

(J.Haidenbauer et al., NPA 915 2019))manifest in higher-body observables 
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ΛLi(1/2+,0)
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Impact of YN interactions on BΛ(A ≤ 7)
• NLO13 and NLO19 are almost phase equivalent

• NLO13 characterised by a stronger  transition potential (especially in )  ΛN − ΣN 3S1

(J.Haidenbauer et al., NPA 915 2019))manifest in higher-body observables 

• YNN contributes at N2LO. Using decuplet saturation scheme         YNN is promoted to NLO (2LECs)

NN:SMS +(450)N4LO

+3N: (450)N2LO

+SRG-induced YNN 

M. Juric NPB 52(1973) (1)

M. Agnello PLB 681(2009)(2)

•  are fairly well described by NLO19(500); NLO13 underbinds these systems4
ΛH(1+), 5

ΛHe, 7
ΛLi

BΛ(4
ΛH/He(0+), 5

ΛHe(1/2+))orBΛ(4
ΛH/4

ΛHe(0+,1+))use to fix the additional 2LECs 

Title Suppressed Due to Excessive Length 7

Table 5 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

4
⇤H

5
⇤He 7

⇤Li

0+ 1+ 1/2+ (1/2+, 0)

NLO13(500) 1.551 ± 0.007 0.823± 0.003 2.22± 0.06 5.28± 0.68

NLO19(500) 1.514 ± 0.007 1.27± 0.009 3.32± 0.03 6.04 ± 0.30

Exp
2.16± 0.08(1) 1.07± 0.08(1) 3.12± 0.02(1) 5.85 ± 0.13(10)(2)

5.58± 0.03(1)

Table 6 ⇤ separation energies for A = 4 � 8 isotriplet, computed using the NLO13(500)
and NLO19(500) together with the SRG-induced YNN forces. For A = 4 systems used
NLO13csb1 and NLO19csb1, while the YN interactions used for other systems are with-
out csb. The magic flow parameters for NLO13(500) and NLO19(500) are �Y N = 0.765
and 0.823 fm-1, respectively. These magic values are fixed to the ⇤ separation energies of
B⇤(5⇤He,NLO13) = 2.22±0.06 MeV, and B⇤(5⇤He,NLO19) = 3.32±0.03 MeV which obtained
using the corresponding YN interactions together with the SRG-induced YNN forces. At these
magic flow parameters the separation energies for 5

⇤He are B⇤(5⇤He,NLO19) = 3.35±0.02 and
B⇤(5⇤He,NLO13) = 2.22± 0.04 MeV.

NLO19 NLO13 Experiment

3BFs 2BFs FY 3BFs 2BFs FY
4
⇤H(0+, 1/2) 1.514± 0.007 1.41± 0.003 1.511 1.551± 0.007 1.29± 0.005 1.513 2.16± 0.08
4
⇤H(1+, 1/2) 1.27± 0.009 1.131± 0.01 1.268 0.823± 0.003 0.779± 0.02 0.813 1.07± 0.88
7
⇤Li(1/2

+, 0) 6.04± 0.3 6.05± 0.22 5.28± 0.68 4.82± 0.46 5.58± 0.03 5.85± 0.13
7
⇤Li

⇤(1/2+, 1) 5.64± 0.28 5.49± 0.04 4.42± 0.58 4.59± 0.34 5.26± 0.03 5.53± 0.13
8
⇤Li(1

�, 1/2) 6.99± 3 7.15± 0.1 5.7± 2 7.47± 0.1 6.80± 0.03

The di↵erence between E⇤(
7
⇤Li

⇤) and E⇤(
7
⇤He) is �20± 230 keV for FINUDA

and JLab results, �50±190 keV for the revised SKS and JLab results. On the other
hand, by taking into account emulsion experiments results, the di↵erence between
E⇤(

7
⇤Be) and E⇤(

7
⇤Li

⇤) is �100±90 keV [?]. The di↵erence between E⇤(
8
⇤Be) and

E⇤(
8
⇤Li) is +40± 60 keV.

4.3 Compare with Hiyama/CSB2 scenario

Table 10 provides a comparison of results for NLO13 and NLO19 (without CSB)
with those for the scenarios CSB1 and CSB2.

(work in progress)
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CSB in A=4 doublet: 4ΛH, 4
ΛHe

(Schulz et al, (2016);  Yamamoto et al, (2015))

•  2 additional LECs (at LO) contributing to CSB are adjusted to  ΔE(0+,1+)

Charge symmetry breaking in 4
⇤H-4

⇤He
• �E(0+) = E0+

⇤ (4
⇤He)� E0+

⇤ (4
⇤H)

= 233 ± 92 keV
• �E(1+) = E1+

⇤ (4
⇤He)� E1+

⇤ (4
⇤H)

= �83 ± 94 keV

adjust CSB contact terms to �E ’s

Nov 16th, 2021 

CSB contributions in  4ΛHe

 11

• perturbative calculations of CSB  
• breakdown in kinetic energy, YN and NN interaction 
• kinetic energy less important for chiral interactions

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the 0+

state based on 4
�He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
� . The direct comparison of separation

energies for full calculations of 4
�He and 4

�H, �E�, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the
1+ state based on 4

�He wave functions for scenario CSB1. Same interactions and notations as
in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E�

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

�
He wave functions for the evaluation of the expectation

values. Results for 4
�
H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the �p and �n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the 0+

state based on 4
�He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
� . The direct comparison of separation

energies for full calculations of 4
�He and 4

�H, �E�, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the
1+ state based on 4

�He wave functions for scenario CSB1. Same interactions and notations as
in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E�

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

�
He wave functions for the evaluation of the expectation

values. Results for 4
�
H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the �p and �n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

How model-dependent are predictions for the   scattering length?Λn

A1 Collaboration / Nuclear Physics A 954 (2016) 149–160 159

Fig. 6. Level schemes of the mirror hypernuclei 4!H and 4!He in terms of ! binding energy. For the ground state binding 
energy of 4!H the MAMI data were used, for that of 4!He data from past emulsion experiments [3] with a systematic 
error estimate of 40 keV [22]. The B! values for the excited states were obtained from the 1+

exc → 0+
g.s. γ -ray transition 

energies [4].

6. Conclusions

The ! separation energy of 4
!H has been measured for the second time by high-precision 

decay-pion spectroscopy at MAMI. The pions were observed in two independent spectrometers 
using two targets of different thicknesses, confirming the previous results in a consistent analysis 
of both experiments. Moreover, the results proved to be consistent after further calibration of the 
absolute momentum as well as in systematic studies of the used cut conditions.

When compared to the 4
!He binding energy measured with the emulsion technique and 

adding the information from γ -ray spectroscopy the MAMI data of 4
!H lead to the level 

schemes of 4
!H and 4

!He as shown in Fig. 6. Here, the systematic error estimate of 40 keV 
from Ref. [22] for the emulsion value was used. While the ground state binding energy dif-
ference of #B 4

!(0+
g.s.) = B!(4

!He(0+
g.s.)) − B!(4

!H(0+
g.s.)) = 233 ± 92 keV is smaller as mea-

sured by the emulsion technique it still supports a sizable CSB effect in the !N interaction. 
Furthermore, it suggests a negative binding energy difference between the excited states of 
#B 4

!(1+
exc) = B!(4

!He(1+
exc)) − B!(4

!H(1+
exc)) = −83 ± 94 keV.

Most calculations performed so far resulted in much smaller binding energy differences than 
observed. Gazda and Gal have recently reported on ab initio no-core shell model calculations 
of the mirror pair using the charge-symmetric Bonn–Jülich leading-order chiral effective field 
theory hyperon–nucleon potentials plus a charge symmetry breaking !–$0 mixing vertex [13]. 
These calculations predict a large CSB ground state splitting and a CSB splitting of opposite sign 
for the excited states.

During the last years the MAMI accelerator was the only place worldwide where a precise and 
intense continuous electron beam was available for hypernuclear physics. While the total error 
of the MAMI binding energy data is of the same order than that of the compiled results from the 
emulsion technique, it is currently dominated by the systematic uncertainty of the absolute mo-
mentum calibration, which can be improved further. Current developments at MAMI are aiming 
at a higher accuracy of the calibration, which could reduce the error on the binding energy by a 
factor of four.

Together with prospects for a precise measurement of the γ transition energy of 4
!H at 

J-PARC [23], the 4
!H level scheme could become the most accurate among hypernuclei and 

provide further guidance for theory and for investigating the origin of CSB in the !N interac-
tion.

(Schulz et al.,2016; Yamamoto, 2015)

0+

1+

0+

(Schulz et al., 2016; Yamamoto et al., 2015)

(fm // keV) a⇤p
s a⇤n

s a⇤p
t a⇤n

t �E(0+) �E(1+)

NLO19(500) -2.649 -3.202 -1.580 -1.467 249 -75
NLO19(550) -2.640 -3.205 -1.524 -1.407 252 -72
NLO19(600) -2.632 -3.227 -1.473 -1.362 243 -67
NLO19(650) -2.620 -3.225 -1.464 -1.365 250 -69

CSB in singlet (1S0) much larger than in triplet (3S1)
practically independent of cutoff; same results for NLO13
without CSB: a⇤p

s ⇡ a⇤n
s ⇡ �2.9 fm

• CSB in A = 7, 8 ⇤-hypernuclei, see talk of Hoai Le

Johann Haidenbauer Hyperon-nucleon interaction

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+)
= 233 ± 92 keV

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+)
= −83 ± 94 keV

‣ CSB in singlet ( ) is much larger than in triplet 1S0 (3S1)
‣   predictions for A=4 are independent of cutoff, same results for NLO13

(J. Haidenbauer, U-G. Meißner 
 and A. Nogga FBS 62(2021))

 Coulomb contribution almost cancels in BΛ
(Bodmer et al, 1985) 

6 Hoai Le et al.

Table 3 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

(fm//keV) a⇤p
s a⇤n

s �as a⇤p
t a⇤n

t �at �E(0+) �E(1+)

NLO19(500)
-2.91 -2.91 0 -1.42 -1.41 -0.01 34 10

no CSB

CSB1(500) -2.65 -3.20 0.55 -1.58 -1.47 -0.11 249 -75

CSB1(550) -2.64 -3.21 0.57 -1.52 -1.41 -0.11 252 -72

CSB1(600) -2.63 -3.23 0.6 -1.47 -1.36 -0.09 243 -67

CSB1(650) -2.62 -3.23 0.61 -1.46 -1.37 -0.09 250 -69

Table 4 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

4
⇤He� 4

⇤H
7
⇤Be� 7

⇤Li
⇤ 7

⇤Li
⇤ � 7

⇤He 8
⇤Be� 8

⇤Li

0+ 1+

NLO19 -7.5 -10.5 -34.3 -14.3 -11

CSB1 209.5 -70.5 -26.3 -3.3 135

CSB1A 129.5 -134.5 -83.3 -62.3 74

Exp �100± 90 �20± 230 40± 60

4.2 NCSM results for A=7

Table 9 provides selected results for the separation energies of the 1/2+ mirror
hypernuclei 7

⇤He, 7
⇤Li

⇤, and 7
⇤Be, without CSB. The chiral and SRG-induced 3N

as well as the SRG-induced YNN interactions are included in the calculations.
In Table ?? we provide the separation energies for the A=7 isotriplet computed
using the NN interaction N4LO + (450) in combination with the YN potentials
NLO13(500) and NLO19(500), SRG-evolved to the respective magic SRG-flow pa-
rameters for which the 5

⇤He separation energy agrees with the full result including
the SRG-induced YNN force.

Table 10 provides an overview of results for CSB1, when the full 3N and
the SRG-induced YNN interactions are taken into account. Table ?? provides
an overview of results for CSB1, when the YN NLO13(500) and NLO19(500) are
SRG-evolved to the corresponding magic flow parameters.

‣   predictions for CSB in A=7,8 multiplets ?
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CSB in A=4 doublet: 4ΛH, 4
ΛHe

(Schulz et al, (2016);  Yamamoto et al, (2015);

•  2 additional LECs (at LO) contributing to CSB are adjusted to  ΔE(0+,1+)

Charge symmetry breaking in 4
⇤H-4

⇤He
• �E(0+) = E0+

⇤ (4
⇤He)� E0+

⇤ (4
⇤H)

= 233 ± 92 keV
• �E(1+) = E1+

⇤ (4
⇤He)� E1+

⇤ (4
⇤H)

= �83 ± 94 keV

adjust CSB contact terms to �E ’s

Nov 16th, 2021 

CSB contributions in  4ΛHe
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• perturbative calculations of CSB  
• breakdown in kinetic energy, YN and NN interaction 
• kinetic energy less important for chiral interactions

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the 0+

state based on 4
�He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
� . The direct comparison of separation

energies for full calculations of 4
�He and 4

�H, �E�, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the
1+ state based on 4

�He wave functions for scenario CSB1. Same interactions and notations as
in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E�

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

�
He wave functions for the evaluation of the expectation

values. Results for 4
�
H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the �p and �n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the 0+

state based on 4
�He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
� . The direct comparison of separation

energies for full calculations of 4
�He and 4

�H, �E�, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di�erent contributions to the CSB of 4
�He and 4

�H for the
1+ state based on 4

�He wave functions for scenario CSB1. Same interactions and notations as
in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

� �E�

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E�

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

�
He wave functions for the evaluation of the expectation

values. Results for 4
�
H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the �p and �n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

How model-dependent are predictions for the   scattering length?Λn

A1 Collaboration / Nuclear Physics A 954 (2016) 149–160 159

Fig. 6. Level schemes of the mirror hypernuclei 4!H and 4!He in terms of ! binding energy. For the ground state binding 
energy of 4!H the MAMI data were used, for that of 4!He data from past emulsion experiments [3] with a systematic 
error estimate of 40 keV [22]. The B! values for the excited states were obtained from the 1+

exc → 0+
g.s. γ -ray transition 

energies [4].

6. Conclusions

The ! separation energy of 4
!H has been measured for the second time by high-precision 

decay-pion spectroscopy at MAMI. The pions were observed in two independent spectrometers 
using two targets of different thicknesses, confirming the previous results in a consistent analysis 
of both experiments. Moreover, the results proved to be consistent after further calibration of the 
absolute momentum as well as in systematic studies of the used cut conditions.

When compared to the 4
!He binding energy measured with the emulsion technique and 

adding the information from γ -ray spectroscopy the MAMI data of 4
!H lead to the level 

schemes of 4
!H and 4

!He as shown in Fig. 6. Here, the systematic error estimate of 40 keV 
from Ref. [22] for the emulsion value was used. While the ground state binding energy dif-
ference of #B 4

!(0+
g.s.) = B!(4

!He(0+
g.s.)) − B!(4

!H(0+
g.s.)) = 233 ± 92 keV is smaller as mea-

sured by the emulsion technique it still supports a sizable CSB effect in the !N interaction. 
Furthermore, it suggests a negative binding energy difference between the excited states of 
#B 4

!(1+
exc) = B!(4

!He(1+
exc)) − B!(4

!H(1+
exc)) = −83 ± 94 keV.

Most calculations performed so far resulted in much smaller binding energy differences than 
observed. Gazda and Gal have recently reported on ab initio no-core shell model calculations 
of the mirror pair using the charge-symmetric Bonn–Jülich leading-order chiral effective field 
theory hyperon–nucleon potentials plus a charge symmetry breaking !–$0 mixing vertex [13]. 
These calculations predict a large CSB ground state splitting and a CSB splitting of opposite sign 
for the excited states.

During the last years the MAMI accelerator was the only place worldwide where a precise and 
intense continuous electron beam was available for hypernuclear physics. While the total error 
of the MAMI binding energy data is of the same order than that of the compiled results from the 
emulsion technique, it is currently dominated by the systematic uncertainty of the absolute mo-
mentum calibration, which can be improved further. Current developments at MAMI are aiming 
at a higher accuracy of the calibration, which could reduce the error on the binding energy by a 
factor of four.

Together with prospects for a precise measurement of the γ transition energy of 4
!H at 

J-PARC [23], the 4
!H level scheme could become the most accurate among hypernuclei and 

provide further guidance for theory and for investigating the origin of CSB in the !N interac-
tion.

(Schulz et al.,2016; Yamamoto, 2015)

0+

1+

0+

(Schulz et al., 2016; Yamamoto et al., 2015)

(fm // keV) a⇤p
s a⇤n

s a⇤p
t a⇤n

t �E(0+) �E(1+)

NLO19(500) -2.649 -3.202 -1.580 -1.467 249 -75
NLO19(550) -2.640 -3.205 -1.524 -1.407 252 -72
NLO19(600) -2.632 -3.227 -1.473 -1.362 243 -67
NLO19(650) -2.620 -3.225 -1.464 -1.365 250 -69

CSB in singlet (1S0) much larger than in triplet (3S1)
practically independent of cutoff; same results for NLO13
without CSB: a⇤p

s ⇡ a⇤n
s ⇡ �2.9 fm

• CSB in A = 7, 8 ⇤-hypernuclei, see talk of Hoai Le

Johann Haidenbauer Hyperon-nucleon interaction

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+)
= 233 ± 92 keV

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+)
= −83 ± 94 keV

‣ CSB in singlet ( ) is much larger than in triplet 1S0 (3S1)
‣   predictions for A=4 are independent of cutoff, same results for NLO13

(J. Haidenbauer, U-G. Meißner 
 and A. Nogga FBS 62(2021))

6 Hoai Le et al.

Table 3 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

(fm//keV) a⇤p
s a⇤n

s �as a⇤p
t a⇤n

t �at �E(0+) �E(1+)

NLO19(500)
-2.91 -2.91 0 -1.42 -1.41 -0.01 34 10

no CSB

CSB1(500) -2.65 -3.20 0.55 -1.58 -1.47 -0.11 249 -75

CSB1(550) -2.64 -3.21 0.57 -1.52 -1.41 -0.11 252 -72

CSB1(600) -2.63 -3.23 0.6 -1.47 -1.36 -0.09 243 -67

CSB1(650) -2.62 -3.23 0.61 -1.46 -1.37 -0.09 250 -69

Table 4 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

4
⇤He� 4

⇤H
7
⇤Be� 7

⇤Li
⇤ 7

⇤Li
⇤ � 7

⇤He 8
⇤Be� 8

⇤Li

0+ 1+

NLO19 -7.5 -10.5 -34.3 -14.3 -11

CSB1 209.5 -70.5 -26.3 -3.3 135

CSB1A 129.5 -134.5 -83.3 -62.3 74

Exp �100± 90 �20± 230 40± 60

4.2 NCSM results for A=7

Table 9 provides selected results for the separation energies of the 1/2+ mirror
hypernuclei 7

⇤He, 7
⇤Li

⇤, and 7
⇤Be, without CSB. The chiral and SRG-induced 3N

as well as the SRG-induced YNN interactions are included in the calculations.
In Table ?? we provide the separation energies for the A=7 isotriplet computed
using the NN interaction N4LO + (450) in combination with the YN potentials
NLO13(500) and NLO19(500), SRG-evolved to the respective magic SRG-flow pa-
rameters for which the 5

⇤He separation energy agrees with the full result including
the SRG-induced YNN force.

Table 10 provides an overview of results for CSB1, when the full 3N and
the SRG-induced YNN interactions are taken into account. Table ?? provides
an overview of results for CSB1, when the YN NLO13(500) and NLO19(500) are
SRG-evolved to the corresponding magic flow parameters.

‣   predictions for CSB in A=7,8 multiplets ?

= − 160 ± 140 ± 100(1) keV

= 160 ± 140 ± 100(1) keV

Star collaboration (2022))(1)

what could be consequence on CSB in A=7,8? 
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CSB in A=7 isotriplet: 7ΛHe, 7
ΛLi*, 7

ΛBe

• NLO19(500) predicts rather accurately separation energies in  A=7 isotriplet   

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

NN:SMS +(450)N4LO

+3N: (450)N2LO

+SRG-induced YNN 

Separation energies in A=7 isotriplet 

• NLO13 & NLO19 CSB results for A=7 are comparable to experiment    

A. Gal PLB 744 (2015)
(1)

E. Botta et al., NPA 960 (2017)(2)

(2)

Title Suppressed Due to Excessive Length 9

Table 10 Contributions of CSB for the A = 7 isospin multiplet, based on the YN potentials
NLO13 and NLO19 (with 3NFs and SRG-induced YNN forces) with cuto↵ ⇤ = 500 MeV. The
results are for the original potentials (without CSB force) and for the scenarios CSB1, see text.

YN �T �NN �YN �Epert
⇤

1S0
3S1 total

(7⇤Be,7⇤Li)

NLO13 6.8 -24 -1.0 0 0 -17.2(30)

CSB1 7.8 -24 -49.3 25.5 -24 -40.2(30)

NLO19 5.8 -40 -0.6 0 0 -34.2(30)

CSB1 5.8 -41 -43.1 42.1 -0.3 -35.2(30)

Gal(1) 3 -70 50 -17

Exp(2) �100± 90

(7⇤Li,
7
⇤He)

NLO13 7.8 -13 -0.4 0 0 -5.2(30)

CSB1 6.8 -14 -48.7 25.5 -24 -31.2(30)

NLO19 4.8 -22 -42.7 42 0 -17.2(30)

CSB1 4.8 -21 -37.9 36.9 -1 -16.2(30)

observed splittings - but he does not mention that the underlying CSB e↵ects had
changed in the meantime. Seen in a positive way, her calculation showed that the
empirical CSB shifts for A = 4 and A = 7 available at that time were simply not
compatible.

Note that Hiyama calibrates her ↵⇤ interaction to 5
⇤He while we calibrate our

�SRG to that hypernucleus!

Which CSB scenario in A=4 is consistent with the one for A=7, and which one
is not! Note that for the CSB1 case �aCSB

1S0 ⌘ a⇤p�a⇤n is ⇡ 0.62±0.08 fm, whereas

for the triplet state the prediction is with �aCSB
3S1 ⇡ �0.10± 0.02 fm significantly

smaller and of opposite sign. In case of CSB2 we get �aCSB
1S0 ⇡ �1.17 fm and

�aCSB
3S1 ⇡ �0.33 fm, respectively. Hiyama’s potential in her Eq. (3.3) suggests a

ratio of �5.9/�8.7 for the singlet/triplet cases.

Hiyama’s original results for A=8 ⇤ hypernuclei within a three-body cluster
model (⇤+↵+3He/t) can be found in Ref. [?]. Calculations with CSB in the ⇤-
3He/⇤-t clusters taken into account are reported in [?]. With the CSB interaction
fixed from A=4 (CSB2 scenario) she gets 0.16 MeV for 8

⇤Be-
8
⇤Li. This is about

half of what we find for this scenario, see Table 12 below.

Comment: There are new A = 4 data from the STAR collaboration [?]. The
splittings found by them are �E(0+) = 160 ± 140(stat) ± 100(syst) keV and
�E(1+) = �160± 140(stat)± 100(syst) keV.

(7
ΛBe, 7

ΛLi*)

8 Hoai Le et al.

Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54± 0.22 4.30± 0.47 5.44± 0.03 4.53± 0.34 5.16± 0.08
7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.49± 0.04 4.59± 0.34 5.26± 0.03 5.53± 0.13
7
⇤He 5.64± 0.27 4.39± 0.54 5.43± 0.06 4.45± 0.35 5.55± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54± 0.22 4.30± 0.47 5.16± 0.08 ?

7
⇤Li

⇤ 5.64 ± 0.28 4.42± 0.58 5.26± 0.03 5.53 ± 0.13

7
⇤He 5.64 ± 0.27 4.39± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-
7
⇤Li and

0.13 MeV for 7
⇤Li-

7
⇤He according to the figures (0.2 MeV according to the text).

However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the
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E. Hiyama et al., PRC 80 (2009)(1)

CSB in A=8 doublet: 8ΛBe, 8
ΛLi

• CSB1 fits lead to a larger CSB in A=8 doublet as compared to experiment 

experimental CSB result for A=8 could be larger than  keV?40 ± 60
CSB estimated for A=4 could still be too large or have different spin-dependence?

A. Gal PLB 744 (2015)
(2)

E. Botta et al., NPA 960 (2017)(3)

Separation energies in A=8 doublet, computed at   that reproduces  λ BΛ(5
ΛHe)

NN:SMS +(450)N4LO

+3N: (450)N2LO

+SRG-induced YNN 

10 Hoai Le et al.

Table 11 ⇤ separation energies for A = 8 systems. The results are computed for the
NLO13(500) and NLO19(500) potentials, SRG-evolved to the corresponding magic flow param-
eters. Experiments are taken from the compilation in Ref. [?]. The cited results by Hiyama et
al. based on a three-body cluster model [?] are without CSB force. The accurate reproduction
of the 1+ ground state of 8

⇤Li is accidental, as stated in that work.

�Y N
8
⇤Be 8

⇤Li

NLO13 0.765 5.56± 0.25 5.57± 0.30

NLO19 0.823 7.15± 0.10 7.17± 0.10

Hiyama et al. 6.72 6.80

Exp. emulsion 6.84± 0.05 6.80± 0.03

Exp. counter ? ?

Table 12 Contributions to CSB for the A = 8 isospin multiplet, based on the YN potentials
NLO13 and NLO19 with cuto↵ ⇤ = 500 MeV. All NN, 3N and YN potentials are SRG-evolved
to a flow parameter of � = 1.88 fm-1. The SRG-induced YNN forces are also included in
all calculations. The results are for the original potentials (without CSB force) and for the
scenarios CSB1, see text. Experimental value for 8

⇤Be-8⇤Li is 40± 60 keV.

YN �T �NN �YN �Epert
⇤

1S0
3S1 total

NLO13 12.2 8 -2.1 0 -4.0 16.2(50)

CSB1 11.9 7 99.8 55.5 158.8 177.7(50)

NLO19 6.6 -11 -0.9 0 -1.9 -6.3(50)

CSB1 6.3 -11 62 79.1 147.3 142.6(50)

Hiyama(1) 160

Gal(2) 11 -81 119 49

Exp(3) 40± 60

5 NCSM results for A = 8 isodoublet

6 Conclusions

In the present work, we have studied e↵ects from CSB in the Y N interaction.
Specifically, we have utilized the experimentally known di↵erence of the ⇤ sep-
aration energies in the mirror nuclei 4

⇤He and 4
⇤H to constrain the ⇤-neutron

interaction. For that purpose, we derived the contributions of the leading CSB
interaction within chiral e↵ective field theory and added them to our NLO chiral
hyperon-nucleon interactions [?,?]. CSB contributions arise from a non-zero ⇤⇤⇡
coupling constant which is estimated from ⇤ � ⌃0 mixing, the mass di↵erence
between K± and K0, and from two contact terms that represent short-ranged
CSB forces. In the actual calculation, the two arising CSB low-energy constants
are fixed by considering the known di↵erences in the energy levels of the 0+ and

10 Hoai Le et al.

Table 11 ⇤ separation energies for A = 8 systems. The results are computed for the
NLO13(500) and NLO19(500) potentials, SRG-evolved to the corresponding magic flow param-
eters. Experiments are taken from the compilation in Ref. [?]. The cited results by Hiyama et
al. based on a three-body cluster model [?] are without CSB force. The accurate reproduction
of the 1+ ground state of 8

⇤Li is accidental, as stated in that work.

�Y N
8
⇤Be 8

⇤Li

NLO13 0.765 5.56± 0.25 5.57± 0.30

NLO19 0.823 7.15± 0.10 7.17± 0.10

Hiyama et al. 6.72 6.80

Exp. emulsion 6.84± 0.05 6.80± 0.03

Exp. counter ? ?

Table 12 Contributions to CSB for the A = 8 isospin multiplet, based on the YN potentials
NLO13 and NLO19 with cuto↵ ⇤ = 500 MeV. All NN, 3N and YN potentials are SRG-evolved
to a flow parameter of � = 1.88 fm-1. The SRG-induced YNN forces are also included in
all calculations. The results are for the original potentials (without CSB force) and for the
scenarios CSB1, see text. Experimental value for 8

⇤Be-8⇤Li is 40± 60 keV.

YN �T �NN �YN �Epert
⇤

1S0
3S1 total

NLO13 12.2 8 -2.1 0 -4.0 16.2(50)

CSB1 11.9 7 99.8 55.5 158.8 177.7(50)

NLO19 6.6 -11 -0.9 0 -1.9 -6.3(50)

CSB1 6.3 -11 62 79.1 147.3 142.6(50)

Hiyama(1) 160

Gal(2) 11 -81 119 49

Exp(3) 40± 60

5 NCSM results for A = 8 isodoublet

6 Conclusions

In the present work, we have studied e↵ects from CSB in the Y N interaction.
Specifically, we have utilized the experimentally known di↵erence of the ⇤ sep-
aration energies in the mirror nuclei 4

⇤He and 4
⇤H to constrain the ⇤-neutron

interaction. For that purpose, we derived the contributions of the leading CSB
interaction within chiral e↵ective field theory and added them to our NLO chiral
hyperon-nucleon interactions [?,?]. CSB contributions arise from a non-zero ⇤⇤⇡
coupling constant which is estimated from ⇤ � ⌃0 mixing, the mass di↵erence
between K± and K0, and from two contact terms that represent short-ranged
CSB forces. In the actual calculation, the two arising CSB low-energy constants
are fixed by considering the known di↵erences in the energy levels of the 0+ and
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Fitting LECs to new Star measurement

CSB1A fit predicts reasonable CSB in both A=7 and A=8 systems 

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+)

= 233 ± 92 keV ⇒ (CSB1)

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+)

= − 83 ± 94 keV ⇒ (CSB1)
= − 160 ± 140 ± 100 keV ⇒ (CSB1A)

= 160 ± 140 ± 100 keV ⇒ (CSB1A)

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

YN : NLO19(500); λYN = 0.823 fm−1

BΛ(5
ΛHe, NLO19) = 3.35 ± 0.03 MeV

8 Hoai Le et al.

Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54± 0.22 4.30± 0.47 5.44± 0.03 4.53± 0.34 5.16± 0.08
7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.49± 0.04 4.59± 0.34 5.26± 0.03 5.53± 0.13
7
⇤He 5.64± 0.27 4.39± 0.54 5.43± 0.06 4.45± 0.35 5.55± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54± 0.22 4.30± 0.47 5.16± 0.08

7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.26± 0.03 5.53 ± 0.13

7
⇤He 5.64± 0.27 4.39± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-
7
⇤Li and

0.13 MeV for 7
⇤Li-

7
⇤He according to the figures (0.2 MeV according to the text).

However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

NN : N4LO+(450); λN = 1.6 fm−1
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Table 3 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

(fm//keV) a⇤p
s a⇤n

s �as a⇤p
t a⇤n

t �at �E(0+) �E(1+)

NLO19(500)
-2.91 -2.91 0 -1.42 -1.41 -0.01 34 10

no CSB

CSB1(500) -2.65 -3.20 0.55 -1.58 -1.47 -0.11 249 -75

CSB1(550) -2.64 -3.21 0.57 -1.52 -1.41 -0.11 252 -72

CSB1(600) -2.63 -3.23 0.6 -1.47 -1.36 -0.09 243 -67

CSB1(650) -2.62 -3.23 0.61 -1.46 -1.37 -0.09 250 -69

Table 4 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

4
⇤He� 4

⇤H
7
⇤Be� 7

⇤Li
⇤ 7

⇤Li
⇤ � 7

⇤He 8
⇤Be� 8

⇤Li

0+ 1+

NLO19 -7.5 -10.5 -34.3 -14.3 -11

CSB1 209.5 -70.5 -26.3 -3.3 135

CSB1A 129.5 -134.5 -83.3 -62.3 74

Exp �100± 90 �20± 230 40± 60

4.2 NCSM results for A=7

Table 9 provides selected results for the separation energies of the 1/2+ mirror
hypernuclei 7

⇤He, 7
⇤Li

⇤, and 7
⇤Be, without CSB. The chiral and SRG-induced 3N

as well as the SRG-induced YNN interactions are included in the calculations.
In Table ?? we provide the separation energies for the A=7 isotriplet computed
using the NN interaction N4LO + (450) in combination with the YN potentials
NLO13(500) and NLO19(500), SRG-evolved to the respective magic SRG-flow pa-
rameters for which the 5

⇤He separation energy agrees with the full result including
the SRG-induced YNN force.

Table 10 provides an overview of results for CSB1, when the full 3N and
the SRG-induced YNN interactions are taken into account. Table ?? provides
an overview of results for CSB1, when the YN NLO13(500) and NLO19(500) are
SRG-evolved to the corresponding magic flow parameters.
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Summary

                   Thank you for the attention!

• CSB1 fit reproduces experimental results for A=4 & 7 systems  

 study CSB in A=7 isotriplet and A=8 doublet using  2BFs + 3BFs:χ

 study   hypernuclei using chiral 2B & 3N interactions + SRG-induced YNN  4
ΛH(0+,1+), 5

ΛHe, 7
ΛLi

• NLO19 potential reproduces fairly well experimental values for   and  4
ΛH(1+), 5

ΛHe 7
ΛLi

but lead to a somewhat larger than the experimental CSB for the  doublet8
ΛBe, 8

ΛLi

• NLO13 underbinds A=4-7 hypernuclei

difference in predictions of NLO13 & NLO19 will be removed by appropriate chiral YNN force

• CSB1A fit yields reasonable CSB for A=7 & 8 systems  
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Title Suppressed Due to Excessive Length 11

Table 6 ⇤ separation energies for A = 8 systems, computed using the NLO13(500) and
NLO19(500) potentials together with the SRG-induced YNN forces (second and forth rows),
and at the magic flow parameters (third and fifth rows). The cited results by Hiyama et al. [8]
based on a four-body cluster model are also without CSB force. All the results are in MeV.

8
⇤Be 8

⇤Li
5
⇤He

NLO13

YNN_SRG 5.75± 1.08 2.22± 0.06

� = 0.765 5.56± 0.25 5.57± 0.30 2.22± 0.04

NLO19

YNN_SRG 7.33± 1.15 3.32± 0.03

� = 0.823 7.15± 0.10 7.17± 0.10 3.35± 0.02

Experiment [4] 6.84± 0.05 6.80± 0.03 3.12± 0.02

Table 7 Contributions to CSB for the A = 8 isospin doublet, based on the NLO13(500)
and NLO19(500)YN potentials with and without CSB components. The full 3NFs as well as
SRG-induced YNN forces are also included explicitly. All results are in keV.

YN �T �NN �YN �Epert
⇤

1S0
3S1 total

NLO13 12.2 8 -2.1 0 -4.0 16.2(50)

CSB1 11.9 7 99.8 55.5 158.8 177.7(50)

NLO19 6.6 -11 -0.9 0 -1.9 -6.3(50)

CSB1 6.3 -11 62 79.1 147.3 142.6(50)

Hiyama [8] 160

Gal [33] 11 -81 119 49

Exp [4] 40± 60

Table 2. These values, within the estimated uncertainty of 50 keV, are consistent
with the results of Epert

⇤ (NLO13,CSB1) = 178 keV and Epert
⇤ (NLO19,CSB1) =

143 keV (Table 7), extracted from the full calculations. In addition, the CSB of
74±50 keV predicted by the NLO19 potential with the charge symmetry breaking
terms from the CSB1A fit is also in well line with the experimental value of 40±60
keV [4].

6 Conclusions

In the present work, we have studied e↵ects from CSB in the Y N interaction.
Specifically, we have utilized the experimentally known di↵erence of the ⇤ sep-
aration energies in the mirror nuclei 4

⇤He and 4
⇤H to constrain the ⇤-neutron

interaction. For that purpose, we derived the contributions of the leading CSB
interaction within chiral e↵ective field theory and added them to our NLO chi-
ral hyperon-nucleon interactions [16,17]. CSB contributions arise from a non-zero
⇤⇤⇡ coupling constant which is estimated from ⇤�⌃0 mixing, the mass di↵erence
between K± and K0, and from two contact terms that represent short-ranged
CSB forces. In the actual calculation, the two arising CSB low-energy constants

YNN_SRG

YNN_SRG


