Measurement of Permanent Electric Dipole Moments of Proton, Deuteron and Light Nuclei in Storage Rings

> J. Pretz RWTH Aachen/ FZ Jülich on behalf of the JEDI collaboration

SSP2012, Groningen June, 2012

Outline

Electric Dipole Moments (EDMs)

- What is it?
- Why is it interesting?
- What do we know about it?
- How to measure it?

What is it?

Electric Dipole Moments: What is it?

- EDM: Permanent spatial separation of positive and negative charges
- Water molecule: $d = 2 \cdot 10^{-9} e \cdot cm$

- Water molecule can have large dipole moment because ground state has two degenerate states of different parity
- This is not the case for proton.
 Here the existence of a permanent EDM requires both T and P violation, i.e. assuming CPT invariance this implies CP violation:

That makes it interesting!

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

Why is it interesting?

Why is it interesting?

- *CP* violation of Standard Model predicts Proton EDM < 10⁻³¹ e·cm
- This corresponds to a separation of two *u*-quarks from a d-quark by $\approx 10^{-30}$ cm, i.e 10^{-17} of the proton radius!

- Not reachable experimentally in foreseeable future
- Extensions of Standard Model predict EDM as large as 10⁻²⁴ e·cm
- Sources of *CP* outside the realm of SM are needed to explain matter/anti-matter imbalance in universe

What do we know about (hadron) EDMs?

What do we know about (hadron) EDMs?

Particle/Atom	Current Limit/e.cm
Neutron	$< 3 \cdot 10^{-26}$
¹⁹⁹ Hg	$< 3.1 \cdot 10^{-29}$
\rightarrow Proton	$< 7.9 \cdot 10^{-25}$
Deuteron	?
³ He	?

- direct measurement only for neutron
- proton deduced from atomic EDM limit
- no measurement for deuteron (or other nuclei)

History of Neutron EDM

from K. Kirch

Sources of \mathcal{CP} violation

 \mathcal{CP} can have different sources

- Weak Interaction (unobservably small)
- QCD θ term (limit set by neutron EDM measurement)

—— Part of Standard Model ———

sources beyond SM

 \Rightarrow It is important to measure neutron **and** proton **and** deuteron **and** ... EDMs in order to disentangle various sources of \mathcal{CP} violation.

How to measure it?

How to measure it? General Idea:

For **all** edm experiments (neutron, proton, atom, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

Wait for build-up of vertical polarization $s_{\perp} \propto |d|$, then determine s_{\perp} using polarimeter In general: $\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s}$

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$$
$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}, \quad \vec{\mu} = 2(G+1) \frac{e\hbar}{2mc} \vec{S}$$

Several Options:

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$$

$$ec{d} = \eta rac{e\hbar}{2mc}ec{S}, \quad ec{\mu} = 2(G+1)rac{e\hbar}{2mc}ec{S}$$

Several Options:

1 Pure electric ring with $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$, works only for G > 0

$$\vec{\Omega} = rac{e\hbar}{mc} [G\vec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) \vec{v} imes \vec{E} + rac{1}{2}\eta(\vec{E} + \vec{v} imes \vec{B})]$$

$$ec{d}=\etarac{e\hbar}{2mc}ec{S}, \quad ec{\mu}=2(G+1)rac{e\hbar}{2mc}ec{S}$$

Several Options:

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$$

$$ec{d}=\etarac{e\hbar}{2mc}ec{S}, \quad ec{\mu}=2(G+1)rac{e\hbar}{2mc}ec{S}$$

Several Options:

Pure magnetic ring

Required field strength

	$G=rac{g-2}{2}$	<i>p</i> /GeV/c	<i>E_R/MV/m</i>	B_V/T
proton	1.79	0.701	10	0
deuteron	-0.14	1.0	-4	0.16
³ He	-4.18	1.285	17	-0.05

Ring radius ≈ 40 m Smaller ring size possible if $B_V \neq 0$ for proton $E = \frac{GBc\beta\gamma^2}{1 + G\beta^2\gamma^2}$

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 spatterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven Proposal

2. Combined \vec{E}/\vec{B} ring

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Under discussion in Jülich

(design: R. Talman)

Main advantage:

Experiment can be performed at the existing (upgraded) COSY (COoler SYnchrotron) in Jülich on a shorter time scale!

COSY provides (polarized) protons and deuterons with $p = 0.3 - 3.7 \text{GeV}/c \Rightarrow$ Ideal starting point

$$\Omega = \frac{e\hbar}{mc} \left(G\vec{B} + \frac{1}{2} \eta \vec{v} \times \vec{B} \right)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization components is || to momentum, 50% of the time it is anti-||.

$$\Omega = \frac{e\hbar}{mc} \left(G\vec{B} + \frac{1}{2} \eta \vec{v} \times \vec{B} \right)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization components is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

$$\Omega = \frac{e\hbar}{mc} \left(G\vec{B} + \frac{1}{2} \eta \vec{v} \times \vec{B} \right)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization components is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$:

 $E^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^{*} \neq 0 \rightarrow$ mag. mom. is influenced

 \Rightarrow net EDM effect can be observed!

Summary of different options

	\odot	\odot
1.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
2.) combined ring (Jülich)	works for $p, d, {}^{3}\text{He}, \dots$	both <i>Ē</i> and <i>B</i> required
 pure magnetic ring (Jülich) 	existing (upgraded) COSY ring can be used , shorter time scale	lower sensitivity

Statistical Sensitivity

 $\sigma \approx \frac{\hbar}{\sqrt{\textit{NfT}\tau_{\textit{p}}}\textit{PEA}}$

Ρ	beam polarization	0.8
$ au_{p}$	Spin coherence time/s	1000
Е	Electric field/MV/m	10
Α	Analyzing Power	0.6
Ν	nb. of stored particles/cycle	$4 imes 10^7$
f	detection efficiency	0.005
Т	running time per year/s	10 ⁷

⇒ $\sigma \approx 10^{-29} e \cdot cm/year$ (for magnetic ring $\approx 10^{-24} e \cdot cm/year$) Expected signal \approx 3nrad/s (for $d = 10^{-29} e \cdot cm$) (BNL proposal)

Systematics

One major source:

Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e \cdot cm$ in a field of E = 10 MV/m

• This corresponds to a magnetic field:

$$B_r = rac{dE_r}{\mu_N} = rac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} pprox 3 \cdot 10^{-17} T$$

Solution: Use two beams running clockwise and counter clockwise, Separation of the two beams is sensitive to B_r

Main Challenges

- Spin Coherence Time (SCT) \approx 1000s
- Beam positioning \approx 10nm (relative between CW-CCW)
- Polarimetry on 1 ppm level
- Field Gradients \approx 10MV/m

Polarimeter

Principle: Particles hit a target: Left/Right asymmetry gives information on EDM Up/Down asymmetry gives information on g-2

Cross Section & Analyzing Power for deuterons

Polarimeter

Results on Spin Coherence Time (SCT)

Spins decohere during storage time very preliminary results form Cosy run May 2012 using correction sextupole

⇒ SCT of ≈ 200s already reached
 (Ed. Stephenson)

pEDM at Brookhaven

Time-lines:

2013-2014	R&D preparation
2014	final ring design
2015-2017	ring/beam-line construction
2017-2018	Installation

Stepwise approach of JEDI project in Jülich JEDI = Jülich Electric Dipole Moment Investigation (Collaboration since March 2012, \approx 70 members, still growing)

1	Spin coherence time studies	COSY
	Systematic Error studies	
2	COSY upgrade	COSY
	first direct measurement	COSY
	at 10 ^{−24} <i>e</i> · cm	
3	Build dedicated ring for	
	<i>p</i> , <i>d</i> and ³ He	
4	EDM measurement	Dedicated
	at 10 ⁻²⁹ <i>e</i> ⋅ cm	ring

Time scales: Steps 1 and 2 ${<}5$ years Steps 3 and 4 ${>}5$ years

Storage Ring EDM Efforts

≣ •⁄) ۹. (∾ 35/37

Summary

- EDM of (charged) hadrons are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- Measurements of p,d and ³He needed in addition to neutron
- efforts at Brookhaven and Jülich to perform such measurements

EDM Workshop at ECT* Trento

EDM Searches at Storage Rings

October 1-5, 2012 http://www.ectstar.eu

Organizers: Frank Rathmann (Jülich) Hans Ströher (Jülich) Andreas Wirzba (Jülich)

Mei Bai (BNL) William Marciano (BNL) Yannis Semertzidis (BNL)