Resonant Quantum Transitions in Trapped Antihydrogen

Dirk van der Werf Swansea University

Goals

- Compare the spectra of H and H.
 - Records for Hydrogen
 - 1S-2S transition known to 4.2 parts in 10¹⁵.
 C.G. Parthey *et al.* Phys. Rev. Lett. 107, 203001 (2011)
 - Ground state hyperfine transition known to 1.4 parts in 10¹².
 H. Hellwig *et al.* Instrumentation and Measurement, IEEE Transactions on 19, 200 (1970).
- Measure the acceleration of antimatter in a matter gravitational field

H Breit-Rabi Diagram

D P van der Werf, Swansea University

H Quantum Transitions

3

D P van der Werf, Swansea University

H Quantum Transitions

D P van der Werf, Swansea University

H Quantum Transitions

D P van der Werf, Swansea University

H Quantum Transitions

D P van der Werf, Swansea University

Thursday, 21 June 12

H Quantum Transitions

Alpha Apparatus

Well depth is ~0.8 T equivalent 0.54 K for ground state (anti)hydrogen

Ramp down/Quench of trap: τ = 9 ms

Number of quenches: a couple of thousands

W. Bertsche et al (ALPHA collaboration) Nucl. Instr. Meth. Phys. Res. A 56, 746 (2006)

D P van der Werf, Swansea University

Thursday, 21 June 12

H Quantum Transitions

Detector

D P van der Werf, Swansea University

Detector

D P van der Werf, Swansea University

H Quantum Transitions

Alpha Apparatus

D P van der Werf, Swansea University

H Quantum Transitions

D P van der Werf, Swansea University

 $\overline{\mathrm{H}}$ Quantum Transitions

Antiproton Decelerator

p trapping

D P van der Werf, Swansea University

H Quantum Transitions

e+ trapping

T. J. Murphy and C. M. Surko, *Phys. Rev. A* 46, 5696 (1992)

D P van der Werf, Swansea University

H Quantum Transitions

e+ transfer

D P van der Werf, Swansea University

D P van der Werf, Swansea University

H Quantum Transitions

D P van der Werf, Swansea University

H Quantum Transitions

D P van der Werf, Swansea University

Thursday, 21 June 12

H Quantum Transitions

Evaporative Cooling

D P van der Werf, Swansea University

Evaporative Cooling

Mixing

D P van der Werf, Swansea University

Mixing

Magnetic field measurements

D P van der Werf, Swansea University

Magnetic field measurements

D P van der Werf, Swansea University

Thursday, 21 June 12

H Quantum Transitions

Trapping

D P van der Werf, Swansea University

H Quantum Transitions

1000 Confinement

Transition measurements

- Produce and trap Antihydrogen
- Wait 60 s and maybe change B
- Microwave for 180 s
- Quench trap

D P van der Werf, Swansea University

- Wait 60 s and maybe change B
- Microwave for 180 s
- Quench trap

Two data sets

Disappearance mode:

Count the remaining antihydrogen atoms when quenching

Appearance mode:

Count the escaping antihydrogen atoms during the microwave injection

D P van der Werf, Swansea University

H Quantum Transitions

Simulation of the transition probability

D P van der Werf, Swansea University

H Quantum Transitions

SSP2012

D P van der Werf, Swansea University

H Quantum Transitions

24

25

D P van der Werf, Swansea University

H Quantum Transitions

Thursday, 21 June 12

26

Totals for all 'disappearance mode' series

C. Amole et al. (ALPHA collaboration) *Nature* **483**, 439 (2012)

D P van der Werf, Swansea University

H Quantum Transitions

27

Appearance measurements

D P van der Werf, Swansea University

H Quantum Transitions

Conclusion + Outlook

- We trapped antihydrogen and were able to make quantum transitions using microwaves
- Presently, we are upgrading the equipment for laser and improved microwave access
- There are no antiprotons in 2013. This time will be used for ironing out problems encountered and improving lasers and measurement techniques
- First spectroscopy in 2014?
- Further away:
 - Devise a realistic scheme to measure "g" for antihydrogen.

Funding

D P van der Werf, Swansea University

H Quantum Transitions

Funding

D P van der Werf, Swansea University

Thursday, 21 June 12

H Quantum Transitions

D P van der Werf, Swansea University

Thursday, 21 June 12

H Quantum Transitions

