Weighing the antiproton: precision laser spectroscopy of antiprotonic helium atoms

Ryugo S. Hayano
R.S. Hayano, et al., Reports on Progress in Physics 70, 1995-2065 (2007)

ATOMIC SPECTROSCOPY AND COLLISIONS USING SLOW ANTIPROTONS

ASACUSA Collaboration

$\stackrel{\downarrow}{\text { CPT test }}$
 $\stackrel{\downarrow}{\text { CPT test }}$
 \downarrow
 CPT theorem
 \downarrow

proton-electron mass ratio

$\overline{\mathrm{p}} \mathrm{He}$ laser spectroscopy

Frequency

$$
\begin{aligned}
& \nu_{n, \ell \rightarrow n^{\prime}, \ell^{\prime}}=R c \frac{m_{\bar{p}}^{*}}{m_{e}} Z_{\text {eff }}^{2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)+\text { OED } \\
& \overline{\mathbf{p}} \text { - e mass ratio } \\
& \text { Theory }
\end{aligned}
$$

Serendipitous discovery of $\overline{\mathrm{p}}$ longevity in helium (KEK Japan)

消喊時間分布

＂DATS＂

Delayed Annihilation Time Spectra

T．Yamazaki et al．，PS205

"DATS" measured at LEAR

Early days of LEAR PS205

Established $\overline{\mathrm{p}}$ longevity in gas, liquid, solid helium-3 \& helium-4

Lifetime 3~4 4 s, formation probability ~3\%

分光

Early days of laser spectroscopy PS205

$$
\overline{\mathrm{p}}^{4} \mathrm{He}{ }^{++} \text {ion }
$$

$$
\overline{\mathrm{p}}^{4} \mathrm{He}^{++} \text {ion }
$$

$\overline{\mathrm{p}}^{4} \mathrm{He}$ atom

$$
\overline{\mathrm{p}}^{4} \mathrm{He}^{++} \text {ion }
$$

$$
\overline{\mathrm{p}}^{4} \mathrm{He}^{+} \text {atom }
$$

An example, $(\mathrm{n}, \mathrm{l})=(39,35) \rightarrow(38,34)$

N. Morita et al, Phys. Rev. Lett. 72 (1994) 1180.

An example, $(\mathrm{n}, \mathrm{I})=(39,35) \rightarrow(38,34)$

N. Morita, et al., Phys. Rev. Lett. 72 (1994) 1180.

理論

Theory

Early days of PS205

$(39,35) \rightarrow(38,34)$ Wavelength [nm]

Theory precision ~ 1000 ppm

~300 larger than the laser bandwidth of $\sim 3 \mathrm{GHz}$

$(37,34) \rightarrow(36,33)$ Wavelength [nm]
Took weeks to hit the resonance
F.E. Maas et al., Phys. Rev. A 52 (1995) 4266.

Korobov revolution

Variational calculation of energy levels in $\boldsymbol{p} \mathrm{He}^{+}$molecular systems

V. I. Korobov
Joint Institute for Nuclear Research, Dubna, Russia
(Received 29 April 1996)

Theory precision ~ 50 ppm
Shifted in a systematic way
< hour to find a new resonance

Theory - non-relativistic H

$$
\begin{aligned}
H & =T+V \\
& =-\frac{1}{2 \mu_{1}} \nabla_{\mathbf{R}}^{2}-\frac{1}{2 \mu_{2}} \nabla_{\mathbf{r}}^{2}-\frac{1}{M_{\mathrm{He}}} \nabla_{\mathbf{R}} \cdot \nabla_{\mathbf{r}}-\frac{2}{R}-\frac{2}{r}+\frac{1}{|\mathbf{R}-\mathbf{r}|}, \\
\mu_{1}^{-1}= & M_{\mathrm{He}}^{-1}+M_{X}^{-1}, \quad \mu_{2}^{-1}=M_{\mathrm{He}}^{-1}+m_{e}^{-1}
\end{aligned}
$$

Complex coordinate rotation (CCR) method

Careful treatment of Auger decay is needed

CCR calculates complex eigen values

add relativistic correction ($\sim 100 \mathrm{ppm}$)

V.I. Korobov, D.D. Bakalov, Phys. Rev. Lett. 79 (1997) 3379.

$$
\begin{aligned}
& H=T+V \\
& =-\frac{1}{2 \mu_{1}} \boldsymbol{\nabla}_{\mathbf{R}}^{2}-\frac{1}{2 \mu_{2}} \boldsymbol{\nabla}_{\mathbf{r}}^{2}-\frac{1}{M_{\mathrm{He}}} \boldsymbol{\nabla}_{\mathbf{R}} \cdot \nabla_{\mathbf{r}}-\frac{2}{R}-\frac{2}{r}+\frac{1}{|\mathbf{R}-\mathbf{r}|}, \\
& \mu_{1}^{-1}=M_{\mathrm{He}}^{-1}+M_{X}^{-1}, \quad \mu_{2}^{-1}=M_{\mathrm{He}}^{-1}+m_{e}^{-1}, \\
& E_{r c}=\alpha^{2}\left\langle-\frac{\mathbf{p}_{e}^{4}}{8 m_{e}^{3}}+\frac{4 \pi}{8 m_{e}^{2}}\left[Z_{\mathrm{He}} \delta\left(\mathbf{r}_{\mathrm{He}}\right)+Z_{p}^{-} \delta\left(\mathbf{r}_{p}^{-}\right)\right]\right\rangle .
\end{aligned}
$$

add self energy ($\sim 15 \mathrm{ppm}$)

$$
\begin{aligned}
H=T+V \\
=-\frac{1}{2 \mu_{1}} \nabla_{\mathrm{R}}^{2}-\frac{1}{2 \mu_{2}} \nabla_{\mathrm{r}}^{2}-\frac{1}{M_{\mathrm{He}}} \nabla_{\mathrm{R}} \cdot \nabla_{\mathrm{r}}-\frac{2}{R}-\frac{2}{r}+\frac{1}{|\mathbf{R}-\mathbf{r}|}, \\
\mu_{1}^{-1}=M_{\mathrm{He}}^{-1}+M_{X}^{-1}, \quad \mu_{2}^{-1}=M_{\mathrm{He}}^{-1}+m_{e}^{-1},
\end{aligned} \underbrace{E_{s e}=}_{E_{r c}=\alpha^{2}\left\langle-\frac{\mathbf{p}_{e}^{4}}{8 m_{e}^{3}}+\frac{4 \pi}{8 m_{e}^{2}}\left[Z_{\mathrm{He}} \delta\left(\mathbf{r}_{\mathrm{He}}\right)+Z_{\bar{p}}^{-} \delta\left(\mathbf{r}_{p}^{-}\right)\right]\right\rangle} \begin{aligned}
& \frac{4 \alpha^{3}}{3 m_{e}^{2}}\left[\ln \frac{1}{\alpha^{2}}-\ln \frac{k_{0}}{R_{\infty}}+\frac{5}{6}-\frac{3}{8}\right]\left\langle Z_{\mathrm{He}} \delta\left(\mathbf{r}_{\mathrm{He}}\right)+Z_{p}^{-} \delta\left(\mathbf{r}_{p}^{-}\right)\right\rangle \\
& +\frac{4 \alpha^{4}}{3 m_{e}^{2}}\left[3 \pi\left(\frac{139}{128}-\frac{1}{2} \ln 2\right)\right]\left\langle Z_{\mathrm{He}}^{2} \delta\left(\mathbf{r}_{\mathrm{He}}\right)+Z_{\bar{p}}^{2} \delta\left(\mathbf{r}_{p}^{-}\right)\right\rangle \\
& -\frac{4 \alpha^{5}}{3 m_{e}^{2}}\left[\frac{3}{4}\right]\left\langle Z_{\mathrm{He}}^{3} \ln ^{2}\left(Z_{\mathrm{He}} \alpha\right)^{-2} \delta\left(\mathbf{r}_{\mathrm{He}}\right)\right. \\
& \left.+Z_{\bar{p}}^{3} \ln ^{2}\left(Z_{p}^{-} \alpha\right)^{-2} \delta\left(\mathbf{r}_{p}^{-}\right)\right\rangle,
\end{aligned}
$$

Relativistic \& QED corrections

$\overline{\mathrm{p}} \mathrm{He}$ first appeared in PDG

 everyone was ecstatic end of LEAR PS205relative precision $\sim 0.5 \mathrm{ppm}$

note: wavelength comparison
H.A. Torii et al., Phys. Rev. A 59 (1999) 223.

Theory vs experiment

反陽子㺂速器

ASACUSA at CERN AD

?
 3×10^{7} ps @ 5 MeV l00ns-wide pulse every ~90s

P-4.3
photo © ryu hayano

パルス

 How to work with pulsed \bar{p} ？
Can't use event-by-event counting

M. Hori et al., PHYSICAL REVIEW A 70, 012504 (2004).

reducing collision more on collisions by Grigory Korenman

Density-dependent shift

RFQD
 a decelerating linac

RFQD

Antiproton pulse from AD (10\% of c)

"Direct" measurement w RFQD

概。

Frequency Comb

12 transitions were measured

with RFQD+Comb

An example $(39,35) \rightarrow(38,34)$

contribution to CODATA

CODATA recommended values of the fundamental physical constants: 2006*

Peter J. Mohr, ${ }^{\dagger}$ Barry N. Taylor, ${ }^{\ddagger}$ and David B. Newell ${ }^{\S}$

IV. ATOMIC TRANSITION FREQUENCIES

Atomic transition frequencies in hydrogen, deuterium, and antiprotonic helium yield information on the Rydberg constant, the proton and deuteron charge radii, and the relative atomic mass of the electron. The hyper-

Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

Masaki Hori, Anna Sótér, Daniel Barna, Andreas Dax, Ryugo Hayano, Susanne Friedreich, Bertalan Juhász, Thomas Pask, Eberhard Widmann, Dezsõ Horváth, Luca Venturelli \& Nicola Zurlo

Nature 475, 484-488 (28 July 2011) doi:10.1038/nature10260
Received 12 April 2011 Accepted 26 May 2011 Published online 27 July 2011

Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry ${ }^{1}$). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium ($\bar{p} \mathrm{He}^{+}$) is a three-body atom ${ }^{2}$ consisting of a normal helium nucleus, an electron in its ground state and an antiproton (\bar{p}) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and I, such that $n \approx I+1 \approx 38$. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which $\bar{p}^{3} \mathrm{He}^{+}$and $\bar{p}^{4} \mathrm{He}^{+}$isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-photon transitions of the antiproton of the type $(n, I) \rightarrow(n-2, I-2)$ at deep-ultraviolet wavelengths ($\lambda=139.8,193.0$ and 197.0 nm), which partly cancel the Doppler broadening of the laser resonance caused by the thermal motion of the atoms. The resulting narrow spectral lines allowed us to measure three transition frequencies with fractional precisions of $2.3-5$ parts in 10^{9}. By comparing the results with three-body quantum electrodynamics calculations, we derived an antiproton-to-electron mass ratio of $1,836.1526736(23)$, where the parenthetical error represents one standard deviation. This agrees with the proton-to-electron value known to a similar precision.

pHe 2-photon spectroscopy

Theory vs Exp

m_{p} / m_{e} vs $m_{\bar{p}} / m_{e}$

$\overline{\mathrm{p}} \mathrm{He}$ spectroscopy: errors

Table $2 \mid$ Errors for transition $(n, I)=(36,34) \rightarrow(34,32)$ of $\bar{p}^{4} \mathrm{He}^{+}$
Datum Error (MHz)

Experimental errors

Statistical error, $\sigma_{\text {stat }}$	3
Collisional shift error	1
A.c. Stark shift error	0.5
Zeeman shift	<0.5
Frequency chirp error	0.8
Seed laser frequency calibration	<0.1
Hyperfine structure	<0.5
Line profile simulation	1
Total systematic error, $\sigma_{\text {sys }}$	1.8
Total experimental error, $\sigma_{\text {exp }}$	3.5
Theoretical uncertainties	
Uncertainties from uncalculated QED terms*	2.1
Numerical uncertainty in calculation*	0.3
Mass uncertainties*	<0.1
Charge radii uncertainties*	<0.1
Total theoretical uncertainty*, $\sigma_{\text {th }}$	2.1

[^0]*Ref. 3 and V. I. Korobov, personal communication.

超微細搆造

Hyperfine

$\overline{\mathrm{p}} \mathrm{He}$ hyperfine

New Value for the

p Magnetic Moment

p MAGNETIC MOMIENI

A few early results have been onitted.
VALUE $\left(\mu_{N}\right)$ DOCUMENT ID

Published in Physics Letters B in 2009:
T. Pask, D. Barna, A. Dax, R. S. Hayano, M. Hori, D. Horvath, S.

Friedreich, B. Juhasz, O. Massiczek, N. Ono, A. Soter, E.
Widmann, Antiproton magnetic moment determined from the HFS of $\overline{\mathrm{p}} \mathrm{He}^{+}$, Phys. Lett. B 678, Issue 1, 6, 2009

㱛

summary

20 years of $\overline{\mathrm{p}} \mathrm{He}$

Serendipitous discovery
Precision now at $\sim 10^{-9}$ (RFQ, Comb, 2-photon, ...)
Contribute to fundamental constant ($\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}$)
Further improvements possible (takes exp/ theory efforts), esp. with the ELENA

ELENA

| | Energy range, MeV | $5.3-0.1$ |
| :--- | :--- | :--- | :--- |
| | Circumference, m | 30.4 |
| Intensity of injected beam | 3×10^{7} | |

[^0]: Experimental errors and theoretical uncertainties are $1 \mathrm{s.d}$.

