

P2 / Mainz A new measurement of the weak charge of the proton

Dominik Becker

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

The 5th International Symposium on Symmetries in Subatomic Physics, Groningen / Netherlands, 2012

<u>Outline</u>

- The weak charge of the proton $Q_W(p)$ and the weak mixing angle
- Experimental access
 to Q_W(p)
- Concept studies for the Mainz P2 experiment

The weak charge of the proton and the weak mixing angle

The weak charge of the proton

$$Q_e(p) = +e$$

electric charge of the proton

weak charge of the proton

 $\sin^2(\theta_w)$ is a central parameter of the standard model.

Energy scale dependency of the weak mixing angle

Quantum corrections can be absorbed into a weak mixing angle depending on the transferred energy μ :

 $\sin^2(\theta_W) \rightarrow [\sin^2(\theta_W)](\mu)$

Scale dependency of $\sin^2(\theta_W)$

Weak charges: Sensitivity to new physics

• Complementary access by weak charges of proton and electron

• Dark symmetries \rightarrow Bill Marciano, this conference

Weak charges and SUSY

Experimental restriction of SUSY-parameters:

(Ramsey-Musolf and Su, 2005)

Experimental access to $Q_W(p)$

Elastic scattering of longitudinally polarized electrons off the proton

The weak interaction is parity violating : $M_Z^+ \neq M_Z^- \longrightarrow |M_y + M_Z^+|^2 \neq |M_y + M_Z^-|^2$

A4 Experiment at MAMI

- 10 years of experience in parity violating electron scattering in Mainz
- Strangeness in the nucleon
- Asymmetries of the order 10⁻⁶

The parity violating asymmetry in elastic e-p-scattering

Definition:
$$A_{PV} = \frac{\sigma_{ep}^{+} - \sigma_{ep}^{-}}{\sigma_{ep}^{+} + \sigma_{ep}^{-}}$$

Structure: $A_{PV} = \frac{-G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W(p) - F(Q^2))$ Proton structure: $F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$ Weak charge of the proton: $Q_w(p) = 1 - 4\sin^2(\theta_w)(\mu)$

The asymmetry at P2-conditions

Precision of P2: Monte-Carlo-Studies

Proposed experimental conditions:

- Beam energy: 200 MeV
- Beam current: 150 µA
- Polarization: $85\% \pm 0.5\%$

•
$$\theta_{lab} = 20^{\circ} \pm 10^{\circ}$$

- $\Delta \phi = 2\pi$
- Target: 60 cm liquid hydrogen
- Measuring time: 10000 h

•	Q ²	0.0048 GeV ²
	Aphys	-20.25 ppb
	ΔA _{tot}	0.34 ppb (1.7 %)
	ΔA _{stat}	0.25 ppb
	ΔA _{sys}	0.19 ppb (0.9%)
	Rate	0.44 10 ¹² Hz
	$\Delta sin^2 \theta_{W stat}$	2.8 10-4
	$\Delta sin^2 \theta_{W tot}$	3.6 10-4 (0.15 %)
	L	

Gamma-Z-Box graph contributions to the uncertainty

Gorchtein, Horowitz, Ramsey-Musolf 1102.3910 [nucl-th]

Radiative corrections:

- Gamma-Z-box contributions: included in the Monte-Carlo
- Higher-order radiative effects due to one and two photon emission
- General theory support for the interpretation of the measurement

Concept studies for the P2 experiment

New superconducting accelerator in Mainz: MESA

Granted by the German Excellence Initiative 15.06.2012, 3:45 ppm

MAMI accelerator facility: Current setup for PV measurements

MESA and P2: Setup in the MAMI accelerator facility

Experimental challenges

MESA:

- Beam current I = 150 μA
- Beam energy E = 200 MeV
- Polarization P = 85 % \pm 0.5 %

<u>P2:</u>

- 60 cm liquid-hydrogen target
- $\theta_{Lab} \in [10^{\circ}, 30^{\circ}]$, $\Delta \phi = 2\pi$
- Elastic e-p-scattering: Rate = 0.22 THz

Dealing with high rates

Background suppression

<u>High precision polarimetry: Hydro-Moeller</u>

- Strong magnetic field:
- B=8 T
- Low temperature T=0.3 K
- Magnetic trap
- \rightarrow 100% polarization of the electrons
- Precision goal: $\Delta P=0.5\%$

Concept by E.A. Chudakov and V.G. Luppov

P2: Possible design of spectrometer

• Solenoid design:

• Other option: Qweak-line toroid

Superconducting solenoid

Studies with ROOT & Geant4: Tracking

Energy loss in liquid H2 target

Solenoid setup

Design by D. Rodriguez Pineiro

• Other option: Qweak-line toroid

Timeline of project P2

<u>Summary</u>

- Measurement of the weak charge of the proton yields $\sin^2(\theta_W)$, a key parameter of the standard model
- High precision measurement: Search for new physics (SUSY, ...)
- P2: A new PV experiment in Mainz with precision goal $\Delta \sin^2(\theta_w) = 3.6 \cdot 10^{-4}$
- New superconducting accelerator at MAMI facility: MESA Granted since June 15, 2012
- After ten years of experiments with PVES, concept studies for the new P2 setup are in progress