The chiral anomaly and the eta-prime in vacuum and at low temperatures

Stefan Leupold, Carl Niblaeus, Elisabetta Perotti, Bruno Strandberg

Department of Physics and Astronomy Uppsala University

Kitzbühel, September 2022

Table of Contents

2 Consequences of chiral anomaly in vacuum

- What changes in a medium?
 - Thermal width of η' meson

Summary and outlook

• Consequences for finite density

 $\bullet\,$ neglecting quark masses smaller than $\Lambda_{\rm QCD}$

- $\bullet\,$ neglecting quark masses smaller than $\Lambda_{\rm QCD}$
- \rightsquigarrow chiral U_R(3)×U_L(3) symmetry of QCD Lagrangian
- \hookrightarrow subgroups $(U_R(3) \times U_L(3) = U_V(3) \times U_A(3))$:

- $\bullet\,$ neglecting quark masses smaller than $\Lambda_{\rm QCD}$
- \rightsquigarrow chiral U_R(3)×U_L(3) symmetry of QCD Lagrangian
- \hookrightarrow subgroups $(U_R(3) \times U_L(3) = U_V(3) \times U_A(3))$:
 - $U_V(1)$: baryon number conservation

- $\bullet\,$ neglecting quark masses smaller than $\Lambda_{\rm QCD}$
- \rightsquigarrow chiral U_R(3)×U_L(3) symmetry of QCD Lagrangian
- \hookrightarrow subgroups $(U_R(3) \times U_L(3) = U_V(3) \times U_A(3))$:
 - $U_V(1)$: baryon number conservation
 - $SU_V(3)$: flavor multiplets

- $\bullet\,$ neglecting quark masses smaller than $\Lambda_{\rm QCD}$
- \rightsquigarrow chiral U_R(3)×U_L(3) symmetry of QCD Lagrangian
- \hookrightarrow subgroups $(U_R(3) \times U_L(3) = U_V(3) \times U_A(3))$:
 - $U_V(1)$: baryon number conservation
 - $SU_V(3)$: flavor multiplets
 - SU_A(3): spontaneously broken
 - → 8 Goldstone bosons in vacuum and chiral restoration at some finite temperature/density

- $\bullet\,$ neglecting quark masses smaller than $\Lambda_{\rm QCD}$
- \rightsquigarrow chiral U_R(3)×U_L(3) symmetry of QCD Lagrangian
- \hookrightarrow subgroups $(U_R(3) \times U_L(3) = U_V(3) \times U_A(3))$:
 - $U_V(1)$: baryon number conservation
 - $SU_V(3)$: flavor multiplets
 - SU_A(3): spontaneously broken
 - → 8 Goldstone bosons in vacuum and chiral restoration at some finite temperature/density
 - U_A(1): would also be spontaneously broken (chiral condensate not invariant w.r.t. U_A(1))

- $\bullet\,$ neglecting quark masses smaller than $\Lambda_{\rm QCD}$
- \rightsquigarrow chiral U_R(3)×U_L(3) symmetry of QCD Lagrangian
- \hookrightarrow subgroups $(U_R(3) \times U_L(3) = U_V(3) \times U_A(3))$:
 - $U_V(1)$: baryon number conservation
 - $SU_V(3)$: flavor multiplets
 - SU_A(3): spontaneously broken
 - ↔ 8 Goldstone bosons in vacuum and chiral restoration at some finite temperature/density
 - U_A(1): would also be spontaneously broken (chiral condensate not invariant w.r.t. U_A(1))
 - \rightsquigarrow would lead to 9th Goldstone boson (flavor singlet with quantum numbers of η , η')

No symmetry of Quantum Chromodynamics

• chiral anomaly: $U_A(1)$ is not symmetry of quantized theory

No symmetry of *Quantum* Chromodynamics

- chiral anomaly: $U_A(1)$ is not symmetry of quantized theory
- NB: actually one can decide whether to break Lorentz invariance or *U*_A(1) by quantization
- \hookrightarrow path integral measure $\mathcal{D}\bar{\psi} \mathcal{D}\psi$ breaks $U_{\mathcal{A}}(1)$, $\mathcal{D}\psi^{\dagger} \mathcal{D}\psi$ breaks Lorentz invariance

No symmetry of *Quantum* Chromodynamics

- chiral anomaly: $U_A(1)$ is not symmetry of quantized theory
- NB: actually one can decide whether to break Lorentz invariance or U_A(1) by quantization
- \hookrightarrow path integral measure $\mathcal{D}\bar{\psi} \mathcal{D}\psi$ breaks $U_A(1)$, $\mathcal{D}\psi^{\dagger} \mathcal{D}\psi$ breaks Lorentz invariance
- \hookrightarrow experimental fact: nature seems to prefer Lorentz invariance
- \hookrightarrow consequences ...

• parameter-free prediction of $\pi^0 \to 2\gamma$ in terms of pion decay constant f_{π}

- parameter-free prediction of $\pi^0 \to 2\gamma$ in terms of pion decay constant f_{π}
- agreement with experiment within error bars < 1% (PrimEx)

- parameter-free prediction of $\pi^0 \to 2\gamma$ in terms of pion decay constant f_π
- agreement with experiment within error bars < 1% (PrimEx)
- prediction strictly valid in the chiral limit ;-)

- parameter-free prediction of $\pi^0 \to 2\gamma$ in terms of pion decay constant f_π
- \bullet agreement with experiment within error bars <1% (PrimEx)
- prediction strictly valid in the chiral limit ;-)
- \hookrightarrow coefficient of $\frac{1}{f_{\pi}} \varepsilon^{\mu\nu\alpha\beta} \pi^0 F_{\mu\nu} F_{\alpha\beta}$ fixed by anomaly
- \hookrightarrow corrections suppressed $\sim m_\pi^2 \, arepsilon^{\mu
 ulphaeta} \, \pi^0 \, F_{\mu
 u} \, F_{lphaeta}$

- parameter-free prediction of $\pi^0\to 2\gamma$ in terms of pion decay constant f_π
- \bullet agreement with experiment within error bars <1% (PrimEx)
- prediction strictly valid in the chiral limit ;-)
- \hookrightarrow coefficient of $\frac{1}{f_{\pi}} \varepsilon^{\mu\nu\alpha\beta} \pi^0 F_{\mu\nu} F_{\alpha\beta}$ fixed by anomaly
- \hookrightarrow corrections suppressed $\sim m_\pi^2 \, arepsilon^{\mu
 ulphaeta} \, \pi^0 \, F_{\mu
 u} \, F_{lphaeta}$

in power counting of chiral perturbation theory:

- anomaly $\sim {\it O}(q^4)$
- otherwise $\sim O(q^6)$ with generic momentum $q \sim m_\pi$

• coupling constant of $\varepsilon^{\mu\nu\alpha\beta} \partial_{\mu}\pi^{0} \partial_{\nu}\pi^{+} \partial_{\alpha}\pi^{-} A_{\beta} \sim O(q^{4})$ fixed by anomaly

- coupling constant of $\varepsilon^{\mu\nu\alpha\beta} \partial_{\mu}\pi^{0} \partial_{\nu}\pi^{+} \partial_{\alpha}\pi^{-} A_{\beta} \sim O(q^{4})$ fixed by anomaly
- corrections (=dominant in absence of anomaly) $\sim O(q^6)$

- coupling constant of $\varepsilon^{\mu\nu\alpha\beta} \partial_{\mu}\pi^{0} \partial_{\nu}\pi^{+} \partial_{\alpha}\pi^{-} A_{\beta} \sim O(q^{4})$ fixed by anomaly
- corrections (=dominant in absence of anomaly) $\sim O(q^6)$
- \hookrightarrow predictive power for reactions $e^+e^- \rightarrow 3\pi$ and/or $\gamma + \pi \rightarrow 2\pi$ close to threshold? \rightsquigarrow spare slides

figure from Klabucar/Kekez/Scadron, hep-ph/0012267

• eta singlet is not a Goldstone boson

figure from Klabucar/Kekez/Scadron, hep-ph/0012267

- eta singlet is not a Goldstone boson
- Veneziano formula for mass of eta singlet:

$$m_{\eta_1}^2 = \frac{2N_f\tau}{f_\pi^2} \sim \frac{1}{N_c}$$

with topological susceptibility $\tau = -i \int d^4x \langle 0 | \omega(x) \, \omega(0) | 0 \rangle$ and $\omega \sim G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a$

figure from Klabucar/Kekez/Scadron, hep-ph/0012267

- eta singlet is not a Goldstone boson
- Veneziano formula for mass of eta singlet:

$$m_{\eta_1}^2 = rac{2N_f au}{f_\pi^2} \sim rac{1}{N_c}$$

with topological susceptibility $\tau = -i \int d^4x \langle 0|\omega(x)\omega(0)|0\rangle$ and $\omega \sim G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a$

• note: nine light pseudoscalars in the combined chiral and large- N_c limit (N_c = number of colors)

figure from Klabucar/Kekez/Scadron, hep-ph/0012267

- eta singlet is not a Goldstone boson
- Veneziano formula for mass of eta singlet:

$$m_{\eta_1}^2=rac{2N_f au}{f_\pi^2}\simrac{1}{N_c}$$

with topological susceptibility $\tau = -i \int d^4x \langle 0|\omega(x)\omega(0)|0\rangle$ and $\omega \sim G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a$

- note: nine light pseudoscalars in the combined chiral and large- N_c limit (N_c = number of colors)
- \hookrightarrow starting point of large- N_c chiral perturbation theory (χ PT) (Kaiser/Leutwyler, EPJ C 17, 623 (2000))

• π - γ - γ coupling in vacuum $\sim 1/f_{\pi}$

- $\pi\text{-}\gamma\text{-}\gamma$ coupling in vacuum $\sim 1/\textit{f}_{\pi}$
- \hookrightarrow f_{π} is order parameter of SU(N_f) chiral symmetry breaking

- $\pi\text{-}\gamma\text{-}\gamma$ coupling in vacuum $\sim 1/\textit{f}_{\pi}$
- \hookrightarrow f_{π} is order parameter of SU(N_f) chiral symmetry breaking
- \leadsto enhanced decay $\pi^0 \to 2\gamma?$

- $\pi\text{-}\gamma\text{-}\gamma$ coupling in vacuum $\sim 1/\textit{f}_{\pi}$
- \hookrightarrow f_{π} is order parameter of SU(N_f) chiral symmetry breaking
- \rightsquigarrow enhanced decay $\pi^0 \rightarrow 2\gamma?$
- \hookrightarrow maybe not at finite temperature! instead: decay decouples from anomaly, suppressed decay due to SU(N_f) chiral restoration (Pisarski/Trueman/Tytgat, PRD 56, 7077 (1997))

- $\pi\text{-}\gamma\text{-}\gamma$ coupling in vacuum $\sim 1/\textit{f}_{\pi}$
- \hookrightarrow f_{π} is order parameter of SU(N_f) chiral symmetry breaking
- \rightsquigarrow enhanced decay $\pi^0 \rightarrow 2\gamma?$
- \hookrightarrow maybe not at finite temperature! instead: decay decouples from anomaly, suppressed decay due to SU(N_f) chiral restoration (Pisarski/Trueman/Tytgat, PRD 56, 7077 (1997))
- \hookrightarrow but maybe at finite density (Goda/Jido, PTEP 2014, 3, 033D03 (2014))
- \hookrightarrow contradiction? \rightsquigarrow should be resolved

at chiral restoration of SU(3) (no statement about $U_A(1)$ needed!):

• chiral multiplets (L, R) instead of just flavor multiplets

at chiral restoration of SU(3) (no statement about $U_A(1)$ needed!):

- chiral multiplets (L, R) instead of just flavor multiplets
- in particular look at spin 0: $q_{La} q_{Rb}$ (with flavor indices a, b)

at chiral restoration of SU(3) (no statement about $U_A(1)$ needed!):

- chiral multiplets (L, R) instead of just flavor multiplets
- in particular look at spin 0: $\overline{q_{La}} q_{Rb}$ (with flavor indices a, b)

$$\hookrightarrow$$
 $(ar{3},1) imes(1,3)=(ar{3},3)\rightsquigarrow$ nonet

at chiral restoration of SU(3) (no statement about $U_A(1)$ needed!):

- chiral multiplets (L, R) instead of just flavor multiplets
- in particular look at spin 0: $q_{La} q_{Rb}$ (with flavor indices a, b)

$$\rightarrowtail$$
 $(ar{3},1) imes(1,3)=(ar{3},3)\rightsquigarrow$ nonet

- parity commutes with QCD Hamiltonian and changes (3,3) to (3,3)
- \rightsquigarrow at and above transition: 18plet of degenerate states, with quantum numbers of π , K, η , η' , a_0 , κ , 2 f_0 's

at chiral restoration of SU(3) (no statement about $U_A(1)$ needed!):

- chiral multiplets (L, R) instead of just flavor multiplets
- in particular look at spin 0: $\overline{q_{La}} q_{Rb}$ (with flavor indices a, b)

$$\hookrightarrow$$
 $(ar{3},1) imes(1,3)=(ar{3},3)\rightsquigarrow$ nonet

- parity commutes with QCD Hamiltonian and changes (3,3) to (3,3)
- → at and above transition: 18plet of degenerate states, with quantum numbers of π , K, η , η' , a_0 , κ , 2 f_0 's
 - at and below transition: Goldstone bosons stay light

at chiral restoration of SU(3) (no statement about $U_A(1)$ needed!):

- chiral multiplets (L, R) instead of just flavor multiplets
- in particular look at spin 0: $q_{La} q_{Rb}$ (with flavor indices a, b)

$$\hookrightarrow$$
 $(ar{3},1) imes(1,3)=(ar{3},3)\rightsquigarrow$ nonet

- parity commutes with QCD Hamiltonian and changes (3,3) to (3,3)
- → at and above transition: 18plet of degenerate states, with quantum numbers of π , K, η , η' , a_0 , κ , 2 f_0 's
 - at and below transition: Goldstone bosons stay light
- $\rightsquigarrow~\eta'$ should become light at transition

A light η' meson?

• might imply that η' becomes 9th Goldstone boson, effective restoration of $U_A(1)$?

A light η' meson?

 might imply that η' becomes 9th Goldstone boson, effective restoration of U_A(1)?

or might imply that η' decouples from anomaly, i.e. change of decay constant of η'

A light η' meson?

- might imply that η' becomes 9th Goldstone boson, effective restoration of U_A(1)?
- or might imply that η' decouples from anomaly, i.e. change of decay constant of η'
- \hookrightarrow would modify decays $\eta'\to\gamma\gamma,\ \gamma\pi^+\pi^-$

A light η' meson?

- might imply that η' becomes 9th Goldstone boson, effective restoration of U_A(1)?
- or might imply that η' decouples from anomaly, i.e. change of decay constant of η'
- \hookrightarrow would modify decays $\eta'\to\gamma\gamma,\ \gamma\pi^+\pi^-$
 - caveats: only good argument if not strong first-order transition and **if states survive as quasi-particles**

task: determine in-medium width of η^\prime meson

• experiment: ask, e.g., Volker Metag

- experiment: ask, e.g., Volker Metag
- our theory approach: try to be as model independent as possible

- experiment: ask, e.g., Volker Metag
- our theory approach: try to be as model independent as possible
- \hookrightarrow use large- N_c chiral perturbation theory (χ PT) + resonances

- experiment: ask, e.g., Volker Metag
- our theory approach: try to be as model independent as possible
- \hookrightarrow use large- N_c chiral perturbation theory (χ PT) + resonances
 - start with simpler case of thermal medium (pion gas) \rightsquigarrow in this talk

- experiment: ask, e.g., Volker Metag
- our theory approach: try to be as model independent as possible
- \hookrightarrow use large- N_c chiral perturbation theory (χ PT) + resonances
 - start with simpler case of thermal medium (pion gas) \rightsquigarrow in this talk
 - outlook: consequences for finite density

- Why a low-temperature calculation?
- Aren't we interested in extreme conditions?

- Why a low-temperature calculation?
- Aren't we interested in extreme conditions?
- \hookrightarrow chiral perturbation theory allows for systematic, model independent calculations at low temperatures

- Why a low-temperature calculation?
- Aren't we interested in extreme conditions?
- \hookrightarrow chiral perturbation theory allows for systematic, model independent calculations at low temperatures
 - provides excellent description of onset of chiral restoration for chiral condensate (and for pion decay constant) → next slide

• Why a low-temperature calculation?

Stefan Leupold

- Aren't we interested in extreme conditions?
- \hookrightarrow chiral perturbation theory allows for systematic, model independent calculations at low temperatures
 - provides excellent description of onset of chiral restoration for chiral condensate (and for pion decay constant) ~> next slide
- \hookrightarrow chiral perturbation theory has something to say about not too low temperatures

Drop of quark condensate

Stefan Leupold

- uses interacting pions and resonance gas
- produces realistic transition temperature

Gerber/Leutwyler, Nucl.Phys.B 321, 387 (1989)

• chiral perturbation theory is model independent (contains only Goldstone bosons)

Stefan Leupold

- chiral perturbation theory is model independent (contains only Goldstone bosons)
- but resonances are also important

Stefan Leupold

- chiral perturbation theory is model independent (contains only Goldstone bosons)
- but resonances are also important
- in particular:
 - large number of colors N_c:

$$rac{1}{\sqrt{N_c}} \sim m_{\eta'} \ll m_R \sim N_c^0$$

- chiral perturbation theory is model independent (contains only Goldstone bosons)
- but resonances are also important
- in particular:
 - large number of colors N_c:

$$rac{1}{\sqrt{N_c}}\sim m_{\eta'}\ll m_R\sim N_c^0$$

• while for
$$N_c = 3$$
:

 $m_{\eta'} \stackrel{!}{\approx} m_R$

for resonances $\textit{R} = \textit{a}_0, \textit{f}_0, \kappa, \textit{K}^*$

- chiral perturbation theory is model independent (contains only Goldstone bosons)
- but resonances are also important
- in particular:
 - large number of colors N_c:

$$rac{1}{\sqrt{N_c}}\sim m_{\eta'}\ll m_R\sim N_c^0$$

• while for $N_c = 3$:

$$m_{\eta'} \stackrel{!}{\approx} m_R$$

for resonances $R = a_0, f_0, \kappa, K^*$

 \hookrightarrow include resonances such that formal low-energy and large- N_c limit fits to chiral perturbation theory

- chiral perturbation theory is model independent (contains only Goldstone bosons)
- but resonances are also important
- in particular:
 - large number of colors N_c:

$$rac{1}{\sqrt{N_c}}\sim m_{\eta'}\ll m_R\sim N_c^0$$

• while for $N_c = 3$:

$$m_{\eta'} \stackrel{!}{\approx} m_R$$

for resonances $R = a_0, f_0, \kappa, K^*$

- \hookrightarrow include resonances such that formal low-energy and large- N_c limit fits to chiral perturbation theory
- \hookrightarrow inclusion of resonances as model independent as possible

Processes/diagrams for $\pi\eta'$ scattering

(note: loops are suppressed in the large- N_c limit)

E. Perotti, C. Niblaeus, SL, Nucl.Phys.A 950 (2016) 29

• η' remains a rather narrow state

• η' remains a rather narrow state

• width comparable to life time of fireball in heavy-ion collision

- η' remains a rather narrow state
- width comparable to life time of fireball in heavy-ion collision
- kaons are important

- η' remains a rather narrow state
- width comparable to life time of fireball in heavy-ion collision
- kaons are important
- how to measure this?

- η' remains a rather narrow state
- width comparable to life time of fireball in heavy-ion collision
- kaons are important
- how to measure this?
- \hookrightarrow maybe via anomaly driven processes $\eta' \to \gamma \gamma, \ \gamma \pi^+ \pi^-$

 ongoing: experimental checks of consequences of chiral anomaly in vacuum (with support from theory)

- ongoing: experimental checks of consequences of chiral anomaly in vacuum (with support from theory)
- thermal modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)

- ongoing: experimental checks of consequences of chiral anomaly in vacuum (with support from theory)
- thermal modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)

- ongoing: experimental checks of consequences of chiral anomaly in vacuum (with support from theory)
- thermal modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η' get?

- ongoing: experimental checks of consequences of chiral anomaly in vacuum (with support from theory)
- thermal modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η^\prime get?
- quantitative answer from large-N_c chiral perturbation theory + resonances

- ongoing: experimental checks of consequences of chiral anomaly in vacuum (with support from theory)
- thermal modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η' get?
- quantitative answer from large-N_c chiral perturbation theory + resonances
- $\, \hookrightarrow \, \eta' \text{ survives as a quasi-particle}$

Outlook

- density modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η' get?

Outlook

- density modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η^\prime get?
- translation from thermal calculations:
 - use hadronic degrees of freedom in hadronic phase

Outlook

- density modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η^\prime get?
- translation from thermal calculations:
 - use hadronic degrees of freedom in hadronic phase
 - try to be as model independent as possible
Outlook

- density modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η^\prime get?
- translation from thermal calculations:
 - use hadronic degrees of freedom in hadronic phase
 - try to be as model independent as possible
 - $\bullet\,$ let pions come from pion cloud of nucleon \rightsquigarrow figures

Outlook

- density modifications? (chiral symmetry, deconfinement, fate of anomaly, ...)
- suggestive to have a downward mass shift for η' (18plet of states at chiral restoration)
- complementary question: how broad does the η^\prime get?
- translation from thermal calculations:
 - use hadronic degrees of freedom in hadronic phase
 - try to be as model independent as possible
 - $\bullet\,$ let pions come from pion cloud of nucleon $\rightsquigarrow\,$ figures
 - → suggests that three-body final states are important! (while most calculations implicitly assume dominance of two-body final states)
- in-medium modifications of $\pi^0 \to \gamma\gamma$, $\eta' \to \gamma\gamma\gamma$, $\eta' \to \gamma\pi^+\pi^-$
- \hookrightarrow still work left to do for theory

Important processes at finite density

three-body final states!

Spare slides

Consequences of $U_A(1)$ anomaly in vacuum II

- coupling constant of $\varepsilon^{\mu\nu\alpha\beta} \partial_{\mu}\pi^{0} \partial_{\nu}\pi^{+} \partial_{\alpha}\pi^{-} A_{\beta} \sim O(q^{4})$ fixed by anomaly
- corrections (=dominant in absence of anomaly) $\sim O(q^6)$
- \hookrightarrow predictive power for reactions $e^+e^- \to 3\pi$ and/or $\gamma + \pi \to 2\pi$ close to threshold?
- \hookrightarrow How far is threshold away from idealized case of chiral limit?

 $e^+e^-
ightarrow 3\pi$

C. Terschlüsen, B. Strandberg, SL, F. Eichstädt, Eur.Phys.J.A 49 (2013) 116

- anomaly caused by Wess-Zumino-Witten (WZW) term
- \bullet data dominated by ω vector meson peak
- \hookrightarrow anomaly has some effect, but does not dominate a region
- \hookrightarrow threshold at 3 m_{π} already quite sizable \neq chiral limit

 $\gamma + \pi \rightarrow 2\pi$

M. Hoferichter, B. Kubis, D. Sakkas, Phys.Rev.D86, 116009 (2012)

• expect completion of data analysis from COMPASS@CERN

(pion beam, Primakov effect, cf. J.M. Friedrich, EPJ Web Conf. 199, 01016 (2019))

- calculation includes anomaly and pion-pion rescattering using dispersion theory
- solid line: prediction from anomaly dashed line: size of anomaly scaled up by about 30%
- → can use whole range to pin down anomaly, not just threshold region

Mass shift?

- systematic calculation of thermal modifications of properties of η' using large- N_c chiral perturbation + resonances is interesting
- \hookrightarrow mass shift?
- \hookrightarrow check first: does η' survive at all in a thermal medium?
 - personal history in scepticism against mass shifts ;-)
 - hadronic many-body framework often produces broad spectral functions instead of dropping masses
 - deconfinement shines out chiral effects

Mass shift vs. broadening

- chiral restoration demands degeneracy of spectra of chiral partners (btw: for spin 1: 16-plets, not 18-plets)
- melting of resonances might be hadronic precursor to deconfinement

figures from Rapp, Wambach, van Hees, arXiv:0901.3289 [hep-ph]

Much celebrated example: ρ meson

different groups (with different models) obtain broad ρ meson spectra, essentially no mass shift