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Abstract Nuclear few-body systems become attractive avenues for the study of low-
energy parity violation because experiments start to meet the precision requirements
and theoretical calculations can be performed reliably. In this talk, an attempt of
parametrizing low-energy parity-violating observables by the Danilov parameters will
be introduced. Analyses of two-nucleon observables, based on the modern phenomeno-
logical potentials or the one of effective field theory, will be discussed.

1 Introduction

The Study of the strangeness-conserving (∆S = 0) hadronic weak interaction started
shortly after the discovery of parity violation [1]. Although a lot of data have been
accumulated during the past years, our understanding is still vague (see, e.g., Refs. [2,
3,4,5] for comprehensive reviews). The challenge is two-fold: Experimentally, one has
to either meet the precision requirement, i.e., a signal-to-noise ratio ∼ 10−7 set by
the relative strength of weak-to-strong interaction, or find particular systems, usually
heavy, to amplify observables. Theoretically, a first-principle formulation of this in-
teraction is still missing, and many related few- and many-body calculations are not
reliable enough yet.

Nevertheless, such studies are still important in their own right for many reasons.
Here we just list a few: (i) This is the only sector to probe the hadronic neutral weak
interaction, which is among the very few pieces which have not been well-tested in the
Standard Model. (ii) In contrast to the strong interaction, this concerns four-quark
correlations at a much shorter distance, which provides additional information about
quark dynamics at the nonperturbative regime. In fact, we have some evidence showing
that the ∆I = 1 (I refers to the isospin) component of this interaction is much smaller
than the ∆I = 0 , 2 ones. This reminds us of a similar phenomenon, that is, the
∆I = 3/2 suppression found in the ∆S = 1 decay. (iii) It is needed for a better
interpretation of several semi-leptonic processes under intensive experimental study.
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For example, the so-called nuclear “anapole” form factor or moments that contribute
to parity-violating (PV) electron scattering on the proton or the nucleus, and atomic
parity violation experiments.

2 Parity-violating nucleon-nucleon interaction

The progress of formulating the PV nucleon-nucleon (NN) interaction follows a similar
historical track as the strong interaction, and proceeds in three major directions.

(I) The scattering amplitudes: A two-body interaction can be phenomenologically
constrained by knowledge of energy-dependent scattering amplitudes, and the number
of partial waves to be included increases with energy. In PV NN scattering, there are
five lowest partial wave amplitudes: v0,1,2 for the 1S0–3P0(∆I = 0, 1, 2), u for the
3S1–1P1 (∆I = 0), and w for the 3S1–3P1 (∆I = 1) transition. It was first suggested
by Danilov [6,7] to use these S-P amplitudes to describe low-energy PV processes, and
generalized by Desplanques and Missimer [8] to analyze a wide range of pre-80’s PV
observables.

(II) The meson-exchange models: Considering the one-meson-exchange (OME)
mechanism with intermediate mesons of mass m . 1 GeV (this leaves π±, ρ, and
ω mesons as the only candidates; π0 and η mesons are ruled out by CP conservation),
one obtains the following PV NN interaction:

V PV

OME(r) = V PV

ρ,ω(r) + V PV

π± (r) , (1)
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where mN is the nucleon mass; the gx’s denote the parity-conserving (PC) x-meson-
nucleon couplings, and the hix’s the PV ones with isospin change ∆I = i; χω and
χρ are the isoscalar and isovector strong tensor couplings, respectively; τ· ≡ τ1 · τ2,
τz± ≡ (τz1 ± τz2 )/2, τz× ≡ i (τ1 × τ2)z/2, and τzz ≡ (3 τz1 τ

z
2 − τ1 · τ2) /(2

√
6) are

the isospin operators; σ± ≡ σ1 ±σ2 and σ× ≡ iσ1 ×σ2 are the spin operators. The
spatial operator ux+(r) (ux−(r) ) is defined as the (anti-) commutator of −i∇ with
the Yukawa function fx(r)

fx(r) ≡ e−mx r

4π r
. (4)

The above form then becomes the standard in analyzing nuclear PV phenomena for
many years after Desplanques, Donoghue, and Holstein (DDH) give their prediction
for these meson-nucleon coupling constants, based on a quark model calculation [9].
However, there has not been a good agreement on hix’s between the experimental
constraints and a rather liberal theoretical range a la DDH (two such discrepancies are
pointed out in Refs. [10,11]). Also note that V PV

OME does not include contributions from,
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for example, two-pion (or multi-pion) exchange, therefore some of these meson-nucleon
coupling constants should be realized in an effective sense.

(III) The effective field theory (EFT): Inspired by the success of applying EFT to
formulate the PC NN interaction, Zhu et al. [12] recently gave the leading order (LO)
PV NN interaction. This potential V PV

EFT is broken down in three components

V PV

EFT(r) = V PV
1,SR(r) + V PV

−1,LR(r) + V PV
1,MR(r) . (5)

The short-range (SR) interaction takes the following form

V PV
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2

Λ3
χ
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z
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where Λχ is the scale of chiral symmetry breaking, which is related to the pion decay
constant Fπ by Λχ = 4π Fπ ≈ 1.161GeV. The spatial operators ym±(r), as originally
proposed in Ref. [12], have the properties that i) they are strongly peaked at r = 0
with a range parameter 1/mx, and ii) they approach δ(r) in the zero range (ZR) limit
(i.e., mx →∞). For example, a choice with

yx±(r) = m2
x ux±(r)→ [−i∇ , δ(r)/r2]± , (7)

would make this short range interaction resemble the heavy-meson-exchange potential
V PV
ρ,ω(r). Such a softening of the contact interaction is mainly for the implementa-

tion in typical potential model calculations. In the strict contact form, ym+(r) and
ym−(r) would yield the same matrix elements, so V PV

1,SR(r) has only five genuine low
energy constants (LECs) [12,13,14]. The long-range (LR) interaction V PV

−1,LR(r) is due
to one-pion exchange and has the exact same form as V PV

π± (r). The medium-range
(MR) interaction V PV

1,MR(r) is due to two-pion exchange which yields two isospin-spin
operators similar to the SR C̃2 and C̃6 terms, and its complete form can be found in
Refs. [12,15]. In a pionless EFT framework, these LR and MR interactions are effec-
tively included in the SR interaction and contribute to C̃6 (one-pion) and C̃2 and C̃6

(two-pion), respectively.

3 Two-nucleon observables and Danilov parameters

To calculate PV observables, the first step is to determine the related wave functions
of the initial and final states. The PC component |ψ〉 of a scattering or bound state is
obtained by solving Lippmann-Schwinger or Schrödinger equation:

(E −H0 + V PV ∓ i ε) |ψ〉(±) = 0 ,

(EB +H0 + V PV) |ψ〉B = 0 ,

and the PV admixture |̃ψ〉 to the first-order Born approximation is obtained by solving
the associated inhomogeneous differential equation:
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(E −H0 − V PC ∓ i ε)|̃ψ〉
(±)

= V PV |ψ〉(±) ,

(EB +H0 + V PC)|̃ψ〉B = −V PV |ψ〉B .

Depending on the choice of V PC and V PV, there exist three different calculation
schemes:

1. Phenomenological: In this scheme, both V PC and V PV are taken from phenomeno-
logical models. It should be noted that most state-of-the-art nuclear few- and many-
body calculations are performed in such fashions. However, as mentioned above,
the theory-experiment agreement is still not satisfactory.

2. Hybrid EFT: This approach tries to combine the best of both worlds: high-quality
wave functions calculated from phenomenological V PC and the general V PV derived
in the spirit of EFT. Although it gains quite some success in various systems, the
consistency of such an approach is questionable.

3. Pure EFT: In this scheme, V PC and V PV are both formulated in an EFT framework,
so consistency is guaranteed. However, even in the spirit of EFT, there are a few
variants. For example, depending on whether the momentum scale Q of a problem
is much smaller than the pion mass mπ, one can choose to work with perturba-
tive pions (“pionless” EFT) or still treat pions nonperturbatively (pionful EFT).
The pionless EFT has the advantage of renormalization/regularization-scheme in-
dependence but a limited range of applicability (Q/mπ � 1). The pionful EFT,
though with a larger range of applicability, has to deal with regulator dependence
in cutting off the high momentum region.

As it is still far from clear at the moment which scheme yields the best theory-
experiment agreement, in addition to reliable calculations in these frameworks, it would
be nice if different calculations can be compared on the same footing. For this purpose,
we shall introduce the Danilov parameters.

The five dimensionless Danilov parameters: λ̄pp,nn,nps , λ̄t, and ρ̄t, are extracted
from the associated zero-energy S–P amplitudes, vpp,nn,np, u, and w, respectively
(see Refs. [7,8,4,15] for details). Their usefulness lies in the fact that, at low energy,
the energy dependence of S–P amplitudes can be completely factored out so these
parameters remain constant. Therefore, within the applicable low-energy range, the
Danilov parameters can be viewed as the effective LECs. Furthermore, because they
are extracted from observables, they are physical and should be independent of models
and theories. The only exception is the ρ̄t parameter, because the contribution of
one-pion exchange, whose energy dependence is different from the ones of MR and
SR interactions (unless at very low energies), is usually subtracted from the 3S1–3P1

amplitude [8,15].
A detailed analysis of two-nucleon observables in terms of the Danilov parameters

is given in Ref. [15]; here we use two examples to demonstrate its basic features. The
calculation framework is hybrid: the Argonne v18 model [16] is employed for V PC and
the pionful EFT for V PV. Two sets of results will be presented: In the “bare” case, we
use the m2-weighted Yukawa propagator m2/(m2 + q2) with m = mρ ∼ 770 MeV
to soften the contact interaction, and we do not introduce any cut-off factor to one-
pion and two-pion exchanges. In the “mod” case, we introduce dipole cut-off factors
(Λ2−4m2)2/(Λ2+q2)2 with Λ = 1.31 GeV for the SR interaction, and Λ = 1.72 GeV
for the MR and LR interactions. Such choices are mainly for an easy comparison
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with existing phenomenological calculations based on V PV
OME (primarily Refs. [11,17]).

It should also be noted that the LECs are regulator and cut-off dependent in such
calculations.

1. Longitudinal asymmetry AL of p p scattering at 13.6 and 45 MeV: The asymmetry
factors are found to be

AppL (13.6MeV) = (−2.471 D̃ppv − 1.984Dppv + 4.000 C̃2π
2 )× 10−3 , (bare)

= (−1.614 D̃ppv − 1.402Dppv + 1.876 C̃2π
2 )× 10−3 , (mod)

(8)

AppL (45MeV) = (−4.377 D̃ppv − 3.781Dppv + 6.847 C̃2π
2 )× 10−3 , (bare)

= (−2.797 D̃ppv − 2.652Dppv + 2.712 C̃2π
2 )× 10−3 , (mod)

(9)

and the only relevant Danilov parameter λ̄pps is found to be

λ̄pps = 5.507× 10−3 (D̃ppv + 0.789Dppv − 1.655 C̃2π
2 )× 10−3 , (bare)

= 3.628× 10−3 (D̃ppv + 0.849Dppv − 1.260 C̃2π
2 )× 10−3 . (mod) (10)

Recasting the asymmetry factors using the Danilov parameter yields

AppL (13.6MeV) = −0.449 λ̄pps + (−0.035Dppv − 0.088 C̃2π
2 )× 10−3 , (bare)

= −0.445 λ̄pps + (−0.032Dppv − 0.157 C̃2π
2 )× 10−3 , (mod)

(11)

AppL (45MeV) = −0.795 λ̄pps + (−0.329Dppv − 0.395 C̃2π
2 )× 10−3 , (bare)

= −0.771 λ̄pps + (−0.276Dppv − 0.813 C̃2π
2 )× 10−3 . (mod)

(12)

As one can obviously see, the asymmetry factors have almost model independent
expressions in terms of the Danilov parameter, plus some remaining corrections.
The larger correction for the 45 MeV case just reflects the fact that higher partial
waves start to contribute so the S–P amplitudes become less dominant. Ignoring
the corrections, the ratio of AppL (45MeV)/AppL (13.6MeV) ∼ 1.75 agrees very well
with the experimental value (−1.57× 10−7)/(−0.93× 10−7) = 1.69.

2. Photon asymmetry Aγ of radiative thermal neutron (E ∼ 0.025 eV) capture by
proton: The asymmetry factor is found to be

Anpγ (th.) = (−0.288 D̃w − 0.174Dw − 0.272 C̃π6 + 0.514 C̃2π
6 )× 10−3 , (bare)

= (−0.187 D̃w − 0.124Dw − 0.270 C̃π6 + 0.300 C̃2π
6 )× 10−3 , (mod)

(13)

and the only relevant Danilov parameter ρ̄t is found to be

ρ̄t = 3.108× 10−3 (D̃w + 0.604Dw − 1.771 C̃2π
6 ) , (bare)

= 2.003× 10−3(D̃
′

w + 0.664D
′

w − 1.586 C̃2π
6 ) . (mod) (14)
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Recasting the asymmetry factor using the Danilov parameter gives

Anpγ = −0.093 ρ̄t − 0.106h1π + (−0.003 C̃2π
6 )× 10−3 , (bare)

= −0.093 ρ̄t − 0.105h1π + (−0.004 C̃2π
6 )× 10−3 . (mod) (15)

One again sees how the Danilov parameter ρ̄t along with h1π can help to express
Anpγ (th.) in a model independent way, with almost no correction. A nontrivial
point about this process is that it actually involves the deuteron–3P1 transition (a
bound-free transition), and it comes with some surprise that this amplitude tracks
with 3S1–3P1 (a free-free transition) very well.

4 Conclusion

We here demonstrated that by using the Danilov parameters, low energy parity-violating
observables can be cast in a model independent way. This has the great virtue that cal-
culations of different setup, either phenomenological or effective-field-theory-like, can
be compared and checked. Such analyses will be valuable to identify the candidate ex-
periments that could best disentangle the nature of parity-violating nuclear interaction
at low energy.
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