ntglied der Helmholtz-Gemeinsch

Light hypernuclei within chiral EFT

Hoai Le, IAS-4 & IKP-3, Forschungszentrum Jülich, Germany EMMI Workshop, Kitzbuehel, Austria, September 14-16, 2022

collaborators: Johann Haidenbauer, Ulf-G Meißner, Andreas Nogga

Outline

- Baryon-Baryon (BB) interactions in chiral effective field theory (EFT)
- Numerical approach:
 - Jacobi no-core shell model (J-NCSM) for S=-1
 - Similarity Renormalization Group (SRG)
- Results:
 - \wedge Separation energy in $^4_{\Lambda}$ He, $^5_{\Lambda}$ He, $^7_{\Lambda}$ Li with NLO13 & NLO19 potentials
 - ► CSB results: $\binom{4}{\Lambda}$ He, $\binom{4}{\Lambda}$ H), $\binom{7}{\Lambda}$ Be, $\binom{7}{\Lambda}$ Li*), $\binom{8}{\Lambda}$ Be, $\binom{8}{\Lambda}$ Li)
- Summary

Itglied der Heimnoltz-Gemeinschaft

BB interactions in χ EFT

(adapted from H. Krebs CD workshop, 18th November 2021)

- LECs are determined via a fit to experiment:
 - ► ~5000 NN + Nd scattering data + 2H , 3H / 3He → NN forces up to N ${}^4LO+$, 3NF up to N 2LO (P. Reinert et al EPJA (2018), P. Maris et al PRC 103(2021))
- ► ~36 YN data + ${}^3_\Lambda H$ → YN forces up to NLO (NLO13, NLO19) and N²LO (YNN forces contribute)

Jacobi-NCSM approach

diagonalize the A-body translationally invariant hypernuclear Hamiltonian

$$H = T_{rel} + V^{NN} + V^{YN} + V^{NNN} + V^{YNN} + \Delta M$$
 in a finite A-particle harmonic oscillator (HO) basis

• basis states for S = -1 systems:

$$\begin{array}{c} (\text{A-1})\text{N} \\ \left| \bigodot \right\rangle = | \, \mathcal{N}JT, \, \underbrace{\mathcal{N}_{A-1}J_{A-1}T_{A-1}, \, \, n_Yl_YI_Y\, t_Y; \, (J_{A-1}(l_Ys_Y)I_Y)\, J, (T_{A-1}t_Y)T}_{antisym.(A-1)N} \, \underbrace{\mathcal{N}(\Sigma) \, state} \end{array}$$

• intermediate bases for evaluating Hamiltonian:

- basis truncation: $\mathcal{N} = \mathcal{N}_{A-1} + 2n_{\lambda} + \lambda \leq \mathcal{N}_{max} \Rightarrow E_b = E_b(\omega, \mathcal{N}_{max})$
 - \longrightarrow extrapolate in ω and $\mathcal N$ -spaces to obtain converged results

Similarity Renormalization Group (SRG)

Idea: continuously apply unitary transformation to H to suppress off-diagonal matrix elements

→ observables (binding energies) are conserved due to unitarity of transformation

F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$\begin{split} \frac{dV(s)}{ds} &= \left[\left[T_{rel}, V(s) \right], H(s) \right], & H(s) &= T_{rel} + V(s) + \Delta M \\ s &= 0 \to \infty & V(s) &= V_{12}(s) + V_{13}(s) + V_{23}(s), \quad V_{123} \equiv V_{NNN} \left(V_{YNN} \right) \end{split}$$

separate SRG flow equations for 2-body and 3-body interactions: (S.K. Bogner et al PRC75 (2007),
 K. Hebeler PRC85 (2012))

$$\frac{dV^{NN}(s)}{ds} = [[T^{NN}, V^{NN}], T^{NN} + V^{NN}]$$

$$\frac{dV^{YN}(s)}{ds} = [[T^{YN}, V^{YN}], T^{YN} + V^{YN} + \Delta M]$$

$$\frac{dV_{123}}{ds} = [[T_{12}, V_{12}], V_{31} + V_{23} + V_{123}]$$

$$+[[T_{31}, V_{31}], V_{12} + V_{23} + V_{123}]$$

$$+[[T_{23}, V_{23}], V_{12} + V_{31} + V_{123}] + [[T_{rel}, V_{123}], H_s]$$

$$g$$

Eqs.(1)

SRG-induced 3BFs are generated even if $V_{123}^{\rm bare}=0$

Eqs.(1) are solved by projecting on a 3N (YNN) Jacobi-momentum basis:

$$|p_{12} \alpha_{12}\rangle \equiv |p_{12}, (l_{12}s_{12})J_{12}(t_1t_2)t_{12} m_{t12}\rangle; \quad ((-1)^{l_{12}+S_{12}+t_{12}} = -1)$$

$$|p_{12} q_3 \alpha J T; \alpha_{12} I_3 t_3\rangle \equiv |p_{12} q_3, ((l_{12}s_{12})J_{12} (l_3s_3)I_3)J ((t_1t_2)T_{12} t_3)T\rangle$$

A=3-5 hypernuclei with SRG-induced YNN

3N: N²LO(450)

-> contributions of SRG-induced YNNN forces to $B_{\Lambda}({}_{\Lambda}^{4}\mathrm{H}, {}_{\Lambda}^{5}\mathrm{He})$ are negligible

itglied der Helmholtz-Gemeins

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent
- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in 3S_1)
 - manifest in higher-body observables

(J.Haidenbauer et al., NPA 915 2019))

• $B_{\Lambda}(NLO19) > B_{\Lambda}(NLO13)$ \longrightarrow possible contribution of chiral YNN force

litglied der Helmholtz-Gemeinscr

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent
- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in 3S_1)
 - manifest in higher-body observables (J.Haidenbauer et al., NPA 915 2019))

	$^4_\Lambda$ F	I	$^5_{\Lambda}{ m He}$	$^{7}_{\Lambda}{ m Li}$
	0+	1+	1/2+	$(1/2^+,0)$
NLO13(500)	1.551 ± 0.007	0.823 ± 0.003	2.22 ± 0.06	5.28 ± 0.68
NLO19(500)	1.514 ± 0.007	1.27 ± 0.009	3.32 ± 0.03	6.04 ± 0.30
Exp	$2.16 \pm 0.08^{(1)}$	$1.07 \pm 0.08^{(1)}$	$3.12 \pm 0.02^{(1)}$	$5.85 \pm 0.13(10)^{(2)}$
Ехр				$5.58 \pm 0.03^{(1)}$

NN:SMS N⁴LO+(450)

 $+3N: N^2LO(450)$

+SRG-induced YNN

- (2)M. Agnello PLB 681(2009)
- ⁽¹⁾M. Juric NPB 52(1973)
- ${}^4_{\Lambda} H(1^+), {}^5_{\Lambda} He, {}^7_{\Lambda} Li$ are fairly well described by **NLO19(500)**; NLO13 underbinds these systems
- YNN contributes at N2LO. Using decuplet saturation scheme

 YNN is promoted to NLO (2LECs)
- •• use $B_{\Lambda}(^4_{\Lambda} \text{H/}^4_{\Lambda} \text{He}(0^+, 1^+))$ or $B_{\Lambda}(^4_{\Lambda} \text{H/He}(0^+), ^5_{\Lambda} \text{He}(1/2^+))$ to fix the additional **2LECs** (work in progress)

Mitglied der Helmholtz-Gemeinscr

CSB in **A=4** doublet: ${}^4_{\Lambda}\text{H}, {}^4_{\Lambda}\text{He}$

(Schulz et al, (2016); Yamamoto et al, (2015))

$$\Delta E(1^{+}) = B_{\Lambda}(^{4}_{\Lambda}\text{He}, 1^{+}) - B_{\Lambda}(^{4}_{\Lambda}\text{H}, 1^{+})$$

= -83 ± 94 keV

$$\Delta E(0^{+}) = B_{\Lambda}({}_{\Lambda}^{4}\text{He}, 0^{+}) - B_{\Lambda}({}_{\Lambda}^{4}\text{H}, 0^{+})$$

= 233 ± 92 keV

Coulomb contribution almost cancels in B_{Λ} (Bodmer et al, 1985)

• 2 additional LECs (at LO) contributing to CSB are adjusted to $\Delta E(0^+, 1^+)$

(fm//keV)	$a_s^{\color{red} \Lambda p}$	$a_s^{\Lambda n}$	δa_s	$a_t^{\color{red} \Lambda p}$	$a_t^{\color{red} \Lambda n}$	δa_t	$\Delta E(0^+)$	$\Delta E(1^+)$
NLO19(500) no CSB	-2.91	-2.91	0	-1.42	-1.41	-0.01	34	10
CSB1(500)	-2.65	-3.20	0.55	-1.58	-1.47	-0.11	249	-75
CSB1(550)	-2.64	-3.21	0.57	-1.52	-1.41	-0.11	252	-72
CSB1(600)	-2.63	-3.23	0.6	-1.47	-1.36	-0.09	243	-67
CSB1(650)	-2.62	-3.23	0.61	-1.46	-1.37	-0.09	250	-69

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))

- \rightarrow CSB in singlet (1S_0) is much larger than in triplet (3S_1)
 - predictions for A=4 are independent of cutoff, same results for NLO13
 - predictions for CSB in A=7,8 multiplets ?

Mitglied der Helmholtz-Gemeinsch

CSB in **A=4** doublet: ${}^4_{\Lambda}\text{H}$, ${}^4_{\Lambda}\text{He}$

(Schulz et al, (2016); Yamamoto et al, (2015); (1)Star collaboration (2022))

$$\Delta E(1^{+}) = B_{\Lambda}(^{4}_{\Lambda}\text{He}, 1^{+}) - B_{\Lambda}(^{4}_{\Lambda}\text{H}, 1^{+})$$

$$= -83 \pm 94 \text{ keV}$$

$$= -160 \pm 140 \pm 100^{(1)} \text{ keV}$$

$$\Delta E(0^{+}) = B_{\Lambda}(^{4}_{\Lambda}\text{He}, 0^{+}) - B_{\Lambda}(^{4}_{\Lambda}\text{H}, 0^{+})$$

$$= 233 \pm 92 \text{ keV}$$

$$= 160 \pm 140 \pm 100^{(1)} \text{ keV}$$

what could be consequence on CSB in A=7,8?

• 2 additional LECs (at LO) contributing to CSB are adjusted to $\Delta E(0^+, 1^+)$

$(\mathrm{fm}//\mathrm{keV})$	$a_s^{\Lambda p}$	$a_s^{\color{red} \Lambda n}$	δa_s	$a_t^{\mathbf{\Lambda}p}$	$a_t^{\Lambda n}$	δa_t	$\Delta E(0^+)$	$\Delta E(1^+)$
NLO19(500)	-2.91	-2.91	0	-1.42	-1.41	-0.01	34	10
no CSB						0.01		
CSB1(500)	-2.65	-3.20	0.55	-1.58	-1.47	-0.11	249	-75
CSB1(550)	-2.64	-3.21	0.57	-1.52	-1.41	-0.11	252	-72
CSB1(600)	-2.63	-3.23	0.6	-1.47	-1.36	-0.09	243	-67
CSB1(650)	-2.62	-3.23	0.61	-1.46	-1.37	-0.09	250	-69

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))

- → CSB in singlet (1S_0) is much larger than in triplet (3S_1)
 - predictions for A=4 are independent of cutoff, same results for NLO13
 - predictions for CSB in A=7,8 multiplets ?

Mitglied der Heimnoitz-Gemeinsc

CSB in A=7 isotriplet: ${}^{7}_{\Lambda}{\rm He}, {}^{7}_{\Lambda}{\rm Li}^*, {}^{7}_{\Lambda}{\rm Be}$

	NLO19(500)	NLO13(500)	$\mathrm{Exp}^{(2)}$		
			emulsion	counter	
$\frac{7}{\Lambda}$ Be	5.54 ± 0.22	4.30 ± 0.47	5.16 ± 0.08	?	
$^{7}_{\Lambda} { m Li}^*$	5.64 ± 0.28	4.42 ± 0.58	5.26 ± 0.03	5.53 ± 0.13	
$^{7}_{\Lambda}{ m He}$	5.64 ± 0.27	4.39 ± 0.54		5.55 ± 0.1	

NN:SMS $N^4LO+(450)$

 $+3N: N^2LO(450)$

+SRG-induced YNN

Separation energies in A=7 isotriplet

	YN	ΔT	Δ NN		$\Delta \mathrm{YN}$		$\Delta E_{\Lambda}^{pert}$
				$^{1}S_{0}$	$^{3}S_{1}$	total	
	NLO13	6.8	-24	-1.0	0	0	-17.2(30)
	CSB1	7.8	-24	-49.3	25.5	-24	-40.2(30)
$({}^{7}_{\Lambda}\mathrm{Be}, {}^{7}_{\Lambda}\mathrm{Li}^{*})$	NLO19	5.8	-40	-0.6	0	0	-34.2(30)
	CSB1	5.8	-41	-43.1	42.1	-0.3	-35.2(30)
•	$\operatorname{Gal}^{(1)}$	3	-70			50	-17
	$\operatorname{Exp}^{(2)}$						-100 ± 90

(1) A. Gal PLB 744 (2015)

(2)E. Botta et al., NPA 960 (2017)

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

- NLO19(500) predicts rather accurately separation energies in A=7 isotriplet
 - NLO13 & NLO19 CSB results for A=7 are comparable to experiment

Mitglied der Helmholtz-Gemeinsc

CSB in A=8 doublet: ${}^{8}_{\Lambda}\mathrm{Be}, {}^{8}_{\Lambda}\mathrm{Li}$

	λ_{YN}	$^8_{\Lambda}{ m Be}$	$^8_{\it \Lambda}{ m Li}$
NLO13	0.765	5.56 ± 0.25	5.57 ± 0.30
NLO19	0.823	7.15 ± 0.10	7.17 ± 0.10
Hiyama et al.		6.72	6.80
Exp. emulsion		6.84 ± 0.05	6.80 ± 0.03
Exp. counter		?	?

Separation energies in A=8 doublet, computed at λ that reproduces $B_{\Lambda}(^{5}_{\Lambda}{\rm He})$

YN	ΔT	$\Delta { m NN}$		ΔYN		$\Delta E_{\Lambda}^{pert}$
			$^{1}S_{0}$	${}^{3}S_{1}$	total	
NLO13	12.2	8	-2.1	0	-4.0	16.2(50)
CSB1	11.9	7	99.8	55.5	158.8	177.7(50)
NLO19	6.6	-11	-0.9	0	-1.9	-6.3(50)
CSB1	6.3	-11	62	79.1	147.3	142.6(50)
Hiyama ⁽¹⁾						160
$Gal^{(2)}$	11	-81			119	49
$\operatorname{Exp}^{(3)}$						40 ± 60

NN:SMS N⁴LO+(450)

 $+3N: N^2LO(450)$

+SRG-induced YNN

- (1)E. Hiyama et al., PRC 80 (2009)
- (2) A. Gal PLB 744 (2015)
- (3)E. Botta et al., NPA 960 (2017)
- CSB1 fits lead to a larger CSB in A=8 doublet as compared to experiment
- experimental CSB result for A=8 could be larger than 40 ± 60 keV?
 CSB estimated for A=4 could still be too large or have different spin-dependence?

ntglied der Helmholtz-Gemeinsch

Fitting LECs to new Star measurement

$$\Delta E(1^{+}) = B_{\Lambda}(^{4}_{\Lambda}He, 1^{+}) - B_{\Lambda}(^{4}_{\Lambda}H, 1^{+})$$

$$= -83 \pm 94 \text{ keV} \implies (CSB1)$$

$$= -160 \pm 140 \pm 100 \text{ keV} \implies (CSB1A)$$

$$\Delta E(0^{+}) = B_{\Lambda}(^{4}_{\Lambda}He, 0^{+}) - B_{\Lambda}(^{4}_{\Lambda}H, 0^{+})$$

$$= 233 \pm 92 \text{ keV} \implies (CSB1)$$

$$= 160 \pm 140 \pm 100 \text{ keV} \implies (CSB1A)$$

	NLO19(500)	CSB1	CSB1A
$a_s^{\Lambda p}$	-2.91	-2.65	-2.58
$a_s^{\Lambda n}$	-2.91	-3.20	-3.29
δa_s	0	0.55	0.71
$a_t^{\Lambda p}$	-1.42	-1.57	-1.52
$a_t^{\Lambda n}$	-1.41	-1.45	-1.49
δa_t	-0.01	-0.12	-0.03

	$^4_{\Lambda}{ m He} - ^4_{\Lambda}{ m H}$		$\int_{\Lambda}^{7} \operatorname{Be} - \int_{\Lambda}^{7} \operatorname{Li}^{*}$	$^{7}_{\Lambda}\mathrm{Li}^{*} - ^{7}_{\Lambda}\mathrm{He}$	$\frac{8}{\Lambda}$ Be $-\frac{8}{\Lambda}$ Li
	0+	1+			
NLO19	-7.5	-10.5	-34.3	-14.3	-11
CSB1	209.5	-70.5	-26.3	-3.3	135
CSB1A	129.5	-134.5	-83.3	-62.3	74
Exp			-100 ± 90	-20 ± 230	40 ± 60

NN: N⁴LO⁺(450); $\lambda_N = 1.6 \text{ fm}^{-1}$

YN: NLO19(500); $\lambda_{YN} = 0.823 \text{ fm}^{-1}$

 $B_{\Lambda}(^{5}_{\Lambda}\text{He, NLO19}) = 3.35 \pm 0.03 \text{ MeV}$

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

→ CSB1A fit predicts reasonable CSB in both A=7 and A=8 systems

itglied der Helmholtz-Gemeinsch

Summary

study ${}^4_{\Lambda}{\rm H}(0^+,1^+), {}^5_{\Lambda}{\rm He}, {}^7_{\Lambda}{\rm Li}$ hypernuclei using chiral 2B & 3N interactions + SRG-induced YNN

- NLO19 potential reproduces fairly well experimental values for ${}^4_{\Lambda}{\rm H}(1^+), {}^5_{\Lambda}{\rm He}$ and ${}^7_{\Lambda}{\rm Li}$
- NLO13 underbinds A=4-7 hypernuclei
- → difference in predictions of NLO13 & NLO19 will be removed by appropriate chiral YNN force

study CSB in A=7 isotriplet and A=8 doublet using χ 2BFs + 3BFs:

- **CSB1** fit reproduces experimental results for A=4 & 7 systems but lead to a somewhat larger than the experimental CSB for the ${}^8_\Lambda \mathrm{Be}$, ${}^8_\Lambda \mathrm{Li}$ doublet
- CSB1A fit yields reasonable CSB for A=7 & 8 systems

Thank you for the attention!

		$^8_{\Lambda}{ m Be}$	$^{8}_{\Lambda}\mathrm{Li}$	$^5_{\Lambda}{ m He}$
	YNN_SRG		5.75 ± 1.08	2.22 ± 0.06
NLO13	$\lambda = 0.765$	5.56 ± 0.25	5.57 ± 0.30	2.22 ± 0.04
	YNN_SRG		7.33 ± 1.15	3.32 ± 0.03
NLO19	$\lambda = 0.823$	7.15 ± 0.10	7.17 ± 0.10	3.35 ± 0.02
Experiment [4]		6.84 ± 0.05	6.80 ± 0.03	3.12 ± 0.02