Studies of the etaprime meson mass in nuclei with the BGOegg calorimeter

M. MIYABE

ELPH TOHOKU UNIVERSITY

2022.9.14

EMMI WORKSHOP

Physics Motivation

- We want to get a clue of evidence for partial restoration of spontaneously broken chiral symmetry.
- We pay attention to hadron(η') mass in a nucleus.
- The η' meson provides an attractive way to explore the relation between chiral symmetry and UA(1) anomaly.
 - ▶ S. Kono et al., PTEP 2021 093D02.
 - S.H. Lee and T. Hatsuda. PRD 54 (1996) R1871
 - ▶ T.D. Cohen, PRD 54 (1996) R1867;
- $\rightarrow \eta'$ mesic nucleus search

η' (958) and U_A(1) anomaly

- The η' mass measured is more than twice that theoretically expected value.
- Origin of large η' mass
 Chiral symmetry breaking
 U_A(1) anomaly

Daisuke Jido, Hideko Nagahiro, and Satoru Hirenzaki, Phys. Rev. C 85 (2012) 032201(R).

theoretical calculations predict a large amount of mass decrease in the nuclear medium: 150(NJL) and 80(LSM) MeV

η' mesic nuclei search

In-direct measurement

- Missing energy method
- ▶ η -PRiME/Super-FRS @GSI : ¹²C(p,d)
- LEPS2/BGOegg (phase-I) : ¹²C(γ,p)
- Carbon target with proton missing energy spectrum
- Direct η' measurement from nuclei
 - ▶ Y. Matsumura (ELPH), Doctor thesis at Tohoku University.
 - γγ Invariant mass spectrum
- Study of $6-\gamma$ modes in a future experiment.
 - ▶ η' -> $\pi^0 \pi^0 \eta$ -> 6γ
 - ► $f_1(1285) \rightarrow \pi^0 \pi^0 \eta \rightarrow 6\gamma$

Experimental results

CBELSA/TAPS : η'A interaction

- transparency ratio /differential cross sections for low momentum η'
- \triangleright V₀~-40 MeV & W₀~-13 MeV
 - M. Nanovaet al., PLB 710 (2012) 600.
 - M. Nanovaet al., PLB 727 (2013) 417.
 - M. Nanovaet al., PRC 94 (2016) 025205.
 - **S.** Friedrich et al., EPJA 52 (2016) 297.
 - M. Nanovaet al., EPJA 54 (2018) 182.

> η -PRiME/Super-FRS @GSI : ¹²C(p,d)

- Missing mass spectroscopy w/o abs. tag
- ► Large $|V_0|$ (~150 MeV) is unfavored.
 - ▶ Y.K. Tanaka et al., PRL 117 (2016) 202501.
 - ▶ Y.K. Tanaka et al., PRC 97 (2018) 015202.

η' mesic nuclei in (γ ,p) reaction

- Low recoil momentum of η'
- Experimental parameters
 - ► Ey 1.6~2.9 GeV
 - ► Target C
 - Forward proton detection
 - cf. ¹²C(p,d) reaction
 at η-PRiME/Super-FRS Collaboration

Numerical results : ${}^{12}C(\gamma,p){}^{11}B_{n,\omega,n'}$

C(γ, p)X missing mass Hirenzaki@ELPH 2011

LEPS2/BGOegg experiment

LEP2 Project at SPring-8

Spring-8 LEPS2/BGOegg experiment Phase-I (2014~2016)

Large acceptance EM calorimeter BGOegg

- Egg like shape
 - covering 24°< θ <144 ° by 1320
 BGO crystals.
 - ► Total volume 264L
- Total weight 1.9t (crystal only)
- Two type photomultipliers
 - H11334 (metal package type)
 - ▶ H6524 (head on type)
- Very few dead-region
 - Without housing material
 - Only with 3M-Vikuity ESR film reflector.

η' measurement from nuclei

- **Indirect measurement** (m $_{\eta'}$ + M_A)
- Missing energy from forward hadron
- Need to know bound levels.

- **Direct measurement** by $M(\gamma\gamma)$
- Need high-resolution calorimeter.

result of n' mesic nuclei

BG: $\gamma + {}^{12}C \rightarrow p_f + \eta + {}^{11}B$ $\gamma + {}^{12}C \rightarrow p_f + \eta + \pi^0 + {}^{11}B$ $\gamma + {}^{12}C \rightarrow p_f + \eta + \pi^- + {}^{11}C$ w/ secondary interaction of $\eta/p_f/\pi^-$ • $\gamma + {}^{12}C \rightarrow \eta' \otimes {}^{11}B + p$

- Detection of 1N absorption $(\eta' p \rightarrow \eta p_s)$
- to improve S/N Selection of η , p_s , and p_f
- After kinematical cuts $\cos \theta_{lab}^{\eta p_s} < -0.9$ $(\cos \theta_{lab}^{\eta} < 0)$ $\cos \theta_{lab}^p < 0.5$ $\left|E_{miss}^{\eta p_s p_f}\right| < 150 \, MeV$ Signal search region $(-50 \le E_{ev} - E_0 \le 50 \text{ MeV})$ \Rightarrow No 1N-absorption signal from η' bound state. 9 / 20

Results of Search for n' Bound Nuclei

FIG. 4. The experimental upper limit of $(d\sigma/d\Omega)_{\exp}^{\eta+p_s}$ at the 90% confidence level, and $(d\sigma/d\Omega)_{\text{theory}}^{\eta+p_s}$ as a function of $\text{Br}_{\eta'N\to\eta N}$.

N. Tomida, Phys. Rev. Lett. 124, 202501 (2020)

We measured the $\gamma^{+12}C \rightarrow p_f^+(\eta + p_s) + X$

reaction to search for η' -nucleus bound states.

- No signal events were observed
 - **Comparison** theoretical calculation
 - H. Nagahiro, JPS Conf. Proc. 13 (2017) 010010.
- **Indicate a small V**₀
 - 2.2 nb/sr in $\cos\theta\eta p_s < -0.9$
- ► Analysis for 2-nucleon absorption tag ($\eta'NN \rightarrow NN$) in preparation w/ a Doctor candidate.

Direct η' measurement from nuclei

Missing Energy spectrum for Mesic nucleus search

Measurement a spectral function (line-shape)

Mass spectrum

Nuclear target

Spectrum line-shape analysis

ω line-shape for the different nuclei are compared and a broadening of the ω signal for the niobium target is observed in comparison to the liquidhydrogen target.

 $\rightarrow \eta'$ line-shapes study in heavy nuclei

Line-shape comparison for the three targets LH2 (dashed green), C (dotted red) and Nb (black)

yy invariant mass spectrum

Y. Matsumura, D-thesis

 $P\gamma\gamma < 1 \text{ GeV}$

 $P\gamma\gamma \ge 1 \text{ GeV}$

An enhancement in the low-mass region of the η mass was obtained

Result of the Direct measurement

Y. Matsumura, D-thesis

2015A data only

- Introduced the phenomenological parameters for mass and width of η' inside nucleus.
- The maximum significance of 3.7σ was obtained for the parameter corresponding to the mass reduction
- $\Delta m_{\eta'} = 40-70 \text{ MeV/c}^{2}$
- $\Delta\Gamma_{tot} < 60 \text{ MeV}$
- low-momentum sample
- $(P_{\eta'} < 1 \text{ GeV/c})$

carbon target data.

Preparing to publish with 2016A data.

LEPS2 BGOegg upgrade plan (Phase-II)

- Upgrade the detector setup.
 - Cover the most forward angle (6~16 deg)
 - ► Multi-meson BG ($\gamma p \rightarrow \pi^0 \pi^0 p$) ~ 1/40
- Change a target
 - from C [20 mm] to Cu [7 mm].
 - ► R_{nucleus} × 1.8
 - $\blacktriangleright # of nucleons \times 1.8$
 - ► σ(Μγγ) × 0.6
- Increase a photon beam intensity.
 - 24W pulse laser + existing 3 lasers ~
 5M cps

Prospects of BGOegg upgrade

- Direct η' measurement from nuclei
 - $ightarrow \eta'
 ightarrow 2\gamma\gamma$
 - 28σ in a few months if the Phase-1 result is assumed.
- Other physics possibilities via multi-meson photoproduction:
 - Spectral analysis of f₁(1285)

▶ η'/f₁(1285) -> ππη -> 6γ

From phase-II first stage to second stage

- ► Upgrade FG
 - Coverage of the forward angle
 - \blacktriangleright < 16° \rightarrow < 24°
- It becomes possible to capture events that produce more gamma rays in the final state.

From phase-II first stage to second stage

- ► Upgrade FG
 - Coverage of the forward angle
 - \blacktriangleright < 16° \rightarrow < 24°
- It becomes possible to capture events that produce more gamma rays in the final state.

$\eta' / f_1(1285)$ production in 6 γ decay mode

$f_1(1285)$ photo-production

Fig. 3. The expected density dependence of the $f_1(1285)$ meson mass shift. The solid line is obtained with a value of 45 MeV for the πN sigma term. The lower and upper bounds were respectively obtained with $\sigma_{\pi N} = 60$ MeV and 30 MeV.

Philipp Gubler, T. Kunihiro, SH. Lee Phys.Lett. B767 (2017) 336-340

▶ f₁(1285)

- The CLAS collaboration was able to clearly identify a sharp peak
- Feasibility of LEPS2/BGOegg
- The mass shift and width broadening of f1(1285) meson together with those of the ω.

$f_1(1285)$ photo-production (CLAS)

FIG. 15. Acceptance-corrected Dalitz plot for $\eta \pi^+ \pi^-$ events with missing mass off the proton between 1251 and 1311 MeV/ c^2 after subtracting the weighted and scaled sidebands.

 $\gamma p \rightarrow \pi^+ \pi^-(\eta)$ reaction

f₁(1285) decay into π π η.
f₁(1285) meson with
mass 1281.0 ± 0.8 MeV
width 18.4 ± 1.4 MeV

η(1295)

- Same decay mode
- first radial exictation of η ?
- η(1405), η(1475)
- Glueball? Gluon component?

x(1280)

$\pi^0\pi^0\eta$ study at LEPS2/BGOegg

- Experimental period ~ 2015A
 - ► 3 months
 - Carbon target, $E\gamma < 2.4 GeV$
 - ► $2 \pi^0$ and η event are selected
 - Radius of all clusters < 20</p>
 - Kinematical fitting
 - ► Constraints
 - Invariant mass of $\gamma\gamma$ equal to $M_{\pi}(2-\text{ pairs})$
 - lnvariant mass of $\gamma\gamma$ equal to M_{η} (1 –pair)
- has the advantage of very good resolution

Estimation of feasibility for future experiment

Feasibility @ LEPS2/BGOegg Phase-II

- ▶ f₁(1285) -> ππη -> 6γ
 - Kinematical Fit
 - same as the real data
 - 3.8 times statistics
- Estimated yield
 - ▶ 1.8 x 1.8 x 2.5 x 3.8 = 31
 - η' ~ 800 -> 24500 event
 - f₁(1285) ~ 440 -> 13000 event @ 3 month

Summary

▶ We perform the study of the media effect at LEPS2/BGOegg (phase-I).

- Search for η' Bound Nuclei
- \blacktriangleright Direct measurement of the in-medium η' mass
- We plan the direct measurement of in-medium mass spectrum of η' and $f_1(1285)$ meson with an electro-magnetic calorimeter BGOegg (and FG).
- We estimate the feasibility of the next stage BGOegg experiment (BGOegg phase-II).
- > Data taking for 3 months or more was required with $0.5X_0$ copper target.
- Schedule
 - Preparation & test data-taking until FY2022. Then, start physics runs alternatively with the Solenoid exp.
 - At second stage of Phase-II, we will cover all the forward acceptance in a few years.