Status of the recent WASA-FRS experiments at GSI/FAIR

Yoshiki Tanaka (RIKEN)

WASA-FRS and Super-FRS Experiment collaborations

WASA-FRS Experiments at GSI (2022 Jan.-March)

Photo by Jan Hosan

WASA-FRS Experiments at GSI (2022 Jan.-March)

Photo by Jan Hosan

WASA-FRS Experiments at GSI (2022 Jan.-March)

- Introduction
- Experimental setup
- Experiments performed in 2022
 - * η'-mesic nuclei
 - * hypernuclei (by T. Saito, afternoon)
- Summary + outlook

WASA (Wide-Angle Shower Apparatus)

WASA Central Detector

- Superconducting solenoid magnet (~1.3 T)
- Output Mini drift chamber (MDC) for tracking
- \diamond Plastic scintillator barrel (PSB) for $\Delta E, TOF$

"internal experiment" with pellet target

WASA + FRS at GSI

MDC (Mini-Drift Chamber)

- Orift chambers base on straw tubes for charged particle tracking
- 17 cylindrical layers (9 layers parallel to z axis, 8 layers "stereo"), in total 1738 channels
- ◊ New readout electronics with GSI Clock-TDC

Offline test in 2018-2019

Y.K. Tanaka, V. Serdyuk, J.L.Rodiguez Sanchez, K. Itahashi, S.Y. Matsumoto, T. R. Saito` DAQ update with GSI Clock-TDC (2021)

M. Nakagawa, E. Liu, H. Ekawa, S. Escrig., S. Minami, N. Kurz, Y. Tanaka

PSB (Plastic Scintillator Barrel) + Endcap

- \diamond Plastic scintillator for Timing and ΔE measurement
- \diamond Development of new PSB with MPPC(SiPM) readout for better time resolution $\sigma(t) \sim 55-80$ ps
- ◇ Readout with TDC + QDC + 2.5GHz Waveform digitizer

PSB (Plastic Scintillator Barrel) + Endcap

- \diamond Plastic scintillator for Timing and ΔE measurement
- \diamond Development of new PSB with MPPC(SiPM) readout for better time resolution $\sigma(t) \sim 55-80~ps$
- ◇ Readout with TDC + QDC + 2.5GHz Waveform digitizer

Constructed new PSB

at RIKEN (2021)

PSFE/BE endcap

<u>R. Sekiya,</u> V. Drozd, Y.K. Tanaka et al., Nucl. Instr. Meth. A1034, 166745 (2022) JSPS Kakenhi (Itahashi)

<u>E. Liu</u>, H. Ekawa, M. Nakagawa, T.R. Saito, T. Weber From HENP/RIKEN

Csl electromagnetic calorimeter

 \diamond CsI(Na) scintillator for TKE (charged particle) and Ey measurement

- → additional charged-particle PID
 Reconstruction of neutral meson decay (π⁰, η, η')
- \diamond 24 layers in θ and up to 48 segments in φ
- ◊ New readout system with 50MHz FADC (GSI-FEBEX3) for 800 channels

JSPS Kakenhi (Itahashi) + support from EE and NUSTAR collaboration

Scintillator Electromagnetic Calorimeter	
Amount of sensitive material	135 g/cm^2
[radiation lengths]	≈ 16
[nuclear interaction length]	≈ 0.8
Geometric acceptance:	96%
polar angle	$\approx 20^{\circ} - 169^{\circ}$
azimuth angle	$\approx 0^{\circ} - 360^{\circ}$
Max kinetic energy for stopping	
$\pi^{\pm}/\text{proton/deuteron}$	190/400/500
Scattering angle resolution	$\approx 5^{\circ}(\text{FWHM})$
Time resolution	
charged particles	5 ns(FWHM)
photons	$\approx 40 \text{ ns}(\text{FWHM})$
Energy resolution	
charged particles	$\approx 3\%$ (FWHM)
photons	$\approx 8\%$ (FWHM)

Table from WASA-at-COSY proposal

Fiber tracking detector

Fiber tracker for vertex reconstruction in Hypernuclei experiment (HypHI)
 * 0.5 mm pitch * readout by MPPC array (Hamamtsu S13361)

Newly designed readout board (amplifier + TDC)

FRS-F4 detectors for WASA experiments

DAQ Trigger for WASA-FRS

Clean PID trigger from FRS-F3/F4

- \diamond Bp is selected by FRS within 2% → Bp selection
- ◊ TOF-based F3-F4 coincidence on hardware → A/Q selection
- $\diamond \Delta E$ selection with Plastic scintillators $\rightarrow Z$ selection

WASA detectors are exposed to very high rate, but trigger is very clean with well-defined timing

η'-mesic nuclei spectroscopy

η' meson

 η' meson in vacuum

□ Mass = 958 MeV/c^2 (especially large), Width : 0.2 MeV, JP = 0⁻

 \Box U_A(I) anomaly and spontaneous breaking of chiral symmetry

U_A(I) anomaly contributes η' mass through ChSB

H. Nagahiro, D. Jido et *al*, PRC 87, 045201 (2013).

D. Jido, H. Nagahiro, S. Hirenzaki, PRC 85, 032201 (2012).

η'

meson

100

0.04

0.08

Nuclear Density [fm⁻³]

0.12

0.16

S. Sakai et al., D. Jido, PRC 88, 064906 (2013). S.D. Bass, A.W. Thomas, PLB 634, 368 (2006).

π

 ρ/ρ_0

2

3

η' meson

η' meson in vacuum

- \square Mass = 958 MeV/c² (especially large), Width : 0.2 MeV, JP = 0⁻
- \Box U_A(I) anomaly and spontaneous breaking of chiral symmetry

 η' meson at nuclear density

 \Box Partial restoration of chiral symmetry ($\langle \bar{q}q \rangle$ reduced ~ 30%)

• Mass reduction is expected

Attractive potential

$$V_{\eta'A}(r) = \Delta m_{\eta'}(\rho_0) \frac{\rho(r)}{\rho_0}$$

Bound states (mesic-nuclei)

direct probe for studying meson properties in medium

η'

η'-nucleus optical potential : $V_{\eta'} = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$ $V_0 = \Delta m(\rho_0), W_0 = -\Gamma(\rho_0)/2$

Theoretical predictions

 $\Delta m(\rho_0) \sim -150 \text{ MeV/c}^2 (NJL), -80 \text{ MeV/c}^2 (linear \sigma), -37 \text{ MeV/c}^2 (QMC)$

H. Nagahiro *et al.*, PRC 74, 045203(2006). S. Sakai, D. Jido, PRC 88, 064906 (2013). S.D. Bass, A.W. Thomas, PLB 634, 368 (2006).

η'-nucleus optical potential : $V_{\eta'} = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$ $V_0 = \Delta m(\rho_0), W_0 = -\Gamma(\rho_0)/2$

Theoretical predictions

 $\Delta m(\rho_0) \sim -150 \text{ MeV/c}^2 (NJL), -80 \text{ MeV/c}^2 (linear \sigma), -37 \text{ MeV/c}^2 (QMC)$

Experimental indications (CBELSA/TAPS)

 \Box V₀ ~ -40 MeV (excitation function, mom. distribution)

η'-nucleus optical potential : $V_{\eta'} = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$ $V_0 = \Delta m(\rho_0), W_0 = -\Gamma(\rho_0)/2$

Theoretical predictions

 $\Delta m(\rho_0) \sim -150 \text{ MeV/c}^2 (NJL), -80 \text{ MeV/c}^2 (linear \sigma), -37 \text{ MeV/c}^2 (QMC)$

Experimental indications (CBELSA/TAPS)

 \Box V₀ ~ -40 MeV (excitation function, mom. distribution)

 \square W₀ = -13 ±3(stat) ±3(syst) MeV (transparency ratio)

M. Nanova *et al.,* PLB 710, 600 (2012).

S. Friedrich *et al.*, EPJA 52, 297 (2016).

η'-nucleus optical potential : $V_{\eta'} = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$ $V_0 = \Delta m(\rho_0), W_0 = -\Gamma(\rho_0)/2$

Theoretical predictions

 $\Delta m(\rho_0) \sim -150 \text{ MeV/c}^2 (NJL), -80 \text{ MeV/c}^2 (linear \sigma), -37 \text{ MeV/c}^2 (QMC)$

Experimental indications (CBELSA/TAPS) $\nabla_0 \sim -40 \text{ MeV}$ (excitation function, mom. distribution) $\nabla_0 = -13 \pm 3(\text{stat}) \pm 3(\text{syst}) \text{ MeV}$ (transparency ratio)

 $\begin{aligned} \eta' - p \text{ scattering length by COSY-II} & E. Czerwiński et al., PRL 113, 062004 (2014) \\ & \circ \text{Re}(a_{\eta' p}) = 0 \pm 0.43 \text{ fm}, \ \text{Im}(a_{\eta' p}) = 0.37^{+0.40}_{-0.16} \text{ fm} \\ & \rightarrow |V_0| < 38 \text{ MeV}, \ W_0 = -(33^{+40}_{-14}) \text{ MeV} \quad (\text{low density approx.}) \end{aligned}$

Semi-exclusive measurement with decay tagging

Semi-exclusive measurement with decay tagging

FRS: missing-mass spectroscopy (d) WASA: tagging decay particles (p)

Semi-exclusive measurement with decay tagging

WASA: tagging decay particles (p)

in Signal / BG ratio

Simulation of semi-exclusive measurements

♦ Assumed branching ratio (to $\eta' NN \rightarrow NN$) ~ 50%

H.Nagahiro et al., PRC 87, 045201 (2013), Phys. Lett. B 709, 87 (2012).

Simulation of semi-exclusive measurements

◊ Assumed branching ratio (to $η'NN \rightarrow NN$) ~ 50%

H.Nagahiro et al., PRC 87, 045201 (2013), Phys. Lett. B 709, 87 (2012).

Simulation of semi-exclusive measurements

♦ Assumed branching ratio (to $\eta' NN \rightarrow NN$) ~ 50%

H.Nagahiro et al., PRC 87, 045201 (2013), Phys. Lett. B 709, 87 (2012).

Beam Time in February 2022

Performance of WASA-PSB and MDC

Track and momentum reconstruction analysis in progress

Performance of WASA-CsI

Refinement of analysis, Reconstruction of γ (π^0 , η , η' decay) are in progress

Over the set of the

- high resolution forward (0°) spectroscopy with FRS
- decay particle measurement in large solid angle by WASA
- - * η'-mesic nuclei spectroscopy (S490) with ¹²C(*p,dp*) reaction with decay particle tagging
 - \square a probe to study in-medium η' meson properties
 - $\hfill\square$ with extended sensitivity to shallow potential case
 - $\hfill\square$ aimed statistics of the 1st semi-exclusive measurement was achieved.

* Hypernuclei spectroscopy (S447): Talk by T. Saito afternoon

Over the second of the second also new experiments further with WASA + FRS at GSI and with (Super-)WASA + Super-FRS at FAIR

WASA-FRS collaborators from Beamtime 2022 (not yet complete list)

- High Energy Nuclear Physics Laboratory, RIKEN, Japan: H. Ekawa, Y. Gao, Y. He, A. Kasagi, E. Liu, A. Muneem, M. Nakagawa, T.R. Saito, Y. Tanaka,
- HRS-HYS group, GSI, Germany
 H. Alibrahim Alfaki, V. Drozd, T.R. Saito, T. Weber
- FRS/SFRS Research Group, GSI, Germany: K.-H. Behr, B. v. Chamier Gliszezynski, T. Dickel, S. Dubey, J. Eusemann, D. Kostyleva, B. Franczak, H. Geissel, E. Haettner, C. Hornung, P. Roy, C. Scheidenberger, P. Schwarz, B. Szczepanczyk, M. Will, J. Zhao
- Meson Science Laboratory, RIKEN, Japan: K. Itahashi, R. Sekiya
- Instituto de Estructura de la Materia CSIC, Spain:
 S. Escrig, C. Rappold
- Cryogenic Department, GSI, Germany:
 A. Beusch, H. Kollmus, C. Schroeder, B. Streicher
- Experiment Electronics Department, GSI, Germany: H. Heggen, N. Kurz, S. Minami
- Detector Laboratory, GSI, Germany: C. Nociforo, E. Rocco
- Nuclear Spectroscopy Group, GSI, Germany: M. Armstrong, N. Hubbard, K. Wimmer
- Super-FRS Project, GSI, Germany: F. Amjad, E. Kazantseva, R. Knöbel, I. Mukha, S. Pietri, S. Purushothaman, H. Weick
- Target Laboratory, GSI, Germany: B. Kindler, B. Lommel
- Institut für Kernphysik, Technische Universität Darmstadt, Germany: G. Schaumann

- University of Applied Sciences, Giessen, Germany: S. Kraft
- Department of Engineering, Gifu University, Japan: A. Kasagi, K. Nakazawa
- Energy and Sustainability Research Institute Groningen, University Groningen, The Netherlands:
 V. Drozd, M. Harakeh, N. Kalantar-Nayestanaki, M. Kavatsyuk
- Institute of Modern Physics, China: L. Duan, Y. Gao, E. Liu, J. Ong, X. Tang
- Institute of Physics, Jagiellonian University, Poland: A. Khreptak, M. Skurzok
- Department of Low and Medium Energy Physics, Jožef Stefan Insti-Slovenia:
 Z. Brencic
- Department of Physics, Kyoto University, Japan: R. Sekiya
- School of Nuclear Science and Technology, Lanzhou University, Ch Y. He, J. Ong, T.R. Saito, X. Tang
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Ger P. Achenbach, J. Pochdzalla
- Michigan State University, USA: D. Morrissey
- Universidad de Santiago de Compostela, Spain: J. Benlliure, M. Fontan, A. Gonzalez, G. Jimenez, J. Rodríguez-Sánchez