Symmetry Breaking and Transition Form Factors from Eta and Omega Decays

Ankhi Roy: for the WASA-at-COSY Collaboration

Indian Institute of Technology Indore

Physics Program of WASA-at-COSY collaboration

Meson Decays -

- Symmetries and Symmetry Violation
- Branching Ratio of Rare Decays
- Transition Form Factors (Dalitz Decays)

Topics of my talk-

- CP and C violating Decay
- Transition form factor of different mesons

Experimental Setup:
 $p($ beam $)+p($ target $) \rightarrow p p X$ (mesons)
 $p+d \rightarrow{ }^{3} \mathrm{HeX}$

- Large solid angle acceptance
- Pellet Target System (High Density and high purity)
- High granularity central and forward tracking detector
- Identification of all final state particles

status of η production

$$
\begin{aligned}
& \mathrm{pd} \rightarrow{ }^{3} \mathrm{He} \eta \\
& T_{p}=1.0 \mathrm{GeV} \\
& 10 \eta / s(0.4 \mu b)
\end{aligned}
$$

$4+8$ weeks $(2008,2009)$
$3 \cdot 10^{7} \eta$ decays (unbiased)
$\mathbf{p p} \rightarrow \mathbf{p p} \eta$
$T_{p}=1.4 \mathrm{GeV}$
$100 \mathrm{\eta} / \mathrm{s}(10 \mu \mathrm{~b})$
4+8+7 weeks
(2007+2008,2010,2012)
$10^{9} \eta$ decays

Analysis Method

- Identification of recoil particles

- Missing Mass
- Identification of charged tracks
- Invariant Mass
- Kinematic Fitting

- Subtraction of Different background channels

Branching Ratio : $\eta \rightarrow \pi^{+} \pi^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$

CP violating Decay mode

Analysis - Daniel Coderre

- Relative Branching Ratio with identical final states reduce systematic effects $\frac{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)}{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-}\left(\pi^{0} \rightarrow e^{+} e^{-} \gamma\right)\right)}$
- Preliminary Result:
$\mathrm{BR}\left(\eta \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}\right)=\left(3.10 \pm 0.27_{\text {stat }} \pm 0.22_{\text {sys }}\right) \times 10^{-4}$

CP-violation in $\eta \rightarrow \pi^{+} \pi^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$ pd data

- Asymmetry of the angle betwn the electron and the pion decay plane \rightarrow CP violation observable
- $A_{\phi}=\frac{\operatorname{Count}(\sin \phi \cos \phi>0)-\operatorname{Count}(\sin \phi \cos \phi<0)}{\operatorname{Count}(\sin \phi \cos \phi>0)+\operatorname{Count}(\sin \phi \cos \phi<0)}$
$A_{\phi}=\left(0.4 \pm 9.0_{\text {stat }} \pm 2.8_{\text {sys }}\right) \times 10^{-2}$ (Preliminary) compatiable with zero within errors

C-violating Decay : $\eta \rightarrow \pi^{0} e^{+} e^{-}$

- Decay $\eta \rightarrow \pi^{0} e^{+} e^{-}$is forbidden since it violates the C-parity conservation $C\left(\pi^{0}+\gamma^{*}\right)=(+1) \cdot(-1)=-1 \neq C(\eta)$
- Current Upper Limit BR $\left(\eta \rightarrow \pi^{0} e^{+} e^{-}\right)<4 \times 10^{-5}$ [PDG-2010]
- Aim : Lowering the existing upper limit by high statistics measurements at WASA-at-COSY to test the C-parity conservation with increased sensitivity and search for Physics beyond the Standard Model
- Status : 1 st data set : $10^{7} p+d \rightarrow^{3} \mathrm{He}+\eta$ events After applying all cuts on the measured data one out of 1.7×10^{8} events remains (PhD Thesis A. Winnemoller)
- Currently under evaluation : additional $2 \times 10^{7} p+d \rightarrow^{3} \mathrm{He}+\eta$
- In addition: $10^{9} p+p \rightarrow p+p+\eta$ events on disk

Transition Form Factor:

$M \rightarrow \gamma \gamma^{*} \rightarrow \gamma I^{+} I^{-}$
$M \rightarrow \gamma e^{+} e^{-}$
Transition Form Factor $F\left(q^{2}\right)$:

$$
\begin{aligned}
\frac{d \Gamma_{\gamma e^{+}+e^{-}}}{d q^{2}} & \left.=\left[\frac{d \Gamma_{c^{-}}+e^{-}}{d q^{2}}\right]_{\mathrm{QED}} \right\rvert\, F\left(q^{2}\right)^{2} \\
& =\frac{2 \alpha}{3 \pi} \frac{\Gamma_{2}}{q^{2}}\left(1-\frac{q^{2}}{m_{M}}\right)^{3}\left|F\left(q^{2}\right)\right|^{2}
\end{aligned}
$$

Form Factor $F\left(q^{2}\right)$:

$$
F\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{V}^{2}}
$$

Vector meson ρ :

$$
m_{V}=m_{p}=0.77 \mathrm{GeV}
$$

\Rightarrow Resonance at $m_{\gamma^{*}}=q=m_{p}$

> 'standard VMD'

Transition Form Factor :

- $\eta \rightarrow \gamma \mu^{+} \mu^{-}$
$\omega \rightarrow \pi^{0} \mu^{+} \mu^{-}$
$\eta^{\prime} \rightarrow \gamma \mu^{+} \mu^{-}$

G. Landsberg, Phys. Rep. 128 (1985) 301

270(2011)012038

- for ω meson clearly additional mechanism apart from standard VMD
- Recent theoretical advance: C. Terschlusen and St. Leupold, Phys. Lett B 691(2010) 191-201 Chiral Lagrangian including light vector mesons and Goldstone Bosons.
- Different experimental approach : elementary reactions, using di-electrons, photon detection

Transition Form Factor of η meson:

Analysis - H. Bhatt \& M. Hodanna

Study of $\eta \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-} \gamma$
$p d \rightarrow{ }^{3} \mathrm{He} \mathrm{\eta} \quad \mid p p \rightarrow p p \eta$
525 ± 26 events
Based on $3 \times 10^{7}{ }^{3} \mathrm{He} \eta$ 2659 ± 51 events Based on $10^{7} \mathrm{pp}$

Transition Form Factor of $\omega \pi^{0}$ meson

Analysis - F. Khan \& A. Goswami

L.Heijkenskjold \& S. Sawant

Studies of ω in pd

Missing mass of ${ }^{3} \mathrm{He}$ after $\pi^{0} \pi^{+} \pi^{-}$
Missing mass of ${ }^{3} \mathrm{He}$ after $\pi^{0} \gamma$ selection (1.5 GeV)

Summary and Outlook :

- Branching Ratio of very rare decay channels like $\eta \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$ ($5 \times 10^{8} \eta$ meson from pp)
- $\eta, \omega \pi$ Transition Form Factor

Back up

External Conversion Subtraction Techniques:

Radius of Closest Approach of $e^{+} e^{-}$ in MDC as a function of Invariant Mass at beam pipe

Orientation Angle (ϕ_{V}^{*}) of plane of pair with respect to magnetic field

