

Observation of Electron-antineutrino Disappearance at Daya Bay

Changgen Yang Inst. of High Energy Phys., Beijing For Daya Bay Collaboration

5th International Symposium on Symmetries in Subatomic Physics June 18-22, 2012 KVI, Groningen, the Netherlands

Outline

- Introduction
- Construction of Daya Bay Experiment
- Data Analysis
 - ⇒ Calibrations
 - ➡ IBD Selections
 - ➡ Background
 - ➡ Oscillation Analysis

Inside Daya Bay Anti-neutrino Detector

Daya Bay: for a New Type of Oscillation

Neutrino mixing matrix(PMNS):

Unknown mixing parameters: θ_{13} , δ + 2 Majorana phases

Sizable θ_{13} could open the door to answer the questions of CP violation, matter and anti-matter asymmetry, neutrino mass hierarchy

Goal: search for a new oscillation mode θ_{13} ?

Indications of nonzero θ₁₃ in 2011, Observation in 2012

2011 has given many hints: Solar + KamLAND: G.L.Fogli *et al.*, PRD 84, 053007 (2011) MINOS: P. Adamson *et al.*, PRL. 107, 181802 (2011) T2K: K. Abe *et al.*, PRL. 107 041801 (2011) Double CHOOZ: Y. Abe *et al.*, PRL. 108, 131801 (2012)

No result >2.5 σ from $\theta_{13} = 0$

Daya Bay excludes $\theta_{13} = 0$ at 5.2 σ – Mar. 8 sin²2 $\theta_{13} = 0.092 \pm 0.016$ (stat) ± 0.005 (syst) Phys.Rev.Lett. 108 (2012) 171803

Reno confirms – Apr. 3 $\sin^2 2\theta_{13} = 0.113 \pm 0.013 \text{ (stat)} \pm 0.019 \text{ (syst)}$ Phys.Rev.Lett. 108 (2012) 191802

Why measure θ_{13} with Reactor Experiments?

reactor

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Disappearance measurement
- Clean measurement of $\theta_{\rm 13}$
- No matter effects

accelerator

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}\left[\cos\Delta_{32}\cos\delta\right] \cdot \sin\Delta_{32}\sin\delta \sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}\left[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \,. \end{split}$$

mass hierarchy CP violation

The Daya Bay Collaboration

Political Map of the World, June 1999

Europe (2) JINR, Dubna, Russia Charles University, Czech Republic

North America (16)

BNL, Caltech, LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI,
UC-Berkeley, UCLA, Univ. of Cincinnati,
Univ. of Houston, Univ. of Wisconsin,
William & Mary, Virginia Tech.,
Univ. of Illinois-Urbana-Champaign, Siena

~250 Collaborators

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ.,

Asia (20)

Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

Three-pair reactor cores: 2.95 × 6=17.7GWth
 Each core produces 6 × 10²⁰ anti-v_e's/s
 Mountains near by

Daya Bay NPP

SCHERRING

Determining θ_{13} With Reactor v_e

Looking for non-1/r² behavior of $\overline{\nu}_e$ interaction rate

Underground Labs

	Overburden (MWE)	$\frac{\mathbf{R}_{\mu}}{(\mathbf{Hz}/\mathbf{m}^{2})}$	Ε _μ (GeV)	D1,2 (m)	L1,2 (m)	L3,4 (m)
EH1	250	1.27	57	364	857	1307
EH2	265	0.95	58	1348	480	528
EH3	860	0.056	137	1912	1540	1548

Neutrino Detection: Gd-loaded Liquid Scintillator

$$\overline{v}_e + p \rightarrow e^+ + n$$

 $\tau \approx 28 \ \mu s(0.1\% \text{ Gd})$

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

 $n + Gd \rightarrow Gd^* + \gamma (8 \text{ MeV})$

Neutrino Event: coincidence in time, space and energy

Neutrino energy:

$$E_{\overline{v}} \cong (T_{e^+}) + T_n + (M_n - M_p) + m_{e^+}$$

10-40 keV 1.8 MeV: Threshold

Anti-neutrino Detector (AD)

Three zones modular structure:

 target: Gd-loaded scintillator
 γ-catcher: normal scintillator
 buffer shielding: oil

 192 8" PMTs/module
 Two optical reflectors at the top and the bottom, Photocathode coverage increased from 5.6% to 12%

Total weight: ~110 t

Gd-loaded Liquid Scintillator

- Liquid production, QA, storage and filling at Hall 5
 - ⇒ 185t Gd-LS, ~180t LS, ~320t oil
- LAB+Gd (TMHA)³+PPO+BisMSB
- Stable over time
 - ⇒ Light yield: ~163 PE/MeV

Liquid hall: LS production and filling

Automatic Calibration System

- Three Z axis:
 - ⇒ One at the center
 - ✓ For time evolution, energy scale, nonlinearity...
 - \Rightarrow One at the edge
 - ✓ For efficiency, space response
 - \Rightarrow One in the γ -catcher
 - ✓ For efficiency, space response
 - **3 sources for each z axis:**
 - ⇒ LED
 - ✓ for T₀, gain and relative QE
 - \Rightarrow ⁶⁸Ge (2×0.511 MeV γ 's)
 - ✓ for positron threshold & non-linearity...
 - \Rightarrow ²⁴¹Am-¹³C + ⁶⁰Co (1.17+1.33 MeV γ 's)
 - ✓ For neutron capture time, ...
 - ✓ For energy scale, response function, ...
- Once every week:
 - ⇒ 3 axis, 5 points in Z, 3 sources

Muon Veto Detector

Dual tagging systems: 2.5 meter thick two-section water shield and RPCs

Goal efficiency: > 99.5% with <0.25% uncertainty

Water Cerenkov detector

- ⇒ High purity de-ionized water in pools also for shielding
- ⇒ First stage water production in hall 4
- Local water re-circulation & purification

• **RPCs**

- → 4 layers/module
- ⇒ 54 modules/near hall, 81 modules/far hall
- ⇒ 2 telescope modules/hall
- Water Cerenkov detector
 - ➡ Two layers, separated by Tyvek/PE/Tyvek film
 - 288 8" PMTs for near halls; 384
 8" PMTs for the far hall

Installation

Two ADs Installed in Hall 1

Hall 1(two ADs) Started the Operation on Aug. 15, 2011

One AD insalled in Hall 2 Physics Data Taking Started on Nov.5, 2011

Three ADs insalled in Hall 3 Physics Data Taking Started on Dec.24, 2011

Data Periods

A. Two Detector Comparison: arXiv:1202:6181

- Sep. 23, 2011 Dec. 23, 2011
- Side-by-side comparison of 2 detectors in Hall 1
- Demonstrated detector systematics better than requirements.
- Soon published in Nucl. Inst. and Meth.

B. First Oscillation Result: arXiv:1203:1669

- Dec. 24, 2011 Feb. 17, 2012
- All 3 halls (6 ADs) operating
- First observation of $\overline{\nu}_e$ disappearance
- Phys. Rev. Lett. 108, 171803 (2012)

C. June Oscillation Result Update:

Neutrino 2012

- Dec. 24, 2011 May 11, 2012
- More than 2.5 x the previous data set

Trigger Performance

◆ Threshold for a hit:
 ⇒ AD & pool: ¼ PE

Trigger thresholds:

- \Rightarrow AD: ~ N_{HIT}=45, E_{tot}= ~ 0.4 MeV
- → Inner pool: N_{HIT}=6
- ➡ Outer pool: N_{HIT}=7 (8 for far hall)
- ⇒ RPC: 3/4 layers in each module

Trigger rate(EH1)

- ⇒ AD singles rate:
 - ✓ >0.4MeV, ~ 280Hz
 - ✓ >0.7MeV, ~ 60Hz
- → Inner pool rate: ~170 Hz
- ➡ Outer pool rate: ~ 230 Hz

Flashers: Imperfect PMTs

Rejection: pattern of fired PMTs

Inefficiency to neutrinos: 0.024% ± 0.006%(stat) Contamination: < 0.01%

Single Rate

After PMT flasher remove

Muon remove with: 1μs < Pool muon <200μs

- Single rate contribution:
 - ⇒ ~ 5 Hz from SSV
 - → ~ 10 Hz from LS
 - → ~ 25 Hz from PMT
 - → ~ 5 Hz from rock

PMT Calibration:

IBD event selection

30000 F

25000 F

20000

15000 F

10000

5000 F

200µs

Prompt + Delayed Selection $\overline{\nu}_e + p \rightarrow e^+ + n$

- Reject Flashers
- Muon Veto:

Pool Muon: Reject 0.6ms

AD Muon (>20 MeV): Reject 1ms

- AD Shower Muon (>2.5GeV): Reject 1s
- Multiplicity:

No other signal > 0.7 MeV in -200 μ s to 200 μ s of IBD.

 $1\mu s \leq \Delta e^+ - n \leq 200 \mu s$

- Prompt Positron: 0.7 MeV $< E_p < 12$ MeV
- Delayed Neutron: 6.0 MeV $< E_d < 12$ MeV
- Capture time: 1 μ s < Δ t < 200 μ s

200µs

Backgrounds

- ***** Low background experiment
 - Total backgrounds are 5% (2%) in far(near) halls
 - Background uncertainties are 0.3% (0.2%) in far (near) halls
- The backgrounds are all estimated using data-driven methods:
 - The largest source of background can be measured to ~1%

	Near	Halls	Far Hall		
	B/S %	$\sigma_{B/S} \atop \%$	B/S %	$\overset{\sigma_{B/S}}{\%}$	
Accidentals	1.5	0.02	4.0	0.05	
Fast neutrons	0.12	0.05	0.07	0.03	
⁹ Li/ ⁸ He	0.4	0.2	0.3	0.2	
²⁴¹ Am- ¹³ C	0.03	0.03	0.3	0.3	
$^{13}C(\alpha, n)^{16}O$	0.01	0.006	0.05	0.03	

Neutron Capture Time

Consistent IBD capture time measured in all detectors

Capture time in each detector constrains H/Gd capture ratio

1µs to 200µs

Relative detector efficiency estimated within 0.01% by considering possible variations in Gd concentration. Measurement of Am-C source neutron capture time distributions constrain uncertainty in relative H/Gd capture efficiency to < 0.1% between detectors.

Daya Bay Data Set Summary

~ four months

~200k near and ~30k far detector antineutrino interactions

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	69121	69714	66473	9788	9669	9452
DAQ live time (day)	127.5470		127.3763	126.2646		
Efficiency	0.8015	0.7986	0.8364	0.9555	0.9552	0.9547
Accidentals (/day)	9.73±0.10	9.61 ± 0.1 0	7.55 ± 0.08	3.05 ± 0.04	3.04 ± 0.04	2.93 ± 0.03
Fast neutron (/day)	0.77 ± 0.24	$0.77 \pm 0.2 \\ 4$	0.58 ± 0.33	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.02
⁸ He/ ⁹ Li (/day)	2.9 ± 1.5		2.0 ± 1.1	0.22 ± 0.12		
Am-C corr. (/day)			0.2	± 0.2		
$^{13}C(\alpha, n)^{16}O(/day)$	0.08 ± 0.04	0.07 ± 0.0 4	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
Antineutrino rate (/day)	662.47 ±3.00	670.87 ±3.01	613.53 ±2.69	77.57 ±0.85	76.62 ±0.85	74.97 ±0.84

Uncertainty still dominated by statistics

Reactor Neutrinos

Reactor neutrino spectrum

$$S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i}^{istopes} (f_i/F)S_i(E_{\nu})$$

- Thermal power, W_{th}, measured by KIT system, calibrated by KME method
- Fission fraction, f_i, determined by reactor core simulation
- Neutrino spectrum of fission isotopes
 S_i(E_v) from measurements
- Energy released per fission e_i

Isotope	E_{fi} , MeV/fission
$^{235}\mathrm{U}$	201.92 ± 0.46
$^{238}\mathrm{U}$	205.52 ± 0.96
239 Pu	209.99 ± 0.60
$^{241}\mathrm{Pu}$	213.60 ± 0.65

Kopeikin et al, Physics of Atomic Nuclei, Vol. 67, No. 10, 1892 (2004)

Reactor							
Correlate	ed	Uncorrelated					
Energy/fission	0.2%	Power	0.5%				
$\overline{\nu}_{e}$ /fission	3%	Fission fraction	0.6%				
		Spent fuel	0.3%				
Combined	3%	Combined	0.8%				

Relative measurement → independent from the neutrino spectrum prediction

Baseline

- Various measurements: GPS, Total Station, laser tracker, level instruments, ...
- Compared with design values, and NPP coordinates
- Data processing by three independent software
- Final baseline uncertainty is 28 mm

Uncertainty Summary

Detector					For near/far oscillation,
	Efficiency	Correlated	Uncorre	lated	only uncorrelated
Target Protons		0.47%	0.03%		uncertainties are used.
Flasher cut	99.98%	0.01%	0.01%		
Delayed energy cut	90.9%	0.6%	0.12%		
Prompt energy cut	99.88%	0.10%	0.01%	\searrow	Largest systematics are
Multiplicity cut		0.02%	< 0.01%		smaller than far site statistics
Capture time cut	98.6%	0.12%	0.01%		(~1%)
Gd capture ratio	83.8%	0.8%	< 0.1%		
Spill-in	105.0%	1.5%	0.02%		
Livetime	100.0%	0.002%	< 0.01%	,	
Combined	78.8%	1.9%	0.2%		
	Rea	ctor			Influence of uncorrelated
Correlate	Uncorrelated			reactor systematics (0.8%) is	
Energy/fission	0.2%	Power	0.5%		reduced to 0.04% detector
$\overline{\nu}_{e}$ /fission	3%	Fission fraction	n 0.6%		systematics uncertainty by far
		Spent fuel	0.3%		vs near measurement.
Combined	3%	Combined	0.8%		

Rate Only Oscillation Analysis

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{ (stat)} \pm 0.005 \text{ (syst)}$

Spectrum Shape

Compare the far/near measured rates and spectra

$$R = \frac{Far_{measured}}{Far_{expected}} = \frac{M_4 + M_5 + M_6}{\sum_{i=4}^{6} (\alpha_i (M_1 + M_2) + \beta_i M_3)}$$

 M_n are the measured rates in each detector. Weights α_i, β_i are determined from baselines and reactor fluxes.

 $R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)}$

Clear observation of far site deficit.

Spectral distortion consistent with oscillation.*

* Caveat: Spectral systematics not fully studied; θ_{13} value from shape analysis is not recommended.

Global θ₁₃ Situation

Double Chooz update

Reno

World Measurement of θ₁₃

Measurement of 013 opens an exciting future.

Daya Bay Summary

Daya Bay has made an unambiguous observation of electron-antineutrino disappearance at ~2km and measured a far/near ratio of

 $\begin{aligned} R &= 0.944 \, \pm \, 0.007 \, (\text{stat}) \, \pm \, 0.003 \, (\text{syst}) \\ \text{previous}: \, R &= 0.940 \, \pm \, 0.011 \, (\text{stat}) \, \pm \, 0.004 \, (\text{syst}) \end{aligned}$

Interpretation of disappearance as neutrino oscillation rules out $sin^2 2\theta_{13} = 0$ at 7.7 σ

Daya Bay precision surpasses all existing measurements.

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{ (stat)} \pm 0.005 \text{ (syst)}$

previous: $\sin^2 2\theta_{13} = 0.092 \pm 0.016$ (stat) ± 0.005 (syst)

Last two detectors will be installed this year

Expect more statistics and improvements in analysis.

Daya Bay will continue to have the best sensitivity to θ_{13} among all the other experiments in operation or in construction.

Event Signature and Backgrounds

- **Signature:** $\overline{v}_e + p \rightarrow e^+ + n$
 - \Rightarrow **Prompt:** e⁺, **E:** 1-10 MeV,
 - ⇒ Delayed: n, E: 2.2 MeV@H, 8 MeV @ Gd
 - ⇒ Capture time: 28 µs in 0.1% Gd-LS

Backgrounds

- \Rightarrow Uncorrelated: random coincidence of $\gamma\gamma$, γ n & nn
 - γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
 - \checkmark n from $\alpha\text{-n},\mu\text{-capture},\mu\text{-spallation}$ in LS, water & rock
- ⇒ Correlated:
 - ✓ Fast neutrons: prompt—n scattering, delayed —n capture
 - ✓ 8He/9Li: prompt — β decay, delayed —n capture
 - Am-C source: prompt —γ rays, delayed —n capture
 - ✓ α-n: ${}^{13}C(α,n){}^{16}O$

Background: Accidentals

Accidentals: Two uncorrelated events 'accidentally' passing the cuts and mimic IBD event.

Rate and spectrum can be accurately predicted from singles data.

Multiple analyses/methods estimate consistent rates.

	EH1-AD1	EH1-AD2	EH2-AD1	EH3-AD1	EH3-AD 2	EH3-AD3
Accidental rate(/day)	9.82±0.06	9.88±0.06	7.67±0.05	3.29±0.03	3.33±0.03	3.12±0.03
B/S	1.37%	1.38%	1.44%	4.58%	4.77%	4.43%

Background: Fast neutrons

Correlated events mimic IBD events

Fast Neutrons

Energetic neutrons produced by cosmic rays (inside and outside of muon veto system)

Mimics antineutrino (IBD) signal

Prompt: Neutron collides/stops in target Delayed: Neutron captures on Gd

Projected errors - assuming 1/√N– rate only

