Parity Violation in Two-Nucleon Systems

C.-P. Liu

National Dong Hwa University, Taiwan

5th International Symposium on Symmetries in Subatomic Physics Groningen, The Netherlands Jun. 19, 2012

イロト イポト イヨト イヨト

PV NN Interaction

3 2N Observables

Why is low-energy hadronic weak interaction still of interest?

• The only viable venue to observe the hadronic neutral current interaction:

- FCNC is GIM suppressed
- 4-quark short-range correlation is of fundamental interest:
 - How the strong interaction modify the above interaction?
 - Exchange of other exotic bosons?
- Complementary to the $\Delta S = 1$ sector:
 - Any similar thing to the $\Delta I = 1/2$ rule?
 - So far, exps. seems to indicate $\Delta I = 1$ is suppressed in $\Delta S = 0$ sector.
- Needed for better interpretation of semi-leptonic processes:
 - PV electron-nucleon/nucleus scattering: probing nucleon structure, in particular strangeness
 - Atomic PV experiments: probing $\sin^2 \theta_w$ at extremely low Q^2

Current status: still fuzzy after 50+ years...

• Experimentally:

The signal-to-noise ratio
$$S/N \sim \frac{g_W^2}{M_W^2} / \frac{g_\pi^2}{m_\pi^2} \sim G_F m_\pi^2 \approx 10^{-7}$$

 $A_L^{\vec{p}+\rho}(45 \,\text{MeV}) = (-1.57 \pm 0.23) \times 10^{-7}$
 $A_L^{\vec{p}+\alpha}(46 \,\text{MeV}) = (-3.34 \pm 0.93) \times 10^{-7}$
 $P_\gamma^{18}F(1081 \,\text{keV}) = (12 \pm 38) \times 10^{-5}$
 $A_\gamma^{19}F(110 \,\text{keV}) = (-7.4 \pm 1.9) \times 10^{-5}$
 $A_L^{\vec{n}+137}La(0.734 \,\text{eV}) = (9.8 \pm 0.3) \times 10^{-2}$
 $A_\gamma^{180}\text{Hf}(501 \,\text{keV}) = (-1.66 \pm 0.18) \times 10^{-2}$

- Theoretically:
 - The non-perturbative QCD at low energies
 - The difficult nuclear many-body problems
- Can we understand the PV NN interaction as we do for the PC one?
- Wish list: $h_{\pi NN}^{(1)}$ (as $g_{\pi NN}$), PV scattering lengths ($a_s^{pp,nn,np}, a_t$), etc. (Have to be very economic!)

3 2N Observables

イロト イポト イヨト イヨト

S–*P* Amplitudes: $\langle P|H_{p}|S \rangle$ (1st-order Born Approx.)

• **Basic idea:** At low energies, only *S*-waves and their *P*-wave admixtures substantially contribute to PV observables (Danilov 65, 71), and there are 5 independent ones:

Transition	$I \leftrightarrow I'$	ΔI	n-n	n-p	р-р	Amp.
$^{3}S_{1} \leftrightarrow^{1}P_{1}$	$0\leftrightarrow 0$	0				u
		0	\checkmark			<i>v</i> ⁰
$^{1}S_{0} \leftrightarrow^{3} P_{0}$	$1 \leftrightarrow 1$	1	\checkmark		\checkmark	<i>v</i> ¹
		2	\checkmark			<i>v</i> ²
$^{3}S_{1} \leftrightarrow ^{3}P_{1}$	$0 \leftrightarrow 1$	1				W

- Generalization: Approximate finite nuclei as nuclear matter, and applying the Bethe-Goldstone eqn. to obtain an effective PV interaction for many-body problems (Desplanques and Missimer 78, 80)
- Note: Single out pion exchange from the ${}^3S_1 \leftrightarrow {}^3P_1$ amplitude provides a better fit.

Meson Exchange Picture

Hp based on OME (DDH potential)

$$\begin{split} H_{\rho} &= \frac{1}{2 \, m_{N}} \left\{ g_{\pi} \, h_{\pi}^{1} / (2 \, \sqrt{2}) \, \tau_{\times}^{z} \, \vec{\sigma}_{+} \cdot \vec{y}_{\pi-}(\vec{r}) \right. \\ &\left. - g_{\rho} \, (h_{\rho}^{0} \, \vec{\tau}_{1} \cdot \vec{\tau}_{2} + h_{\rho}^{1} \, \tau_{+}^{z} + h_{\rho}^{2} \, \tau^{zz}) \, (\vec{\sigma}_{-} \cdot \vec{y}_{\rho+} + \mu_{\rho} \, \vec{\sigma}_{\times} \cdot \vec{y}_{\rho-}) \right. \\ &\left. - g_{\omega} \, (h_{\omega}^{0} \, 1 + h_{\omega}^{1} \, \tau_{+}^{2}) \, (\vec{\sigma}_{-} \cdot \vec{y}_{\rho+} + \mu_{\omega} \, \vec{\sigma}_{\times} \cdot \vec{y}_{\rho-}) \right. \\ &\left. - \left(g_{\omega} \, h_{\omega}^{1} - g_{\rho} \, h_{\rho}^{1} \right) \, \tau_{-}^{z} \, \vec{\sigma}_{+} \cdot \vec{y}_{\rho+} - g_{\rho} \, h_{\rho}^{\prime} \, \vec{\sigma}_{+} \cdot \vec{y}_{\rho-} \right\} \end{split}$$

with $\vec{y}_{x\pm}(\vec{r}) \equiv [\vec{\rho}_{1} - \vec{\rho}_{2} \, f_{m,\Lambda_{m}}(r)]_{\pm}$

Note: Two commonly-used sets of strong parameters:

w

	g_π	$g_ ho$	g_ω	$\mu_{ ho}$	μ_{ω}	$f_{m,\Lambda_m}(r)$
DDH-best	13.45	2.79	8.37	4.70	0.88	Bare Yukawa ($\Lambda_m \rightarrow \infty$)
DDH-adj.	13.22	3.25	15.85	7.10	1.00	Modified Yukawa

Predictions for ₱ Meson-Nucleon Couplings (7 in total)

- Calculations by DDH (Desplanques, Donoghue, and Holstein, '80), DZ (Dubovik and Zenkin, '86), FCDH (Feldman, Crawford, Dubach, and Holstein, '91) are based on quark models, KM (Kaiser and Meissner, '88-'89) used the chiral soliton model
- h'_{ρ}^{1} term is usually ignored, so leaving 6 $\not\!\!\!P$ couplings to be checked by exps.
- QCD sum rule calculations of h_{π}^1 give 3×10^{-7} (Henley, Hwang, and Kisslinger, '98, formerly 2×10^{-8}) and 3.4×10^{-7} (Lobov, '02)
- Lattice QCD calculations of h_{π}^1 (should be similar to g_{π} but with a shorter range) are proposed (Beane and Savage, '02: matching PQQCD to PQChPT)

Two Major Puzzles

- The ¹⁸F is performed by five different groups, the theoretical calculation (Haxton, '85) is thought to be reliable (?)
- Anapole constraints worsen the consistency.

Carlson, Schiavilla, Brown, and Gibson, '02

- *p p* scattering @ 13.6, 45, and 221
 MeV where A_L depends on a
 linear combination of h_ρ and h_ω
- h_ω is marginally consistent with the DDH range [-12.2, 6.5] (CPL, Hyun, and Desplanques, '06)

Effective Field Theory

ChPT is extended to the PV sector at O(Q) (Zhu, Maekawa, Holstein, Ramsey-Musolf, and van Kolck, '05) and the proposed form is characterized by:

- (b) SR: 4F contact int. for integrating out heavy degrees of freedom Has 5 genuine LECs (superficially has 10) which correspond to the 5 *S*–*P* amplitudes.
- (c&d) MR&LR: Due to TPE and OPE Introduces the PV π -N coupling, h_{π}^1 , and a two-body current term \bar{c}_{π} .

The hope is too carry out a series of low-energy experiments so that these LO parameters can be well constrained!

イロト イ団ト イヨト イヨト

Solving Wave Functions and Calculating Observables

 PC wave functions are obtained by solving the Lippman-Schwinger or Schrödinger equations for scattering or bound states

$$\begin{split} (E - H_0 + V^{\mathrm{PC}} \mp i\varepsilon) |\psi\rangle^{(\pm)} &= 0, \\ (E_B + H_0 + V^{\mathrm{PC}}) |\psi\rangle_B &= 0. \end{split}$$

• PV admixtures are obtained by 1st-order Born approximation (solving the inhomogeneous differential equations)

$$\begin{split} (E - H_0 - V^{\text{PC}} \mp i\varepsilon) |\widetilde{\psi}\rangle^{(\pm)} &= V^{\text{PV}} |\psi\rangle^{(\pm)} , \\ (E_B + H_0 + V^{\text{PC}}) |\widetilde{\psi}\rangle_B &= -V^{\text{PV}} |\psi\rangle_B , \end{split}$$

.

Different Calculation Schemes

- Phenomenological V^{PC} (AV18, CD-Bonn, Nijmegen etc.) and V^{PV} (DDH etc.)
 - Most state-of-the-arts few- and many-body calculations are still performed in such ways
 - Still do not reach a consistent phenomenological V^{PV}
- Phenomenological V^{PC} and EFT V^{PV} (hybrid approach)
 - Have quality wave functions, general operators, and link of $V_m^{OME} V_{SR}^{EFT}$ (by $\lim_{m \to \infty} m^2 e^{-mr} / (4 \pi r) = \delta(r) / r^2$).
 - Not fully consistent
- EFT V^{PC} and V^{PV}
 - Treat pions perturbatively: no regulator needed but with limited range of applicability (p/m_{π})
 - Treat pions nonperturbatively: larger range of applicability (p/Λ) but involve high-momentum cut-off

Depending on schemes, the results may have model and/or cutoff dependence. Can they be put on the same page?

Determining the Danilov Parameters

The dimensionless Danilov parameters are extracted from the zero-energy S-P amplitudes by:

$$\begin{split} \bar{\lambda}_{s}^{(pp,nn,np)} &\propto \frac{1}{p} e^{-i(\delta_{1}+\delta_{0})} \langle^{3}P_{0} | V^{\mathrm{PV}} |^{1}S_{0} \rangle_{E \to 0}^{(pp,nn,np)} \\ \bar{\lambda}_{t} &\propto \frac{1}{p} e^{-i(\delta_{1}+\delta_{0})} \langle^{1}P_{1} | V^{\mathrm{PV}} |^{3}S_{1} \rangle_{E \to 0} \\ \bar{\rho}_{t} &\propto \frac{1}{p} e^{-i(\delta_{1}+\delta_{0})} \langle^{3}P_{1} | V^{\mathrm{PV}} |^{3}S_{1} \rangle_{E \to 0} \quad \text{(without OPE)} \end{split}$$

- At low energy, the energy dependence of *S*-*P* amplitudes is well approximated by *pe<sup>i(δ₀+δ₁)*.
 </sup>
- The long-ranged OPE only contributes to the ${}^{3}P_{1} {}^{3}S_{1}$ transition, and this is not included in \bar{p}_{t} .
- These parameters are physical, i.e., model- and/or cutoff-independent.
- In a typical calculation which specifies some model (AV18, CD-Bonn, etc) and/or cutoffs (bare/modified Yukawa in meson exchange models, mass cutoffs in EFT potential), its expression is model- and/or cutoff-dependent.

Expressing Observables in a Physical Way

- Step 1 Recast an observable in terms of the Danilov parameters.
- Step 2 Examine if the error is small.
 - Yes This implies:
 - S–P transitions dominate the observables.
 - Inergy dependence is in the coefficients.
 - No This usually implies higher partial waves can not be ignored and higher orders in EFT are needed (which we try to avoid, at least for the moment).
- Step 3 Vary model and/or cutoff to see if consistency is reached.
 - Yes The observable is reliably expressed in terms of Danilov parameters and h_{π}^{1} .

Background PV NN Interaction 2N Observables Summary

Example1: Longitudinal Asymmetry A_L in $\vec{p}p$ Scattering

At 13.6 and 45 MeV, the hybrid calculations (CPL, 2007) give

		$A_L imes 10^3$				
		D_v^{pp}	\widetilde{D}_{v}^{pp}	$C_{2}^{2\pi}$		
	bare	-1.984	-2.471	4.000		
13.6	mod	-1.402	-1.614	1.876		
	bare	-3.781	-4.377	6.847		
45	mod	-2.652	-2.797	2.712		

• Danilov parameter $\bar{\lambda}_{s}^{pp}$ is

$$\begin{split} \bar{\lambda}_{s}^{pp} &= 5.507 \times 10^{-3} \left(\widetilde{D}_{v}^{pp} + 0.789 \, D_{v}^{pp} - 1.655 \, \widetilde{C}_{2}^{2\pi} \right) \quad \text{(bare)} \\ &= 3.628 \times 10^{-3} \left(\widetilde{D}_{v}^{pp'} + 0.849 \, D_{v}^{pp'} - 1.260 \, \widetilde{C}_{2}^{2\pi'} \right) \quad \text{(mod)} \end{split}$$

The physical expression is

$$A_L^{\bar{\rho}\rho}(13.6\,\text{MeV}) = -0.449\,\bar{\lambda}_s^{\rho\rho} + (-0.035\,D_v^{\rho\rho} - 0.088\,\widetilde{C}_2^{2\pi}) \times 10^{-3}$$
 (bare)

$$= -0.445 \bar{\lambda}_{s}^{pp'} + (-0.032 D_{v}^{pp'} - 0.157 \widetilde{C}_{2}^{2\pi'}) \times 10^{-3} \qquad (\text{mod})$$

$$A_L^{\bar{\rho}p}(45\,\text{MeV}) = -0.795\,\bar{\lambda}_s^{pp} + (-0.329\,D_v^{pp} - 0.395\,\widetilde{C}_2^{2\pi}) imes 10^{-3}$$
 (bare)

$$= -0.771 \,\overline{\lambda}_s^{pp'} + (-0.276 \, D_v^{pp'} - 0.813 \, \widetilde{C}_2^{2\pi'}) \times 10^{-3} \qquad (\text{mod})$$

Background PV NN Interaction 2N Observables Summary

Example2: Photon Asymmetry A_{γ} in $\vec{n} + p \rightarrow d + \gamma$

• For NPDGamma with thermal neutron ($E \cong 0.025 \, eV$), the hybrid calculations (CPL, 2007) give

	$^{3}S_{1} - ^{3}P_{1}(\times 10^{-3})$			$\mathscr{D}^{-3}P_{1}(imes 10^{-3})$				
	D _w) \widetilde{D}_{W}	\widetilde{C}_6^{π}	$\widetilde{C}_2^{2\pi}$	$D_v^{\rho\rho}$	$\widetilde{D}_{V}^{ ho ho}$	\widetilde{C}_6^{π}	$\widetilde{C}_2^{2\pi}$
bare	-0.108	-0.185	-0.133	0.321	-0.066	-0.103	-0.139	0.193
mod	-0.076	-0.118	-0.132	0.172	-0.048	-0.069	-0.138	0.128

• Danilov parameter $\bar{\rho}_t$ is

$$\begin{split} \bar{\rho}_t &= 3.108 \times 10^{-3} \left(\tilde{D}_w + 0.604 \, D_w - 1.771 \, \tilde{C}_6^{2\pi} \right) \quad \text{(bare)} \\ &= 2.003 \times 10^{-3} \left(\tilde{D}'_w + 0.664 \, D'_w - 1.586 \, \tilde{C}_6^{2\pi'} \right) \quad \text{(mod)} \end{split}$$

• The physical expression is

$$\begin{aligned} A_{\gamma}^{\bar{n}p}(\text{th.}) &= -0.093 \,\bar{\rho}_t - 0.272 \,\tilde{C}_6^{\pi} + (0.003 \,\tilde{C}_6^{2\pi}) \times 10^{-3} \\ &= -0.093 \,\bar{\rho}_t' - 0.270 \,\tilde{C}_6^{\pi'} + (0.004 \,\tilde{C}_6^{2\pi'}) \times 10^{-3} \end{aligned} \tag{bare}$$

• Assuming naturalness, $\bar{\rho}_t/\widetilde{C}_6^{\pi} \sim 0.1$, $A_{\gamma}^{\vec{n}\rho}$ (th.) $\sim -0.1 \ h_{\pi}^1$.

Background

- PV NN Interaction
- 3 2N Observables

イロト イポト イヨト イヨト

The Search Program in Few-Nucleon Systems

The non-exhaustive candidate list and database:

Observables	Theory	Experiment (×10 ⁷)
$A_{L}^{\vec{p}p}$ (13.6 MeV)	$-0.45 \lambda_s^{pp}$	-0.93±0.21 (Bonn)
<i>A^{pp}</i> (45 MeV)	$-0.78 \lambda_s^{pp}$	-1.57 ± 0.23 (SIN)
$\frac{d}{dz}\phi_n^{\vec{n}p}$ (th.) $ _{rad/m}$	$2.50 \lambda_s^{np} - 0.57 \lambda_t + 1.41 \rho_t + 0.29 \widetilde{C}_6^{\pi}$	SNS?
P_{γ}^{np} (th.)	$-0.16 \lambda_s^{np} + 0.67 \lambda_t$	(1.8±1.8), SNS?
$A_L^{\bar{\gamma}d}$ (1.32 keV)	Same as above	HIGS2?
$A_{\gamma}^{\vec{n}p}$ (th.)	$-0.09 \rho_t - 0.27 \widetilde{C}_6^{\pi}$	(-1.8±1.9) <mark>SNS</mark>
$A_{\gamma}^{\vec{n}d}$ (th.)	$(0.59 \lambda_s^{nn} + 0.51 \lambda_s^{np} + 1.18 \lambda_t + 1.42 \rho_t)^{[1]}$	(0.6±2.1), SNS?
$A_L^{\vec{p}\alpha}$ (46 MeV)	$(-0.48 \lambda_s^{pp} - 0.24 \lambda_s^{np} - 0.54 \lambda_t - 1.07 \rho_t)^{[1]}$	-3.3 ± 0.9 (SIN)
$\frac{d}{dz}\phi_n^{\vec{n}lpha}(\text{th.}) _{\text{rad/m}}$	$(1.2\lambda_s^{nn} + 0.6\lambda_s^{np} + 1.34\lambda_t - 2.68\rho_t)^{[1]}$	(1.7±9.2) NIST
[2]	[2]	[2]

Expressions should be updated.

Other processes like n+d, n+d→t+γ, n+t, n+t→α+γ, γ+t→n+2p, γ+³He→n+d, γ+α→2d etc. are also considered and/or calculated in certain schemes.