Direct Measurement of Time-Reversal Asymmetry

Chih-hsiang Cheng Caltech

on behalf of BABAR Collaboration

5th International Symposium on Symmetries in Subatomic Physics Groningen, the Netherlands, June 18–22, 2011

Scenarios of time-reversal violation

- A permanent electric dipole moment (EDM) of a particle (with a spin) violates *T*-reversal symmetry (as well as parity). No evidence has been observed yet.
- Difference in time-reversed processes: $P(|i\rangle \rightarrow |f\rangle)$ vs. $P(|f\rangle \rightarrow |i\rangle)$
 - *v_e* → *v_µ* vs. *v_µ* → *v_e* : stable system, but needs future facility with a long baseline.
 - *\(\int \)* → |decay product \> vs. |decay product \> *\(\int \)* = |i \> : unstable system, often very difficult to prepare the initial state of time-reversed process.
 - Is there a way around this difficulty?
- Assume *CPT* invariance, observing *CP* asymmetry indicates *T* violation.
 - Established in neutral kaon and bottom mesons.

 \Rightarrow Can we find a pair of processes that can only be achieved by *T*-reversal only?

 $R(\overline{K}_{t=0}^{0} \to (e^{+}\pi^{-}\nu)_{t=\tau})) \neq R(K_{t=0}^{0} \to (e^{-}\pi^{+}\bar{\nu})_{t=\tau}))$

Take advantage of entangled quantum state

• Y(4S) decays to a pair of *B* mesons in a coherent L=1 quantum state. The *B* mesons are in an antisymmetric orthogonal states. It doesn't have to be in flavor eigenstate basis.

$$|i\rangle = 1/\sqrt{2}[B^{0}(t_{1})\overline{B}^{0}(t_{2}) - \overline{B}^{0}(t_{1})B^{0}(t_{2})]$$

= $1/\sqrt{2}[B_{+}(t_{1})B_{-}(t_{2}) - B_{-}(t_{1})B_{+}(t_{2})]$

- Once one *B* decays to a basis state, the other collapses to the orthogonal state. *t*So the first decay "tags" the initial state of the second decay.
- We use flavor specific final states to identify *B* flavor states (flavor tag), and *CP* final states to identify *B_{CP}* basis states (*CP* tag).

 $B_{+}: J/\psi K_{L}^{0} \quad B_{-}: J/\psi K_{S}^{0} \quad \overline{B}^{0}: \ell^{-} \quad B^{0}: \ell^{+}$

Flavor tag and *CP* tag

• *CP* tag, full reconstruction

• Flavor tag, inclusive reconstruction; extract features to determine *b*-quark content.

CP analysis at a glance

8

T-reversal

T-reversal processes

• Define processes of interest and their T-transformed counterparts:

BABAR detector at PEP-II

5th SSP, Groningen, the Netherlands, 2012/06/19

Dataset

Signal selection

- CP final states are fully reconstructed, and selected using
 - Beam-energy substituted mass $m_{\rm ES} = \sqrt{E_{\rm beam}^* |\vec{p}_B^*|^2}$ where $E_B^* \to E_{\rm beam}^* \quad \vec{p}_B^* \simeq 300 \,{\rm MeV/c}$
 - ▶ Beam energy spread determines resolution ~ 3 MeV.
 - Energy difference $\Delta E = E_B^* E_{\text{beam}}^*$
 - ▶ Resolution 10–50 MeV, depending on final-state neutrals.
 - K_L energy cannot be fully reconstructed; *B* candidate is constrained at *B* mass and use ΔE as the discriminator.
- Continuum u,d,s,c backgrounds are suppressed using angular distributions and event shape variables
 - e⁺ qq e⁺ e⁺ e⁺ Signal Other B B
 - For each fully reconstructed B_{CP}, search for features from the other B such as high momentum leptons, kaons, soft-pion from D*, etc.
 These features are fed into a neural net to determine the B flavor.

• Flavor tagging is inclusive:

Event samples

5813 events, purity 56% (<10 MeV)

7796 events, purity <u>87%–96%</u> (5.27–5.29 GeV) (depending on mode)

Signal model

• PDF for the 8 signal processes

$$g_{\alpha,\beta}^{\pm}(\tau) \propto e^{-\Gamma|\tau|} \left\{ 1 + S_{\alpha,\beta}^{\pm} \sin(\Delta m_d \tau) + C_{\alpha,\beta}^{\pm} \cos(\Delta m_d \tau) \right\}$$
$$\alpha \in \{B^0, \ \overline{B}^0\}; \quad \beta \in \{K_s^0, \ K_L^0\} \qquad \tau = \pm \Delta t > 0$$
Mistag dilutes the S, C parameters by a factor of (1-2w)

• Fit model is the signal PDF combined with a step function H in Δt and convolved with a resolution function $\mathcal{H}_{\alpha,\beta}(\Delta t) \propto g^+_{\alpha,\beta}(\Delta t_{\text{true}})H(\Delta t_{\text{true}}) \otimes \mathcal{R}(\delta t; \sigma_{\Delta t}) +$ $g^-_{\alpha,\beta}(-\Delta t_{\text{true}})H(-\Delta t_{\text{true}}) \otimes \mathcal{R}(\delta t; \sigma_{\Delta t})$

- The signal model has 8 different sets of (S, C) parameters $(\Delta t > 0, \Delta t < 0) \times (B^0, \overline{B}^0) \times (J/\psi K_s^0, J/\psi K_L^0)$
- The canonical *CPV* study* has one set of (S, C) parameters.

*e.g., PRD 79 (2009) 072009

Fit parameters ΔS^{\pm} and ΔC^{\pm}

5th SSP, Groningen, the Netherlands, 2012/06/19

Results

BABAR Preliminary	Parameter	Result	expectation from canonical <i>CP</i>
	$S^+_{\ell^+ X, c\overline{c}K^0_S}$	$0.55 \pm 0.08 \pm 0.06$	$+sin2\beta$
Reference parameters	$S^{\ell^+X,c\overline{c}K^0_S}$	$-0.66 \pm 0.06 \pm 0.04$	$-sin2\beta$
norenenee parameters	$C^+_{\ell^+ X, c\overline{c}K^0_S}$	$0.11 \pm 0.06 \pm 0.05$	0
	$C^{\ell^+ X, c\overline{c}K^0_S}$	$-0.05 \pm 0.06 \pm 0.03$	0
T	$\Delta S_{\rm T}^+ = S_{\ell^- X, J/\psi K_L^0}^ S_{\ell^+ X, c\overline{c} K_S^0}^+$	$-1.37 \pm 0.14 \pm 0.06$	$-2sin2\beta$
	$\Delta S_{\rm T}^{-} = S_{\ell^{-}X, J/\psi K_{L}^{0}}^{+} - S_{\ell^{+}X, c\overline{c}K_{S}^{0}}^{-}$	$1.17 \pm 0.18 \pm 0.11$	$+2sin2\beta$
	$\Delta C_{\rm T}^+ = C_{\ell^- X, J/\psi K_L^0}^ C_{\ell^+ X, c\overline{c} K_S^0}^+$	$0.10 \pm 0.16 \pm 0.08$	0
	$\Delta C_{\rm T}^{-} = C_{\ell^{-}X, J/\psi K_{L}^{0}}^{+} - C_{\ell^{+}X, c\overline{c}K_{S}^{0}}^{-}$	$0.04 \pm 0.16 \pm 0.08$	0
	$\Delta S^+_{\rm CP} = S^+_{\ell^- X, c\overline{c}K^0_S} - S^+_{\ell^+ X, c\overline{c}K^0_S}$	$-1.30 \pm 0.10 \pm 0.07$	$-2sin2\beta$
CP	$\Delta S^{\rm CP} = S^{\ell^- X, c\overline{c}K^0_S} - S^{\ell^+ X, c\overline{c}K^0_S}$	$1.33 \pm 0.12 \pm 0.06$	$+2sin2\beta$
	$\Delta C_{\rm CP}^+ = C_{\ell^- X, c\overline{c}K_S^0}^+ - C_{\ell^+ X, c\overline{c}K_S^0}^+$	$0.07 \pm 0.09 \pm 0.03$	0
	$\Delta C^{\rm CP} = C^{\ell^- X, c\overline{c}K^0_S} - C^{\ell^+ X, c\overline{c}K^0_S}$	$0.08 \pm 0.10 \pm 0.04$	0
CPT	$\Delta S^+_{\rm CPT} = S^{\ell^+ X, J/\psi K^0_L} - S^+_{\ell^+ X, c\overline{c}K^0_S}$	$0.16 \pm 0.20 \pm 0.09$	0
	$\Delta S^{\rm CPT} = S^+_{\ell^+ X, J/\psi K^0_L} - S^{\ell^+ X, c\overline{c}K^0_S}$	$-0.03 \pm 0.13 \pm 0.06$	0
	$\Delta C^+_{\rm CPT} = C^{\ell^+ X, J/\psi K^0_L} - C^+_{\ell^+ X, c\overline{c} K^0_S}$	$0.15 \pm 0.17 \pm 0.07$	0
	$\Delta C^{\rm CPT} = C^+_{\ell^+ X, J/\psi K^0_L} - C^{\ell^+ X, c\overline{c}K^0_S}$	$0.03 \pm 0.14 \pm 0.08$	0

 $sin_2\beta = 0.679 \pm 0.020$ (HFAG winter'12)

Systematics (for ΔS_T^{\pm})

Systematic source	ΔS _T ⁺	ΔS _T -
misID flavour	0.019	0.019
Δt resolution function	0.02	0.05
Outlier's scale factor	0.012	-0.013
m _{ES} parameters	0.012	0.0018
ΔE parameters	0.017	0.017
K _L systematics	0.03	0.03
Differences between B_{CP} and B_{flav}	0.02	0.02
Background effects	0.03	0.04
Uncertainty on fit bias from MC	0.010	0.08
Detector and vertexing effects.	0.011	0.04
$\Delta\Gamma \neq 0$ effects	0.004	0.003
External physics parameters	0.005	0.006
Normalization effects	0.012	0.009
Total Systematics	0.06	0.11

Independent T asymmetries

Points: data; red (blue) curves: projections of fits with (without) T violation

5th SSP, Groningen, the Netherlands, 2012/06/19

Interpretation of *T* violation result

Significance of *T* violation

- Standard fit yields a likelihood value of the fit to S, C using the 8 independent samples.
- Repeat the fit, applying constraints to the parameters for T-conjugate processes
- Difference in likelihood values yields the significance of T violation.

 $\Delta \chi^2 = -2 \left(\ln L_{\rm NoTRV} - \ln L \right)$

 $\Delta
u = 8$ degrees of freedom

- CP and CPT significance can be determined the same way with proper constraints.
- Systematic uncertainties are included by calculating $2\Delta lnL (=m^2_j)$ varying each parameter by $\pm 1 \sigma_{syst.}$ and reduce the overall statistical $-2\Delta lnL$ by $1+max(m^2_j)$.

	$-2\Delta \ln L$	Signif.
Т	226	> 10 o
СР	307	> 10 o
CPT	5	0.33 σ

Conclusion

- *BABAR* has measured *T*-violating parameters in the time development of neutral *B* mesons by comparing conjugate processes that can only be achieved by *T* reversal, not *CP*.
 - ✦ The first time this kind of processes is utilized to demonstrate *T* violation.
- This novel approach does not need *CPT* invariance to link *T* with *CP*.
- *T* violation is observed at >10 σ level.
- *CP* and *CPT* violations are also tested.
- Result is consistent with measurements of *CP* violation assuming *CPT* invariance.

