Studies of light hypernuclei with the WASA-FRS, nuclear emulsions and machine learning

Take R. Saito

EMMI workshop "Meson and Hyperon interactions with nuclei Sept 14th – 16th, 2022, Kitzbühel, Austria

High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research,

RIKEN,

Japan

HRS-HYS Research Group (High ReSolution - HYpernuclear Spectroscopy), FRS/NUSTAR department, **GSI Helmholtz Center for Heavy Ion Research**, Germany

Hypernuclear production with HypHI

Pioneering experiment: HypHI Phase 0 (2009)

 To demonstrate the feasibility of precise hypernuclear spectroscopy with ⁶Li primary beams at 2 A GeV on a carbon target

Two puzzles initiated by HypHI

Signals indicating nn Λ bound state

All theoretical calculations show negative results

- E. Hiyama et al., Phys. Rev. C89 (2014) 061302(R)
- A. Gal et al., Phys. Lett. B736 (2014) 93
- H. Garcilazo et al., Phys. Rev. C89 (2014) 057001 and much more publication

C. Rappold et al., PRC 88 (2013) 041001

Short lifetime of ³_A**H** C. Rappold et al., Nucl. Phys. A 913 (2013) 170

• HypHI Phase 0: 183⁺⁴²-32 ps

Binding energy of hypertriton

NATURE PHYSICS | VOL 16 | APRIL 2020 | 409-412 | www.nature.com/naturephysics

nature LETTERS physics https://doi.org/10.1038/s41567-020-0799-7

Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

The STAR Collaboration*

The Λ binding energy, B_{Λ} , for ${}^{3}_{\Lambda}$ H and ${}^{3}_{\overline{\Lambda}}\overline{H}$ is calculated using the mass measurement shown in equation (1). We obtain

 $B_{\Lambda} = 0.41 \pm 0.12 (\text{stat.}) \pm 0.11 (\text{syst.}) \text{ MeV}$

Fig. 2 | Particle identification and the invariant mass distributions for $\frac{3}{4}$ H and $\frac{3}{4}$ H reconstruction. a,b, (dE/dx) (mean energy loss per unit track length in the gas of the TPC) versus p/q (where p is the momentum and q is the electric charge in units of the elementary charge e) (a) and $1/\beta$ (where β is the speed of a particle in units of the speed of light) versus p/q (b). (dE/dx) is measured by the TPC and $1/\beta$ is measured by the TOF detector in conjunction with the TPC. In both cases, the coloured bands show the measured data for each species of charged particle, while the red curves show the expected values. Charged particles are identified by comparing the observed (dE/dx) and $1/\beta$ with the expected values. cd., Utilizing both 2-body and 3-body decay channels, the invariant mass distributions of $\frac{3}{4}$ H (d) are shown. The error bars represent statistical uncertainties (s.d.). The red curves represent a fit with a Gaussian function plus a linear background, using the unbinned maximum likelihood (ML) method.

average value of 0.13 ± 0.05 (stat.) MeV. When applied to our value of 0.41 ± 0.12 (stat.) MeV it yields a significantly smaller value of $7.90_{-0.93}^{+1.71}$ fm. The larger B_{Λ} and shorter effective scattering length suggest a stronger YN interaction between the Λ and the relatively low-density nuclear core of the ${}^{3}_{\Lambda}$ H (ref. 36). This, in certain models, requires SU(3) symmetry breaking and a more repulsive YN interaction at high density, consistent with implications from the range of masses observed for neutron stars⁵.

 $\sqrt{} = 200$ $\overset{3}{}_{\Lambda}H$ $\overset{3}{}_{\Lambda}H$ $\overset{3}{}_{\Lambda}H$ $\overset{3}{}_{\Lambda}H$ $\overset{3}{}_{\Lambda}H$ $\overset{3}{}_{\Lambda}H$ $\overset{3}{}_{\Lambda}H$ $\overset{3}{}_{\Lambda}H$

 $^{3}_{\Lambda}H$

(3)

Check for update

Our challenges on the hypertriton lifetime

March 2019: WASA moved from Juelich to GSI

The WASA-FRS experiment at GSI (FAIR Phase 0)

Expected performance of the WASA-FRS at GSI

Expected results by updated MC simulations

Mass resolution:

- 3.2 MeV/c² (1 T field)
- 1.5 times better than HypHI

Statistics

- About 5800 in the peak for 4 days
- 38 times more than HypHI
- 120 σ significance

Expected Lifetime accuracy

- 8 ps
- 5 times better than HypHI

The existence or not of nn Λ will be confirmed with large confidence level

Also with Machine lernining (GNN)

H. Ekawa et al., submitted to EPJA

4 days measurement TRS et al., Nature Reviews Physics 3, 803-813 (2021) Supplement

Experiment already performed in January – March 2022

Photos by Jan Hosan and GSI/FAIR

INPC2022 in Cape Town: talk by Paolo Giubellino (September 14th 2022)

Data taking

Run	Period	Data size	
Commissioning run	28th Jan 7th Feb.	7 TB	
Physics run for ŋ' nuclei	22nd Feb 28th Feb.	40 TB	
Physics run for HypHI	10th Mar 19th Mar.	48 TB	

Acquired data

Beam	Fragment at S4	Amount	Time	Accepted trigger rate	
⁶ Li beam	³ He	3.3 × 10 ⁸	40.9 hours	2600 Hz	${}^{3}\Lambda H$
	⁴ He	0.9 × 10 ⁸	43.9 hours	1800 Hz	⁴ _A H
	deuteron	1.8 × 10 ⁸			nnΛ
	proton (mid- rapidity)	5.3 × 10 ⁶	3.2 hours	680 Hz	Λ
¹² C beam	³ He	1.0 × 10 ⁸	13.5 hours 2400 Hz	2400 Hz	³ _∧ H
	9C	2.4 × 10 ⁵		2400 HZ	⁹ _Λ Β

Radius of hypertriton by measuring interaction cross section

Experiment at JLab searching for nn Λ

PHYSICAL REVIEW C 105, L051001 (2022)

Letter

Spectroscopic study of a possible Λnn resonance and a pair of ΣNN states using the $(e, e'K^+)$ reaction with a tritium target

B. Pandey,¹ L. Tang,^{1,2,*} T. Gogami,^{3,4} K. N. Suzuki,⁴ K. Itabashi,³ S. Nagao,³ K. Okuyama,³ S. N. Nakamura,³ D. Abrams,⁵ I. R. Afnan,⁶ T. Akiyama,³ D. Androic,⁷ K. Aniol,⁸ T. Averett,⁹ C. Ayerbe Gayoso,⁹ J. Bane,¹⁰ S. Barcus,⁹ J. Barrow,¹⁰ V. Bellini,¹¹ H. Bhatt,¹² D. Bhetuwal,¹² D. Biswas,¹ A. Camsonne,² J. Castellanos,¹³ J-P. Chen,² J. Chen,⁹ S. Covrig,² D. Chrisman,^{14,15} R. Cruz-Torres,¹⁶ R. Das,¹⁷ E. Fuchey,¹⁸ C. Gal,⁵ B. F. Gibson,¹⁹ K. Gnanvo,⁵ F. Garibaldi,^{11,20} T. Gautam,¹ J. Gomez,² P. Gueye,¹ T. J. Hague,²¹ O. Hansen,² W. Henry,² F. Hauenstein,²² D. W. Higinbotham,² C. Hyde,²² M. Kaneta,³ C. Keppel,² T. Kutz,¹⁷ N. Lashley-Colthirst,¹ S. Li,^{23,24} H. Liu,²⁵ J. Mammei,²⁶ P. Markowitz,¹³ R. E. McClellan,² F. Meddi,¹¹ D. Meekins,² R. Michaels,² M. Mihovilovič,^{27,28,29} A. Moyer,³⁰ D. Nguyen,^{16,31} M. Nycz,²¹ V. Owen,⁹ C. Palatchi,⁵ S. Park,¹⁷ T. Petkovic,⁷ S. Premathilake,⁵ P. E. Reimer,³² J. Reinhold,¹³ S. Riordan,³² V. Rodriguez,³³ C. Samanta,³⁴ S. N. Santiesteban,²³ B. Sawatzky,² S. Širca,^{27,28} K. Slifer,²³ T. Su,²¹ Y. Tian,³⁵ Y. Toyama,³ K. Uehara,³ G. M. Urciuoli,¹¹ D. Votaw,^{14,15} J. Williamson,³⁶ B. Wojtsekhowski,² S. Wood,² B. Yale,²³ Z. Ye,³² J. Zhang,⁵ and X. Zheng⁵

Possibility for nn Λ

FIG. 5. The enlarged mass spectrum around the Λnn threshold. Two additional Gaussians were fitted together with the known contributions (the accidentals, the Λ quasifree, the free Λ , and the ³He contamination). The one at the threshold is for the small peak, while the broad one is for the additional strength above the predicted quasifree distribution.

However, different interpretation from the same collaboratie We have 1.8 x 10⁸

- K. Itabashi et al., Few Body Syst. 63 (2022) 1, 16 (January 2022)
- K.N. Suzuki et al, PTEP, Volume 2022, Issue 1, January 2022, 013D01

We have 1.8 x 10⁸ deuterons recorded at S4

Preliminary data analyses

Preliminary data analyses

WASA PID

β

HypHI (2009)

C. Rappold et al. / Nuclear Physics A 913 (2013) 170-184

Ph.D theses:

Vasyl Drozd (Groningen U/GSI/RIKEN, 2023) Enqiang Liu (IMP/RIKEN, 2023) Samuel Escrig (CSIS-Madrid/RIKEN, 2023) Yiming Gao (IMP/RIKEN, 2025)

Master thesis:

Ayari Yanai (Saitama U/RIKEN, 2024)

The WASA-FRS collaboration (only core members)

High Energy Nuclear Physics Laboratory, RIKEN, Japan:

H. Ekawa, Y. Gao, Y. He, A. Kasagi, E. Liu, A. Muneem, M. Nakagawa, T.R. Saito, Y. Tanaka, A. Yanai, J. Yoshida, H. Wang

HRS-HYS group, GSI, Germany

H. Alibrahim Alfaki, V. Drozd, T.R. Saito, T. Weber

FRS/SFRS Research Group, GSI, Germany:

K.-H. Behr, B. v. Chamier Gliszezynski, T. Dickel, S. Dubey, J. Eusemann, D. Kostyleva, B. Franczak, H. Geissel, E. Haettner, C. Hornung, P. Roy, C. Scheidenberger, P. Schwarz, B. Szczepanczyk, M. Will, J. Zhao

- Meson Science Laboratory, RIKEN, Japan: K. Itahashi, R. Sekiya
- Instituto de Estructura de la Materia CSIC, Spain: S. Escrig, C. Rappold
- <u>Cryogenic Department, GSI, Germany:</u>
 A. Beusch, H. Kollmus, C. Schroeder, B. Streicher
- Experiment Electronics Department, GSI, Germany:

H. Heggen, N. Kurz, S. Minami

- Detector Laboratory, GSI, Germany: C. Nociforo, E. Rocco
- Nuclear Spectroscopy Group, GSI, Germany: M. Armstrong, N. Hubbard, K. Wimmer
- Super-FRS Project, GSI, Germany: F. Amjad, E. Kazantseva, R. Knöbel, I. Mukha, S. Pietri, S. Purushothaman, H. Weick
- Target Laboratory, GSI, Germany: B. Kindler, B. Lommel

- Institut für Kernphysik, Technische Universität Darmstadt, Germany: G. Schaumann
- University of Applied Sciences, Giessen, Germany: S. Kraft
- Department of Engineering, Gifu University, Japan: A. Kasagi, K. Nakazawa
- ESRIG Energy and Sustainability Research Institute Groningen, University of Groningen, The Netherlands:

V. Drozd, M. Harakeh, N. Kalantar-Nayestanaki, M. Kavatsyuk

- Institute of Modern Physics, China L. Duan, Y. Gao, E. Liu, J. Ong, X. Tang
- Institute of Physics, Jagiellonian University, Poland A. Khreptak, M. Skurzok
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Slovenia Z. Brencic
- Department of Physics, Kyoto University, Japan: R. Sekiya
- School of Nuclear Science and Technology, Lanzhou University, China Y. He, J. Ong, T.R. Saito, X. Tang
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany
 P. Achenbach, J. Pochdzalla
- Michigan State University, USA: D. Morrissey
- Universidad de Santiago de Compostela, Spain:
 J. Benlliure, M. Fontan, A. Gonzalez, G. Jimenez, J. Rodríguez-Sánchez

Young Driving Forces in the WASA-FRS project Yoshiki Tanaka (staff, High Energy Nuclear Physics Lab., RIKEN) Part of the WASA-FRS collaboration

- Vasyl Drozd
 - (Ph.D. student, HRS-HYS group, GSI, and Groningen Univ.)
- Philipp Schwarz
 (Engineer, FRS/SFRS research group, GSI)
- Tobias Weber
 (Engineer, HRS-HYS group, GSI)
- Hiroyuki Ekawa
 (postdoc, High Energy Nuclear Physics Lab., RIKEN)
- Samuel Escrig (Ph.D. student, CSIS-Madrid)
- Yiming Gao

(Ph.D. student, High Energy Nuclear Physics Lab., RIKEN, and IMP-Lanzhou)

Ayumi Kasagi

(Ph.D. student, High Energy Nuclear Physics Lab., RIKEN, and Gifu University)

Enqiang Liu

(Ph.D. student, High Energy Nuclear Physics Lab., RIKEN, and IMP-Lanzhou)

Manami Nakagawa

(postdoc, High Energy Nuclear Physics Lab., RIKEN)

Cristophe Rappold

(Group leader, CSIS-Madrid)

Ryohei Sekiya

(Ph.D. student, Meson Science Lab., RIKEN, and Kyoto University)

Ayari Yanai

(Master student, High Energy Nuclear Physics Lab., RIKEN, and Saitama University)

How about the hypertriton binding energy?

Nuclear Emulsion:

Charged particle tracker with <u>the best spatial resolution</u> (easy to be < 1 μm, 11 nm at best)

20µm

J-PARC accelerator facility

Results from J-PARC E07 (Hybrid method)

$\Lambda\Lambda$ candidates: 14

Twin Λ events: 13

Others: 6

Non-triggered events recorded in 1000 emulsions sheets

- 1000 double-strangeness ($\Lambda\Lambda$ and Ξ -) hypernuclear events
- Millions of single-strangeness hypernuclear events

Overall scanning of all emulsion sheets (35 X 35 cm² X 1000)

AABe H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

S. H. Hayakawa et al., Physical Review Letters, 126, 062501 (2021)

Overall scanning for E07 emulsions

Data size:

10⁷ images per emulsion (100 T Byte)
10¹⁰ images per 1000 emulsions (100 P Byte)
Number of background tracks:

•Beam tracks: 10⁴/mm²

• Nuclear fragmentations: 10³/mm²

Current equipments/techniques with visual inspections

560 years

Millions of single-strangeness hypernuclei 1000 double strangeness hypernuclei (formerly only 5)

Machine Learning

liced image

Challenges for Machine Learning Development MOST IMPORTANT:

Quantity and quality of training data

However,

No existing data for hypertriton with emulsions for training

What have been done since 2020:

Production of training data

- Monte Carlo simulations
- Image transfer techniques, GAN(Generative Adversarial Networks)

Detection of stopped-hypertriton decay (³He + π^-)

Mask R-CNN model

Discovery of the first hypertriton event in E07 emulsions

Explore content V About the journal V Publish with us V

nature > nature reviews physics > perspectives > article

Perspective | Published: 14 September 2021

New directions in hypernuclear physics

Takehiko R. Saito ⊠, Wenbou Dou, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yan He, Nasser Kalantar-Nayestanaki, Ayumi Kasagi, Myroslav Kavatsyuk, Enqiang Liu, Yue Ma, Shizu Minami, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Christoph Scheidenberger, Masato Taki, Yoshiki K. Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang & Xiaohong Zhou

Nature Reviews Physics (2021) | Cite this article

TRS et al., Nature Reviews Physics, 803-813 (2021) Cover of December 2021 issue

Guaranteeing the determination of the hypertriton binding energy SOON Precision: 28 keV E. Liu et al., EPJ A57 (2021) 327

Nuclear Emulsion + Machine Learning Collaboration

- High Energy Nuclear Physics Laboratory, RIKEN, Japan Michi Ando, Wenbo Dou, Hiroyuki Ekawa, Yiming Gao, Chiho Harisaki, Yan He, Risa Kobayashi, Hanako Kubota, Enqiang Liu, Manami Nakagawa, Nami Saito, Takehiko R. Saito, Shohei Sugimoto, Yoshiki Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas (CSIC), Spain Christophe Rappold
- Department of Engineering, Gifu University Ayumi Kasagi, Kazuma Nakazawa
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan Abdul Muneem
- Institute of Modern Physics, Chinese Academy of Sciences, China Yiming Gao, Englang Liu
- School of Nuclear Science and Technology, Lanzhou University, China Yan He, Takehiko R. Saito
- Graduate School of Artificial Intelligence and Science, Rikkyo University, Japan Masato Taki
- Department of Physics, Saitama University, Japan Wenbo Dou, Shohei Sugimoto
- Department of Physics, Tohoku University, Japan Junya Yoshida

Administration:

•High Energy Nuclear Physics Laboratory, RIKEN Yukiko Kurakata

Perspective

Hypernuclear experiments with Super-FRS

One of Day-1 experiments of NUSTAR at FAIR

Single-strangeness hypernuclei

Up to A~20 Also with multibody-decay channels

- Hypernuclear lifetime very precisely
- Hypernuclear binding energy reasonably precise
- Hypernuclear resonance
- <u>Hypernuclear cross section and kinematics</u> Revealing the production mechanism
- Proton rich hypernuclei with proton-rich RI-beams
 C. Rappold et al., Phys. Rev. C 94, 044616 (2016)
- Extremely neutron-rich hypernuclei with charge exchange reactions
 <u>MISSING MASS method</u>
 TRS et al., EPJ A57 (2021) 159

Upgrading the WASA

- Inner drift chamber In progress with the MOST fund at Lanzhou University
- New solenoid magnet (2 T) with Cryocooler

New detector development

- Large super-conducting solenoid
- Inner- and outer-detectors

Hypernuclear project at HIAF in China HIAF (High Intensity heavy ion Accelerator Facility)

• To be operational in 2025

TRS is leading the new hypernuclear project since 2016

New institute to be built in Huizhou

	Single-strangeness hypernuclei	Double-strangeness hypernuclei
Observation per week	6 X 10 ⁶	6 X 10 ²
Lifetime accuracy	~ 1 ps	~ 10 ps
Binding energy accuracy	~ 100 keV	Sub MeV

Femto Neutron Stars (named by Josef Pochodzalla)

Hypernuclear scattering experiment feasible

Precise measurement of Hypernuclei

Measurements for Lifetime, Decay mode, Magnetic moment Hypernuclear scattering etc...

at FAIR in Germany (S = -1)

at HIAF in China (S = -2)

Guaranteeing precise binding energy measurements on hypernuclei with multi-body decays

For example;

- ${}^{4}_{\Lambda}$ He (charge symmetry breaking)and ${}^{5}_{\Lambda}$ He
- Three body decay channels: ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$ and heavier hypernuclei

300 µm

Sept 13th 2022)

sibilities:

 ${}^{5}_{\Lambda}H \rightarrow t + p + \pi^{-} + n$ $B_{\Lambda} = 0.12 \pm 0.75 \text{ MeV}$

Very neutron rich nucleus Not observed Predicted by R.H. Dalitz & R Levi Setti (Il Nuovo Cimento (1955-1965) volume 30, pages 489–501 (1963))

S. Sugimoto, master thesis, Saitama University

Scanned dada: only $5 \times 5 \text{ cm}^2$

Precise measurement of Hypernuclei

Measurements for Lifetime, Decay mode, Magnetic moment Hypernuclear scattering etc...

at FAIR in Germany (S = -1)

at HIAF in China (S = -2)

Other new discovery 2:

⁴He

⁴∧H

Discovery of double- Λ hypernucleus as a biproduct of ${}^{3}_{\Lambda}$ H search

nature reviews physics

Explore content v About the journal v Publish with us v

nature > nature reviews physics > perspectives > article

Perspective | Published: 14 September 2021

New directions in hypernuclear physics

Takehiko R. Saito ⊠, Wenbou Dou, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yan He, Nasser Kalantar-Nayestanaki, Ayumi Kasagi, Myroslav Kavatsyuk, Enqiang Liu, Yue Ma, Shizu Minami, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Christoph Scheidenberger, Masato Taki, Yoshiki K. Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang & Xiaohong Zhou

Nature Reviews Physics (2021) Cite this article

Fig. 1] **The WASA-FRS hypernuclear experiment. a** | Schematic drawing of the fragment separator (FRS) at CSI. The ⁴L primary beams at 2 A GeV are delivered to the diamond target located at the mid-focal plane of the FRS, referred to as S2, to produce hypernuclei of interest. Residual nuclei of the $\pi \tau$ weak decays of hypernuclei are transported from S2 to S4 in the FRS, and measured precisely with a momentum-resolving power of 10⁻⁴. The π mesons produced by the hypernuclear decays are measured at S2 by the Wide Angle Shower Apparatus (WASA) central detector. **b** | The WASA central detector. **b** | The WASA central detector. **b** | The WASA central detector.

Summary

Fig. 31 Upcoming nypernuccear experiments. a) A rendered bird s-eye view image of the Facility for Antiproton and Ion Research (FAIR) facility. b) A schematic layout of the NUSTAR facility. The Super-FRS is shown with its pre-separator and main separator in light horow and orange, respectively. A dedicated experimental setup for hypernuclear experiments will be installed in the mid-local plane, indicated by the blue circle. c] A rendered bird's-eye view image of the High Intensity Heavy-ion Accelerator Facility

(HIAP), together with the China initiative Accelerator Driven System (CiADS), dl Layout of the HIAP accelerator complex. eI The proposed detector setup in the high-energy cave. A part of the setup with the superconducting solenoid magnet will also be used in the mid-focal plane (indicated by the red circle in panel d) of the high-energy fragment separator (HFS), CEMs, gas electron multipliers; RPC, resistive plate chamber; SSD, Si-strip detectors; TOF, time-of-flight, Panel b is adapted with permission from REF¹⁹.

TRS et al., Nature Reviews Physics, 803-813 (2021)