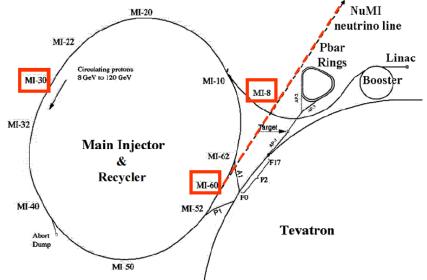
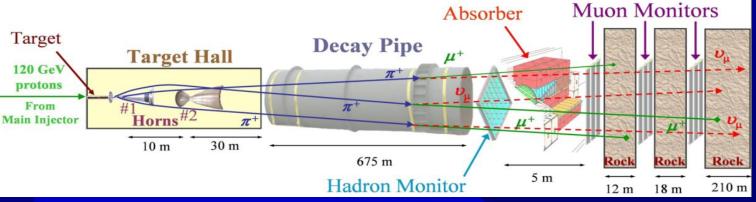


The NOvA Experiment

Ralf Ehrlich (for the NOvA collaboration) University of Virginia June 21st, 2012

Overview

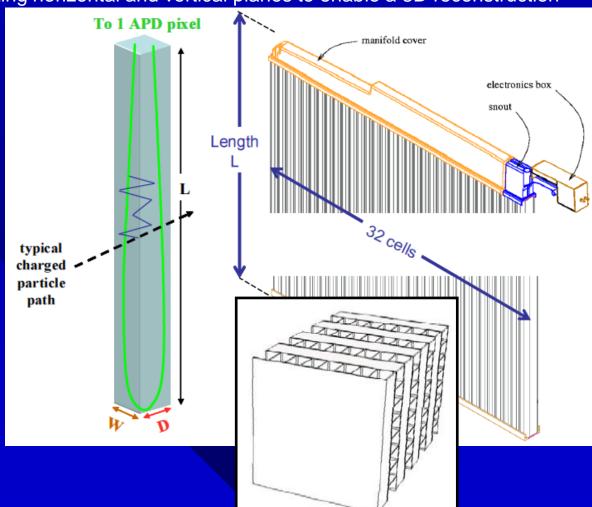

- The name
 - **N N**uMI = Neutrinos at the Main Injector
 - O Off axis
 - $v v_e$
 - A Appearance
- 150+ Collaborators in
 25 Institutions from 5 Countries
- The NOvA experiment
 - long baseline neutrino experiment
 - Designed to look for $v_{\mu} \rightarrow v_{e}$ oscillations
 - consists of two detectors
 - The Near Detector located at Fermilab
 - The Far Detector located in Northern Minnesota
 - 810 km away from each other



The Neutrino Source

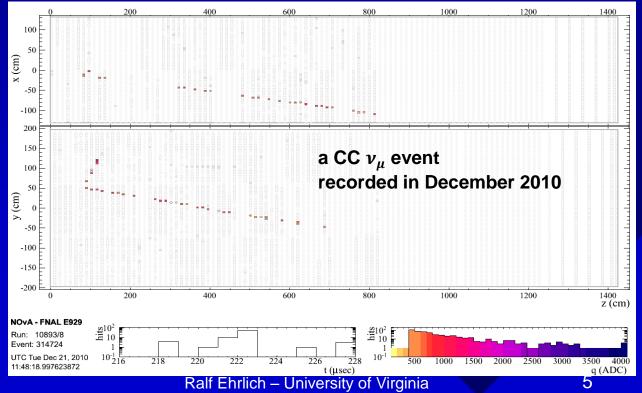
- 120 GeV protons are extracted from Fermilab's Main Injector and get fired onto a graphite target
- Results in the creation of charged particles

 in particular pions
- A magnetic horn focuses the charged pions towards the Soudan Mine (MINOS Far Detector)
- The pions decay into (anti-) muons and (anti-) muon-neutrinos traveling in approximately the same direction
- Reversal of the horn current is used to switch between neutrino and anti-neutrino mode

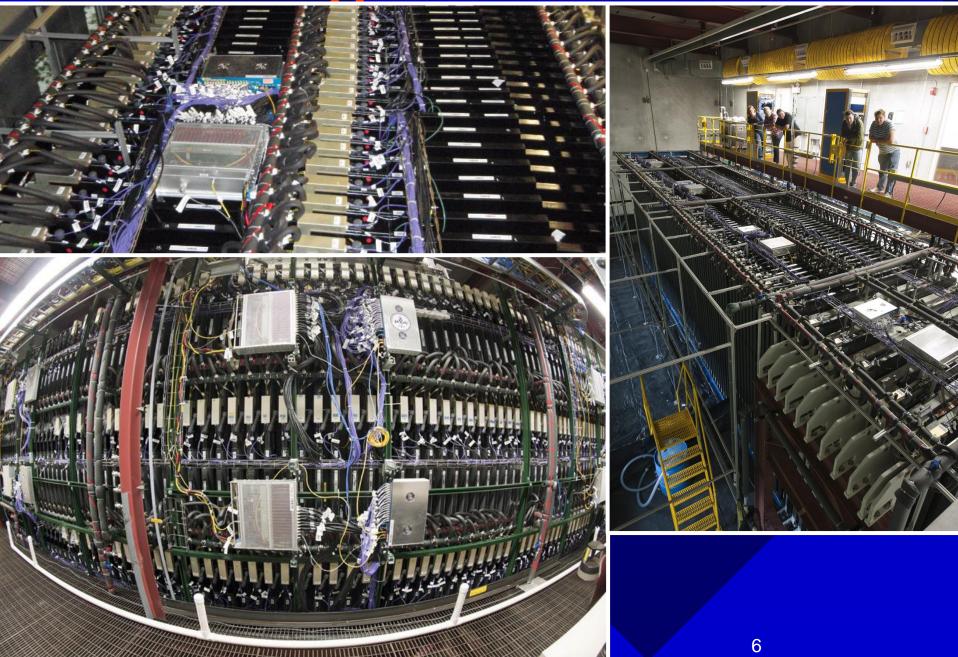

- Currently shut down for an upgrade until April 2013
 - will deliver $4.9 \cdot 10^{13}$ protons every 1.3 s for 10 μ s
 - will have a beam power of 700 kW (was 380 kW before shot down)

Detector Design

- The detectors are built of plastic cells
 - 4.0 cm x 6.7 cm x 15 m (Near Detector cells are shorter)
 - 32 cells form one module
 - modules arranged in alternating horizontal and vertical planes to enable a 3D reconstruction
- Cells are filled with liquid scintillator
- Charged particles due to neutrino interactions causes the scintillator to emit light
- This light gets captured by optical fibers
- Optical fibers transmit the light to

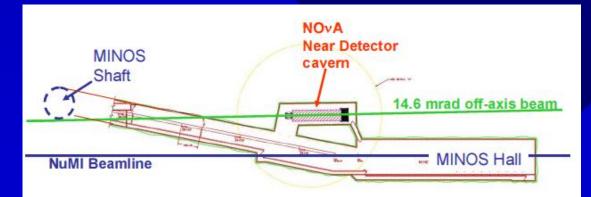

Avalanche Photo Diodes (APD)

- 85% quantum efficiency
- Operated at 425 V
- Cooled to -15 °C by thermoelectric coolers
- The APD output is digitized at the Front End Boards in the electronics box at the end of manifold covers.



The Prototype Near Detector

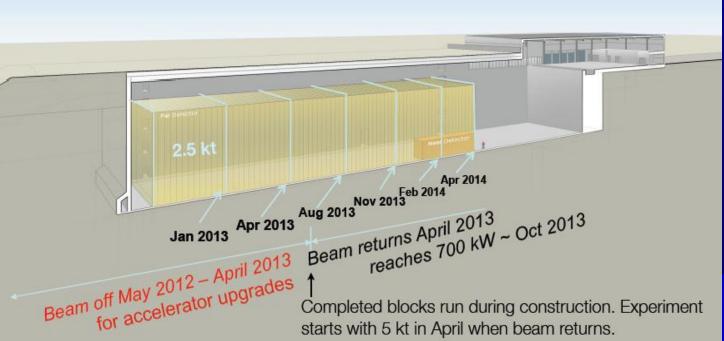
- Prototype detector
 - Built to get some experience before building the "real" Near Detector and Far Detector
 - Has been invaluable for developing of reconstruction algorithms and prototyping the equipment
- Located on the surface at Fermilab 1km away from the target
- Has a "Muon Catcher" made of steel to contain muons from CC interactions
- 16,000 cells, 222 tons
- Status
 - Finished in spring 2011
 - First events recorded in fall 2010



The Prototype Near Detector

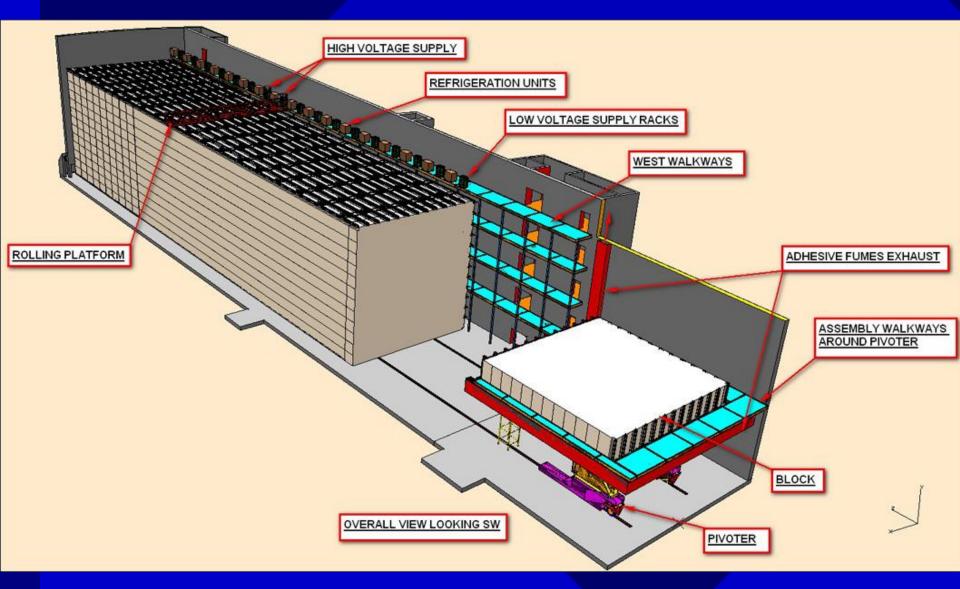
The Near Detector

- The "real" Near Detector
- Located underground at Fermilab 1 km away from the target
- Identical design as the Far Detector except that it is smaller
- Has a "Muon Catcher" made of steel to contain muon tracks from CC interactions
- 20,000 cells, 266 tons
- Status:
 - Construction starts in 2013
 - Construction finished in 2014
- Will be used to measure the v_{μ} flux emitted at the source of the neutrino beam
- Will be used to study background events:
 - v_e contaminations of the neutrino beam
 - neutral current v_{μ} interactions



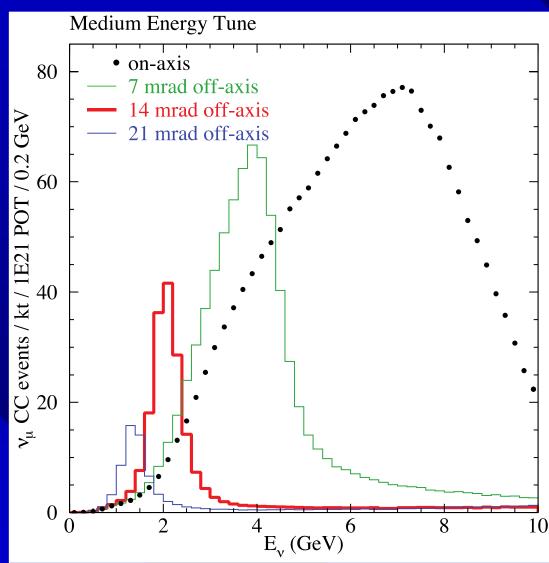
→ N	
Target Hall	MINOS Surface Building
Elevation view along beamline	MINOS shaft 105 m
	NOvA cavern
Plan view	
4 1002 mete	rs 🗕

7


The Far Detector

- Located in Northern Minnesota 810 km away from the neutrino source
- 356,000 cells, 14,000 tons, 15x15x63 m³
- Status:
 - Building dedication in April 2012
 - Block installation will start in summer 2012
 - Construction will be finished in 2014
- Designed to detect the v_e after they oscillated from v_{μ}
- Sits near the first expected $v_{\mu} \rightarrow v_{e}$ oscillation peak

The Far Detector


The Far Detector

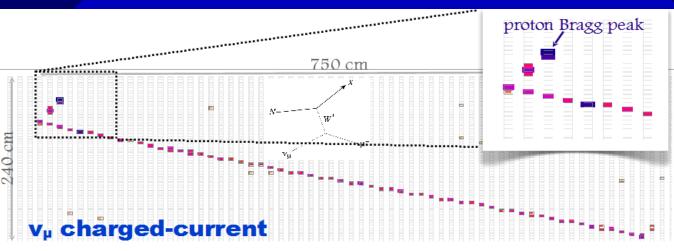
Ralf Ehrlich – University of Virginia

Off Axis Location

- Near and Far Detectors are located 14 mrad away from the beam axis
 - At this angle, the neutrino beam has a narrow energy distribution with a peak around 2 GeV
 - Reduces the background
- The transition probability for $v_{\mu} \rightarrow v_{e}$ is expected to be close to its maximum
 - at this energy (2 GeV) and
 - at this location (810 km away from the neutrino source)
- The neutrino beam goes through the Earth so that we can make use of the matter effects

Neutrino Detection

Typical (simulated)


<u>events</u>

Long μ tracks
Short proton track at the vertex may be visible

- Short electron tracks with EM cascades along the track

- Short proton track at the vertex may be visible

- $\pi^0 \rightarrow \gamma\gamma$ - Identified by gap b/w beginning and end of the γ tracks

 $\frac{\mathbf{v}_{e} \mathbf{charged} - \mathbf{current}}{\mathbf{v}_{e}}$

neutral-current Ralf Ehrlich – University of Virginia

Global status of neutrino oscillation parameters after recent reactor measurements

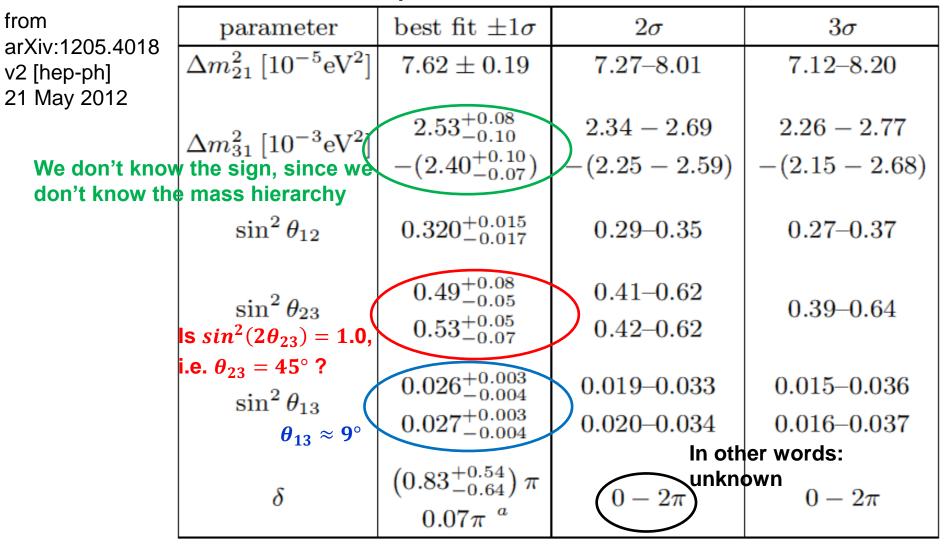
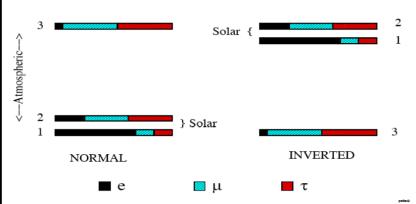


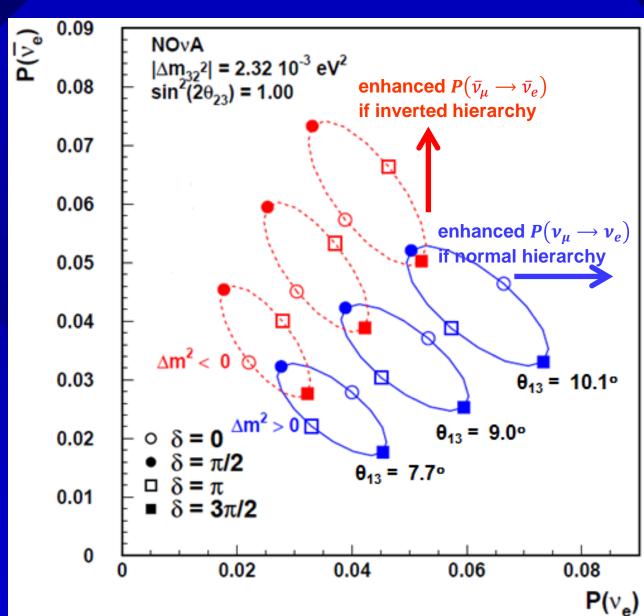
TABLE I: Neutrino oscillation parameters summary. For Δm_{31}^2 , $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, and δ the upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy.

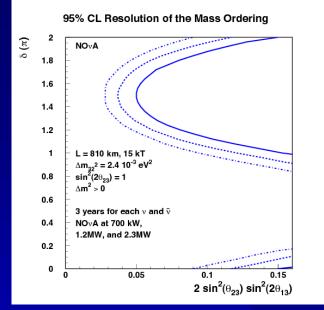
• We measure the appearance of v_e and \bar{v}_e i.e. $P(v_\mu \rightarrow v_e)$ and $P(\bar{v}_\mu \rightarrow \bar{v}_e)$ which are functions of

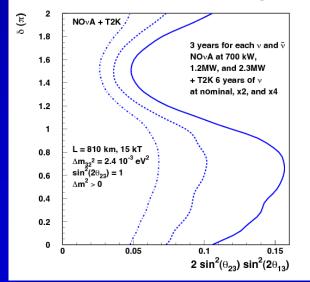

- mixing angles θ_{13} , θ_{23} , θ_{12}
- the CP violating phase δ
- the mass hierarchy, i.e. normal or inverted
- mass squared differences Δm_{31}^2 , Δm_{21}^2 , Δm_{32}^2
- neutrino energy (2 GeV)
- oscillation distance (810 km)
- matter effects
- Approximated probability function

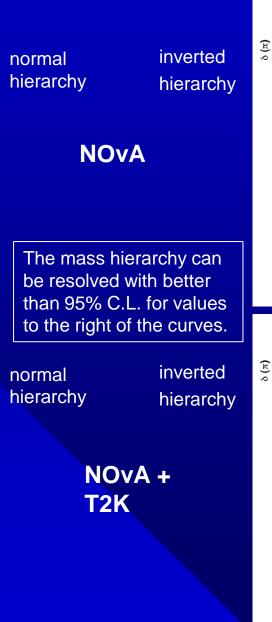
$$- P_{vac} \begin{pmatrix} \nu_{\mu} \rightarrow \nu_{e} \\ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \end{pmatrix} \approx sin^{2}(\theta_{23})sin^{2}(2\theta_{13})sin^{2}(\Delta_{31}) \\ + cos^{2}(\theta_{13})cos^{2}(\theta_{23})sin^{2}(2\theta_{12})sin^{2}(\Delta_{21}) \\ + Jsin(\Delta_{21})sin(\Delta_{31})[cos(\Delta_{32})cos(\delta) \mp sin(\Delta_{32})sin(\delta$$

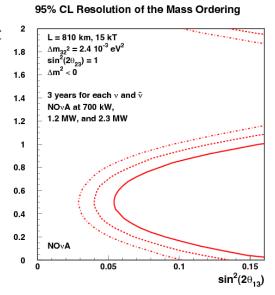
- with $\Delta_{ij} = 1.27 \frac{\Delta m_{ij}L}{E}$ and Δm_{ij} in eV², L in km, and E in GeV
- and $J = cos(\theta_{13})sin(\theta_{12})sin(\theta_{13})sin(\theta_{23})$
- matter effect $P_{matter} \begin{pmatrix} \bar{\nu}_{\mu} \to \bar{\nu}_{e} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{e} \end{pmatrix} \approx \left(1 \pm \frac{E}{6 \text{Gev}}\right) P_{vac} \begin{pmatrix} \nu_{\mu} \to \bar{\nu}_{e} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{e} \end{pmatrix}$

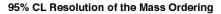

Reversed for inverted mass hierarchy

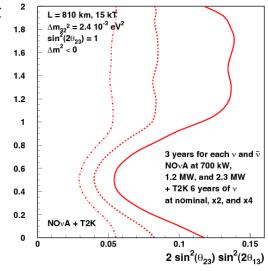



mass hierarchy

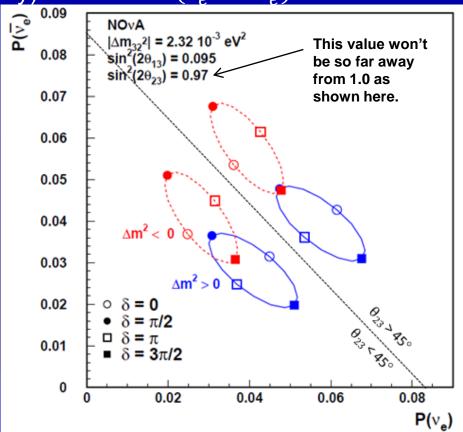

- NOvA measures the appearance probabilities for v_{ρ} and \bar{v}_{ρ}
- The plot show how one may be able to extract θ_{13} , the mass hierarchy and the CP violating phase δ
 - This becomes more difficult for smaller values of θ_{13} due to overlaps of both ellipses
 - Fortunately, θ_{13} may be large according to the latest results
- The plot will look differently if $sin(2\theta_{23}) < 1$




95% CL Resolution of the Mass Ordering



Ralf Ehrlich – University of Virginia


16

 θ_{23} and Δm_{32}^2 can be determined by looking at the ν_{μ} survival probability $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - sin^2(2\theta_{23})sin^2(\Delta_{32})$

with $\Delta_{ij} = 1.27 \frac{\Delta m_{ij}^2 L}{E}$ and Δm_{ij} in eV², L in km, and E in GeV

- This approximation assumes that the ν_{μ} disappearance is mainly caused by $\nu_{\mu} \rightarrow \nu_{\tau}$ (see arXiv:0711.0769v1 [hep-ex])
- P depends on θ_{23} , Δm_{32}^2 , L, E
- *P* can be determined as a function of *E* by comparing the v_{μ} energy spectrum at the ND and FD
 - Since *L* is known, this leaves the two unknown variables θ_{23} and Δm_{32}^2 which can be fitted to *P* to obtain their values However, we only get $sin^2(2\theta_{23})$ and cannot distinguish whether $\theta_{23} > 45^\circ$ or $\theta_{23} < 45^\circ$
 - Requires an excellent energy resolution for muons (as a product of the CC v_{μ} reaction)

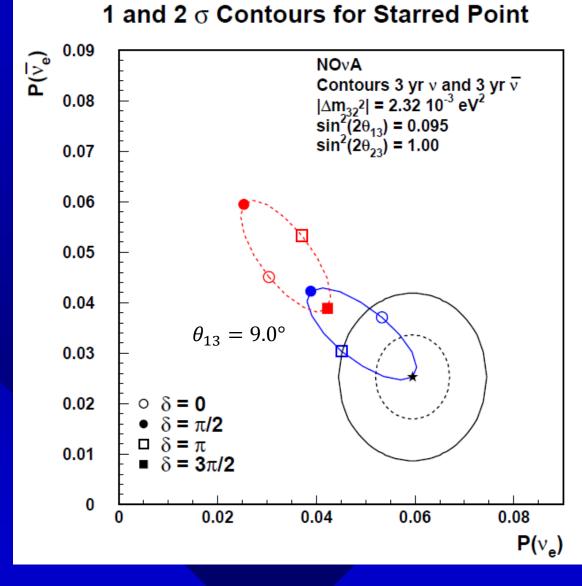
- If $sin^2(2\theta_{23}) < 1 \rightarrow \theta_{23} \neq 45^\circ$
 - We need to determine whether θ_{23} is less or greater than 45°
 - The $P(v_e) P(\bar{v}_e)$ map will look differently
 - Reactor experiments (e.g. Daya Bay) measure $P(\bar{v}_e \rightarrow \bar{v}_e)$ which depends on $sin^2(2\theta_{13})$
 - unlike NOvA which depends on $sin^2(\theta_{23})sin^2(2\theta_{13})$
 - Comparison can be used to determine whether θ_{23} is less or greater than 45°

Other Physics Opportunities

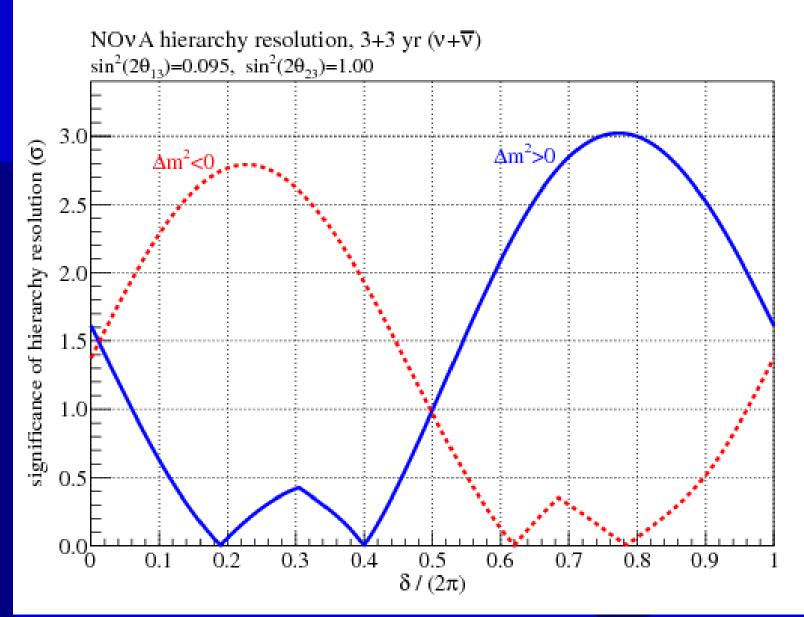
- Magnetic monopoles
 - can be identified as highly ionizing and/or very slow moving particles going through the entire detector
- Supernova neutrinos
 - the detector will be subjected to a larger amount of neutrinos coinciding with a supernova
- Solar WIMPs
 - would result in high energetic neutrino events coming from the direction of the sun

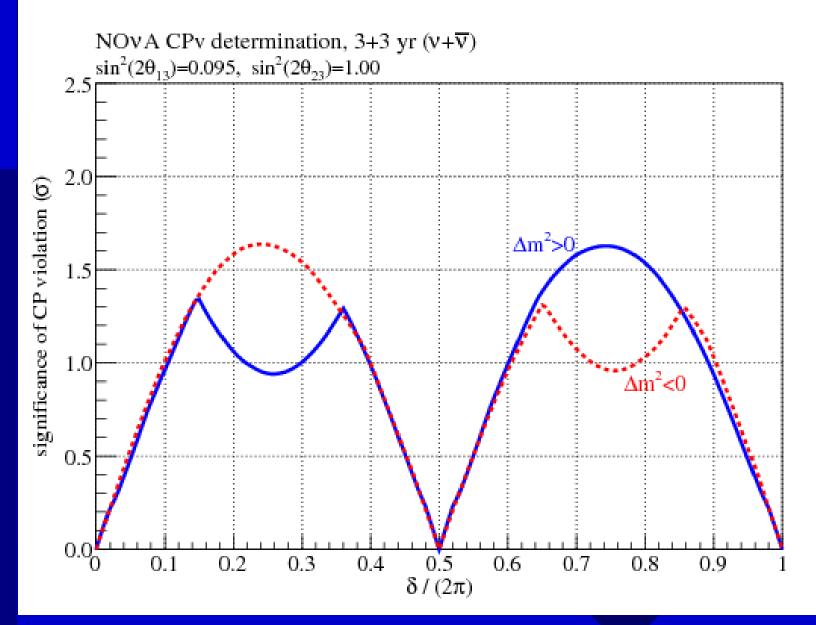
Summary

- Many physics goals can be reached
 - Measuring the neutrino mixing angles θ_{13} , θ_{23}
 - Measuring the mass squared difference Δm_{32}^2
 - Determining the CP violating complex phase δ
 - Determining the mass hierarchy
- Recent θ_{13} results show that it is large, which helps us to reach our physics goals
- The Prototype Near Detector at the surface
 - Has already been running successfully
 - Has provided us with valuable information about the detector construction
- Far Detector construction will begin this summer
 - First events can be recorded as soon as the first block is installed
 - First oscillation events can be observed as soon as the neutrino beam gets turned on in April 2013



Backup Slides


Ralf Ehrlich – University of Virginia


• Example:

- Assume we measure $P(\nu_{\mu} \rightarrow \nu_{e}) = 0.025$ $P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}) = 0.060$
- 3 years in neutrino mode and 3 years in anti-neutrino mode

Ralf Ehrlich – University of Virginia

