

Atomic Clocks

Clock based on nuclear spin precession " spin-clock"

A magnetic moment *M* is associated with the atomic spin.

 $T_1 > 100 h \implies$ Thi Long T_2^* : $p \sim mbar, R \sim 3 cm, B_1 \sim \mu T$

$$\omega_L = 2\pi\nu_L = \gamma \left| \vec{B} \right|$$

Spin-clock: Detection of free spin precession:

➢ long spin coherence times T₂*> 1 day @ ∆f/f ~ 10⁻¹⁴
 ➢ free spin precession: no induced frequency shifts due to feedback phase error, light shift, etc. (Maser, Cs-M)
 ➢ use of LT_c-SQUIDs to detect the spin precession signal - intrinsic noise of SQUID: ~ 1 fT/√Hz
 ➢ no feedback coupling between detector and spin sample

FREQUENCY ESTIMATION

³He/¹²⁹Xe "spin"-clock

 $\mu_n = -1.913 \ \mu_K$ $\mu_{He} = -2.1276 \ \mu_K$ $\mu_{Xe} = -0.7779 \ \mu_K$

<u>OP-techniques:</u> MEOP SEOP

Schmidt-model:

BMSR 2, PTB Berlin

J. Bork, et al., Proc. Biomag 2000, 970 (2000).

magnetic guiding field ≈ 0.4 μT (Helmholtz-coils)

 $\left|\vec{\nabla}B_{x,y,z}\right| \approx 20 \ p \ T \ / \ cm$

³He free spin-precession signal

Subtraction of deterministic phase shifts non-ideal spherical cell: 11-3,0 -I. Eart Ramsey-Bloch-Siegert shift $\Delta \Phi = \Phi_{\text{He}} - \gamma_{\text{He}} / \gamma_{\text{Xe}} \cdot \Phi_{\text{Xe}} ,$ phase signal (rad) 10phase signal (rad) 2,5 -(self shift) 9 2,0 8. $\Phi_{\rm rem}$ = $\Delta\Phi$ - $\Phi_{\rm Earth}$ 1,5 B 0 1,0 6 10000 15000 5000 20000 0 20000 10000 30000 40000 50000 0 time (s) time (s) $Fit = c + a_{lin} \cdot t + a_{He} \cdot e^{-t/T_{2,He}^{*}} + a_{Xe} \cdot e^{-t/T_{2,Xe}^{*}} + \Phi(t)_{spin-coupling}$ 1.0 0.004 Phase residuals 0.8 phase residuals (rad) 0.002 $\Phi_{\rm rem}$ 0.6 Ø¢ (rad) 0.4 0.000 -0.002 0.2 $\sigma_{\Phi, \rm res} \propto \exp$ -0.004 0.0 10000 20000 0 30 0 00 40 000 50 000 0 10000 20000 30 0 0 0 40 000 50000 Time (s) time (s)

The detection of the free precession of co-located ³He/¹²⁹Xe sample spins can be used as ultra-sensitive probe for non-magnetic spin interactions of type:

$$V_{non-magn.} = \vec{a} \cdot \vec{\sigma} \equiv -\vec{\mu}_{PM} \cdot \vec{B}_{PM}$$

> Search for a Lorentz violating sidereal modulation of the Larmor frequency $V(r)/\hbar = \langle \widetilde{b} \rangle \hat{\epsilon} \cdot \vec{\sigma}/\hbar$

> Search for spin-dependent short-range interactions

$$V(r)/\hbar = c \,\vec{\sigma} \cdot \hat{n}/\hbar$$

> Search for EDM of Xenon

$$V(r)/\hbar = -|\mathbf{d}_n| \vec{\sigma} \cdot \vec{E}/\hbar$$

Observable:

≻ ...

$$\Delta \omega = \omega_{L,He} - \frac{\gamma_{He}}{\gamma_{Xe}} \cdot \omega_{L,Xe} \neq 0$$

Unification theories:

string theory, loop quantum gravity,...

Planck scale: energy scale where gravity meets quantum physics $M_p \sim 10^{19} \text{ GeV}$

D. Colladay and V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys.Rev. D 58, 116002 (1998)

Traditional tests of Lorentz symmetry & special relativity

Test of constancy of c

Modern Tests of Lorentz violation

Topics:

 searches for CPT and Lorentz violations involving

-birefringence and dispersion from cosmological sources

-clock-comparison measurements

-CMB polarization

-collider experiments

-electromagnetic resonant cavities

- -equivalence principle
- -gauge and Higgs particles
- -high-energy astrophysical observations
- -laboratory and gravimetric tests of gravity

-matter interferometry

-neutrino oscillations

- -oscillations and decays of K, B, D mesons
- -particle-antiparticle comparisons
- -space-based missions
- -spectroscopy of hydrogen and antihydrogen
- -spin-polarized matter

Fifth Meeting on

CPT AND LORENTZ SYMMETRY

June 28-July 2, 2010

Indiana University, Bloomington

* Theoretical studies of CPT and Lorentz violation involving

-physical effects at the level of the SM, General Relativity, and beyond
-origins and mechanisms for violations classical and quantum issues in field theory, particle physics, gravity, and strings

Standard-Model Extension - matter sector -

A. Kostelecky and C. Lane: Phys. Rev. D 60, 116010 (1999)

Modified Dirac equation for a free spin ½ particle (w=e,p,n)

Experimental access:

$$a_{\mu}^{w}, b_{\mu}^{w}, \dots \approx \eta_{w} \cdot \left(\frac{m_{w}}{M_{Planck}}\right)$$

coupling strength

Cs- fountain Wolf et al., PRL 96, 060801 (2006) Torsion pendulum B.Heckel et al. PRD 78 (2008) 092006 Antihydrogen spectroscopy M_w Astrophysics Hg/Cs comparison UCN/Hg comparison He/Xe maser K/He co-magnetometer

LV

Search for a sidereal modulation of the weighted phase difference

March 2009 run:

expect strong correlated error for $T_{SD} > T_2^*$ $\Omega_s = 2\pi/T_{SD} = 2\pi/(23^h:56^m:4.091^s).$

Results of χ^2 -fit for the sidereal phase amplitudes a_c and a_s together with their correlated and uncorrelated 1σ -errors .

To demonstrate the strong dependence of the correlated error on Ω_{s} , corresponding fit results are shown for multiples of Ω_s : $\Omega'_s = g \cdot \Omega_s$.

		a _c mrad	$\sigma_{\scriptscriptstyle ac}^{\scriptscriptstyle corr}$	$\sigma^{\mathit{uncorr}}_{_{ac}}$	a _s mrad	σ_{as}^{corr}	σ^{uncorr}_{as}
$\Omega_s =$	$2\pi/T_{SD}$	-0.882	0.814	0.015	-2.067	1.057	0.019
	$2 \cdot \Omega_s$	-0.048	0.120	0.016	-0.149	0.112	0.017
	$3 \cdot \Omega_s$	-0.184	0.052	0.019	-0.011	0.043	0.016
	$4 \cdot \Omega_s$	-0.001	0.034	0.018	0.057	0.030	0.016

Phaseamplitude of the sidereal modulation:

 $a_{\text{max}} = \sqrt{a_s^2 + a_c^2} = (2.25 \pm 2.29) \, mrad \, (95\% \, CL)$

Phase residuals with fit-results for

$$a_s \cdot \sin(\Omega_s \cdot t) - a_c \cdot \cos(\Omega_s \cdot t)$$

In terms of frequency:

PRD 82 (2010) 111901

Tightest constrains on SME parameters on neutron sector:

V. Alan Kostelecký
^a and Neil Russell^b $[{\rm arXiv:0801.0287}]$

	Coefficient	Proton	Neutron	Electron	
	\widetilde{b}_{X} [GeV]	< 10 ⁻³¹	< 10 ⁻³²	< 10 ⁻³¹	
	$\widetilde{b}_{_{Y}}$ [GeV]	< 10 ⁻³¹	< 10 ⁻³²	< 10 ⁻³¹	
	$\left \widetilde{b}_{\perp}\right $ [GeV]	< 10 ⁻³¹	< 10 ⁻³²	$\widetilde{b}^n \approx \left(\frac{m_n}{M}\right)^k \cdot m_n k =$	=1 exc
$\widetilde{b}_{\perp}^{n} = :$	$\leq 3.72 \cdot 10^{-32} \ GeV$	(95% C.L.)	•Torsio B.R.Hee	$\Rightarrow \exp. up$ on pendulum ckel et al., PRD 78 (2008) 092006	grade:
• K- ³ He $\widetilde{b}_{\perp}^{n}$ <	co-magnetometer $3.7 \cdot 10^{-33} GeV(689)$	% C.L.)	$\tilde{b}_X^e = (-0)$	$(.9 \pm 1.4) \times 10^{-31} \text{ GeV}$	
J. M. Br	own et al. Phys. Rev. Lett., 1	105, 151604 (2010).	1		
• Spin ma (D.Be	aser experiments witl ar et al., PRL 85 (2000) 5038)	h ³ He and ¹²⁹ Xe	(95% C.L.)		
${ ilde b}^n_\perp \equiv \chi$	$\left/ (\tilde{b}_X^n)^2 + (\tilde{b}_Y^n)^2 = \right.$	$(4.0\pm3.3)\times10^{-3}$	$^{1}\mathrm{GeV}$		D

March 2012 run at PTB

(1) conventional runs with B-field fixed

(2) active rotation of B-field (2 h / turn)

T₂*- improvements:

pure ³He @ p=2.5 mbar : $T_2^*(He) = 124 h$

Phase residuals:

- total data taking time: 165 h (90 h March 2009) ~1.8
- gain in SNR: 2-3
- gain due to CRLB power law (~1/T^{3/2}) : 2.8
- reduction of correlated error: ~ 7

(2) rotation of B-field (quantization axis)

alpha/2Pi

Conclusion and Outlook

³He , ¹²⁹Xe spin clock based on free spin precession
 → long spin coherence times

 $T_{2,He}^{*} \approx 60 hours \quad (T_{2,He}^{*} = 124 h, \text{ March 2012 run})$ $T_{2,Xe}^{*} = 3 - 4 hours \quad (T_{2}^{*}(Xe) \approx 8h \textcircled{a} T_{1,wall} \sim 11 h)$

• Search for neutron spin coupling to a Lorentz and CPT-violating background field $V(r)/\hbar = \langle \tilde{b} \rangle \hat{\varepsilon} \cdot \vec{\sigma}/\hbar$ K-³He and ³He/¹²⁹Xe co-magnetometer set the tightest limits on SME-parameters •K-³He co-magnetometer : $\tilde{b}_{\perp}^{n} < 3.7 \cdot 10^{-33} \text{ GeV}(68\% \text{ C.L.})$ PRL 105, 151604 (2010) •³He-¹²⁹Xe co-magnetometer : $\tilde{b}_{\perp}^{n} \leq 3.72 \cdot 10^{-32} \text{ GeV}(95\% \text{ C.L.})$ PRD 82, 111901 (2010)

March 2012 run: expected gain in sensitivity ~ 100 to trace LV interactions

Short range spin-dependent interaction:

$$V(r) = \frac{g_S g_P}{8\pi} \frac{(\hbar)^2}{m_n} (\sigma_n \cdot \vec{n}) \left[\frac{1}{r\lambda} + \frac{1}{r^2} \right] e^{-r/\lambda}$$

J.E.Moody, F.Wilczek PRD 30 (1984) 130

September 2010 run

¹²⁹Xe electric dipole moment (Groningen-Heidelberg-Mainz collaboration):

Proposal:
$$|d_{Xe}| < 10^{-31} ecm$$

 $|d_{Xe}| = (0.7 \pm 3.3 \pm 0.1) \times 10^{-27}$ ecm

Rosenberry and Chupp, PRL 86,22 (2001)

present sensitivity of ³He/¹²⁹Xe-comagnetometer: < 0.1 nHz per day

> Magnetometry (³He)

low field : $\approx 1\mu$ Tesla $\langle \delta B \rangle \approx 1 f T @ 200 s \longrightarrow$

high field : > 1 Tesla

ultra-high sensitive magnetometer to monitor relative field changes of $\approx 10^{-12}$

³He/¹²⁹Xe clock comparison probing fundamental symmetries

Institut für Physik, Universität Mainz: C. Gemmel, W. Heil, H.Hofsetz, S. Karpuk, Y. Sobolev, K.Tullney Physikalisch-Technische-Bundesanstalt, Berlin: M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg: F. Allendinger, U. Schmidt

Thank you for your attention

Standard Model Extension (SME)

How to detect Lorentz violation?

Lorentz violation is realized as a coupling of particle fields and the background fields, so the basic strategy is to find the Lorentz violation is;

- (1) choose the coordinate system to compare the experimental result
- (2) write down Lagrangian including Lorentz violating terms under the formalism
- (3) write down the observables using this Lagrangian
- The standard choice of the coordinate is Sun-centred coordinates

Search for a new pseudoscalar boson (Axion-like particle)

Gerardus 't Hooft,: QCD has a non-trivial vacuum structure that in principle permits CP-violation

$$L_{\overline{\theta}} = \frac{\alpha_s \,\overline{\theta}}{8 \,\pi} \vec{G}_{\mu\nu} \cdot \vec{\tilde{G}}^{\mu\nu}$$

from neutron EDM we get: $d_n \approx 10^{-16} \cdot \overline{\theta} < 3 \cdot 10^{-26} e \cdot cm$

Original proposal for Axion (R. Peccei, H.Quinn PRL 38(1977),1440) as possible solution to the "Strong CP Problem" that cancels the CP violating term in the QCD Lagrangian

$$L_{a} = \xi \frac{\alpha_{s}}{8\pi f_{a}} a(x) \vec{G}_{\mu\nu} \cdot \vec{\tilde{G}}^{\mu\nu} \qquad \left\langle \alpha \right\rangle = -f_{\alpha} \frac{\overline{\theta}}{\xi}$$

Modern interest: Dark Matter candidate. All couplings to matter are weak

Axions, if they exist, will be very light and will mediate a macroscopic CP- force

$$m_a \approx \frac{m_\pi \cdot f_\pi}{f_a} \approx 6 \mu e V \cdot \left(\frac{10^{12} \, GeV}{f_a}\right)$$

 f_a : energy scale P.Q.-symmetry is spontaneously broken

Axions generated in the sun

CAST : CERN AXION SOLAR TELESCOPE

Galactic axions

Tunable resonant cavity in magnetic field coupled to a ultra low noise microwave receiver

ADMX, CARRACK

AXION SEARCHES using the **Primakoff Effect**

Primakoff Effect Axion conversion into photon (or the inverse)

Laboratory axions

Polarised laser through vacuum in a strong magnetic field (PVLAS)

"Light shines through the wall" Photonregeneration

(BFRT, OSQAR, ALPS, LIPPS, GammeV)

Short range interaction of the axion

Yukawa-type potential with monopole-dipole coupling:

$$V(r) = \kappa \hat{n} \cdot \vec{\sigma} \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}$$

with:
$$\kappa = \frac{\hbar^2 g_s g_p}{8\pi m_n}$$
, $\lambda = \frac{\hbar}{m_a c}$

(Moody and Wilczek PRD **30** 130 (1984))

$$\begin{pmatrix} 10^{-6} \text{eV} < m_a < 10^{-2} \text{eV} \\ 10^{-5} \text{m} < \lambda < 10^{-1} \text{m} \end{pmatrix}$$

How to measure?

Position: Close

$$\omega_{\text{Close}}(t) = \omega_{\text{L,He}}(t) + \Delta \omega$$

(with: $\Delta \omega = 2\pi \cdot \delta v = \overline{V} / \hbar$)

$$\omega_{\rm Far}(t) = \omega_{\rm L,He}(t)$$

 $\omega_{\rm L,He}(t) = \gamma_{\rm He} \cdot B(t)$

Position: Far

$$\Rightarrow \Delta \omega = \omega_{\text{Close}} - \omega_{\text{Far}}$$

<u>Requirement:</u> $\omega_{L,He}(t) = const.$

Data processing for extraction of short-range interaction effect:

1. To cancel magnetic field influence we calculate the weighted phase difference:

$$\Delta \Phi(t) = \Phi_{He} - \frac{\gamma_{He}}{\gamma_{Xe}} \cdot \Phi_{Xe} \qquad \neq \text{const}$$

2. Temporal dependence can be described by:

Results

Average potential $\langle V^*(\lambda) \rangle$ was calculated numerically for our cells (\emptyset = 6 cm, l = 6 cm), a gap of 2.2 mm between cell inner volume and BGO crystal (\emptyset = 57 mm, l = 81 mm). Due to the inequation $\langle V^*(\lambda) \rangle / h \langle \Delta(\delta v)$ the sensitivity level of $g_S g_P$ can be determined by:

 $g_S g_P < 4 \ (2\pi)^2 \ m_n \ \delta(\Delta v)_{corr} / (NV \ \hbar < V^*(\lambda))$

Exclusion Plot for new spin-dependent forces

Atomic EDM's

➤ L.I.Schiff (PR 132 2194,1963):

System of non-relativistic charged point particles that interact electrostatically can not have an EDM

Heavy atoms (relativistic treatment):

 $-d_e \neq 0 \rightarrow d_{atom} \neq 0 \sim Z^3 \alpha^2 d_e$

– P,T-odd eN interaction
 Tensor-Pseudotensor ~Z²G_FC_T
 Scalar- Pseudoscalar ~Z³G_FC_S

Nuclear EDM – finite size
 Schiff moment induced by P,T-odd N-N interaction ~10⁻²⁵ η [ecm]

Diamagnetic atoms:

Ginges & Flambaum, Phys. Rep. 397 (04) 63. Dzuba, Flambaum, Ginges, Phys. Rev. A 66 (02) 012111.

 $\mathsf{E}_{\mathsf{ext}}$

$$d \left({}^{199}Hg \right) = 10^{-2} d_e + 2.0 \times 10^{-20} C_T + 5.9 \times 10^{-22} C_S + 6 \times 10^{-23} C_{PS} + 3.9 \times 10^{-25} \eta \text{ [ecm]}$$

 $d(^{129}Xe) = 10^{-3}d_e + 5.2 \times 10^{-21}C_T + 5.6 \times 10^{-23}C_S + 1.2 \times 10^{-23}C_{PS} + 6.7 \times 10^{-26}\eta$

6× less sensitive to CP violating interactions

$$\begin{array}{|c|c|c|c|c|c|} \hline Parameter & ^{199}Hg & Best alternate limit \\ \hline d_e (e \ cm) & 3.0×10^{-27} & $YbF:1.0 \times 10^{-27}$ \\ d_n (e \ cm) & 5.8×10^{-26} & $n: 2.9×10^{-26} \\ \hline C_S & 5.2×10^{-8} & $Tl:2.4 \times 10^{-7}$ \\ \hline C_T & 1.5×10^{-9} & $TlF:4.5 \times 10^{-7}$ \\ \hline C_{PS} & 5.1×10^{-7} & $TiF: 3×10^{-4} \\ \hline n & 8.0×10^{-5} & $Xe: 5×10^{-2} \\ \hline \end{array}$$

$$|d(^{199}\text{Hg})| < 3.1 \times 10^{-29} \ e \ \text{cm} \ (95\% \ \text{C.L.})$$

E_{int}

PRL 102, 101601 (2009)

Measurement sensitivity: ¹²⁹Xe electric dipole moment

Observable: weighted frequency difference

$$\Delta \upsilon_{\uparrow\uparrow} = \Delta \upsilon_{\uparrow\uparrow}^{He,EDM} - (\gamma_{He}/\gamma_{Xe}) \cdot \Delta \upsilon_{\uparrow\uparrow}^{Xe,EDM} \approx -(\gamma_{He}/\gamma_{Xe}) \cdot \Delta \upsilon_{\uparrow\uparrow}^{Xe,EDM}$$

 $\Delta \upsilon_{\uparrow\downarrow} = \Delta \upsilon_{\uparrow\downarrow}^{He,EDM} - (\gamma_{He} / \gamma_{Xe}) \cdot \Delta \upsilon_{\uparrow\downarrow}^{Xe,EDM} \approx -(\gamma_{He} / \gamma_{Xe}) \cdot \Delta \upsilon_{\uparrow\downarrow}^{Xe,EDM}$

sensitivity limit:

$$\left|d_{Xe}\right| < \frac{\pi \cdot \hbar}{2E \cdot \left(\gamma_{He}/\gamma_{Xe}\right)} \cdot \delta v$$

from 2010 run: $\delta v = 0.2 \text{ nHz} @ 1 \text{ day}$ assume : E=2 kV/cm $|d_{Xe}| < 4 \cdot 10^{-29} ecm$

Then we will reach

... after 100 days of data taking:

$$\left|d_{Xe}\right| \approx 4 \cdot 10^{-30} ecm$$

Proposed setup

Collaboration:

University of Mainz KVI Groningen University of Heidelberg PTB Berlin

- Increase of SNR of Xe (P_{xe} : 10% \Rightarrow 70%)
- Increase of T_{2,Xe}
 5h (at present) ⇒ 10-20 h

 $> \delta d_{Xe} < 10^{-31} \text{ ecm}$

...new sensitivity levels for

- Lorentz-invariance tests
- short range interations

Optical Pumping of ³He

<u>history</u> :

Spin exchange with optically pumped Rb-vapour (SEOP)
 (Bouchiat et al., Phys. Rev. Lett. 5 (1960) 373)

VOLUME 132, NUMBER 6

Polarization of He³ Gas by Optical Pumping

F. D. COLEGROVE, L. D. SCHEARER,* AND G. K. WALTERS* Texas Instruments Incorporated, Dallas, Texas (Received 5 August 1963)

MEOP: Metastabilty Exchange Optical Pumping

L.D. Schearer

In terms of frequency:

Feedback loop to get long coherence times ...

Astrophysics limits on axion

Observation	Bound on Coupling	Bound on Mass			
Solar ⁸ B Neutrino Flux	$g_{a\gamma\gamma} < 5 \times 10^{-10} {\rm GeV^{-1}}$	$m_a < 1 \mathrm{eV}$			
Lifetime of HB Stars	$g_{a\gamma\gamma} < 1 \times 10^{-10} \text{GeV}^{-1}$	$m_a < 0.3 \mathrm{eV}$			
Cooling rate of White Dwarf G117-B15A	$\frac{C_{e}m_{e}}{f_{a}} < 1 \times 10^{-13}$	$m_a < 0.005 \mathrm{eV}$			
Cooling rate of SN1987A	$\frac{C_{N}m_{N}}{f_{a}} < 6 \times 10^{-10}$	$m_a < 0.02 \mathrm{eV}$			
G. Raffelt, Lecture Notes in Physics 741 (2008)					

Coefficient	Proton	Neutron	Electron	Coefficient	Proton	Neutron	Electron
\tilde{b}_X	$10^{-27}~{\rm GeV}$	$10^{-31}~{\rm GeV}$	$10^{-31} { m GeV}$	ĩ		10-26 C	10-27 C-W
\tilde{b}_Y	$10^{-27} { m GeV}$	10^{-31} GeV	10^{-31} GeV	H_{XT}	_	10^{-27} GeV	10^{-27} GeV
\tilde{b}_Z	_	_	10^{-30} GeV	H_{YT}	—	10^{-27} GeV	10^{-27} GeV
\tilde{b}_T	_	$10^{-27}~{\rm GeV}$	$10^{-27} { m GeV}$	H_{ZT}	—	10^{-27} GeV	10^{-27} GeV
$\tilde{b}_J^* \ (J=X,Y,Z)$	—	_	_	\tilde{a}_T	_	10^{-27} GeV	10^{-27} GeV
õ	10^{-25} CeV	10^{-27} CeV	10^{-19} CeV	\tilde{g}_c	_	$10^{-27} { m GeV}$	10^{-27} GeV
c	10 - 22 GeV	10 Gev	10 - 19 GeV	\tilde{g}_{Q}	_	_	_
c_Q	10 - 25 GeV		10 - 19 GeV	\tilde{q}_{-}	_	_	
c_X	10^{-25} GeV	10^{-25} GeV	10^{-19} GeV	\tilde{g}_{TJ} $(J = X, Y, Z)$	_	_	_
c_Y	10 - 24 GeV	10 - 27 GeV	10 - 19 GeV	\tilde{g}_{XY}	_	_	_
c_Z	10^{-2} GeV	10 - Gev	10^{-18} GeV	\tilde{q}_{YX}	_	_	_
c_{TX}	10^{-20} GeV	_	10^{-10} GeV	ãz x	_	_	_
\tilde{c}_{TY}	10^{-20} GeV	—	10^{-10} GeV	ãu a			
\tilde{c}_{TZ}	$10^{-21} { m GeV}$	_	$10^{-20} { m GeV}$	g_{XZ}			
\tilde{c}_{TT}	_	_	10^{-18} GeV	g_{YZ}	_		
				g_{ZY}	-	-	_
\tilde{d}_{\pm}	_	10^{-27} GeV	$10^{-27} { m GeV}$	\tilde{g}_{DX}	10^{-25} GeV	10^{-29} GeV	10^{-22} GeV
\tilde{d}	_	10^{-27} GeV	10^{-27} GeV	\tilde{g}_{DY}	$10^{-25} { m GeV}$	10^{-28} GeV	10^{-22} GeV
\tilde{d}_O	_	10^{-27} GeV	10^{-27} GeV	\tilde{g}_{DZ}	_	_	_
\tilde{d}_{XY}	_	10^{-27} GeV	10^{-27} GeV				
\tilde{d}_{YZ}	_	10^{-26} GeV	$10^{-27} { m GeV}$		_		
\tilde{d}_{ZX}	_	_	$10^{-26}~{\rm GeV}$	Clo	ock-com	nparison	
\tilde{d}_X	$10^{-25} { m GeV}$	10^{-29} GeV	10^{-22} GeV		•	•	
\tilde{d}_Y	$10^{-25}~{\rm GeV}$	$10^{-28}~{\rm GeV}$	$10^{-22}~{\rm GeV}$		experir	nents	
\tilde{d}_Z	_	_	10^{-19} GeV		_		

Kostelecky et al., arXiv:0801.0287v2

Antihydrogen Spectroscopy (\rightarrow J. Walz)

1S–2S frequency difference:

 $\Delta^{H-ar{H}}
u_{1 ext{S-2S}} pprox - (b_3^e - b_3^p)/\pi$

Ground state HFS frequency difference:

$$\Delta^{H-ar{H}}
u_{\mathsf{HFS}} pprox -2b_{\mathsf{3}}^p/\pi$$

Fundamental physics tests using Rb and Cs fountains

Wolf et al., PRL 96, 060801 (2006)

Cs $|3, m_F\rangle \leftrightarrow |4, m_F\rangle$ transition in the SME

 $\widetilde{c}_{q}^{p} = A + C_{\Omega_{\oplus}} \cos(\omega_{\oplus} t) + S_{\Omega_{\oplus}} \sin(\omega_{\oplus} t) + C_{2\Omega_{\oplus}} \cos(2\omega_{\oplus} t) + S_{2\Omega_{\oplus}} \sin(2\omega_{\oplus} t)$

 Ω_\oplus : Earth's orbital motion ω_\otimes : Earth's rotation frequency

A, C_i , S_i , are functions of the 8 proton components: $\widetilde{c}_Q, \widetilde{c}_X, \widetilde{c}_Y, \widetilde{c}_Z, \widetilde{c}_-, \widetilde{c}_{TX}, \widetilde{c}_{TY}, \widetilde{c}_{TZ}$

Magnetic field (measured via the He spin precession signal) in presence of a conductor (aluminium cylinder : diameter 56 mm, length 70 mm)

CMB dipole

v = 368 km/s ∆T_{dip}≈ 3.3 mK

galactic coordinate system

 $(l, b) = (264^{\circ}.31\pm0^{\circ}.04\pm0^{\circ}.16, +48^{\circ}.05\pm0^{\circ}.02\pm0^{\circ}.09)$

measurement on 01.10.2007 at PTB-Berlin (52° 31' north, 13° 25' east) _{Cos(α)}

horizon coordinate system

Prototype of cylindrical µ-metal shield

no elevated system noise f (H inside inner shield made out of metglas (amorphous metal alloy ribbon)

Lead glass samples

MEOP Polarizer Mainz: ³He

SEOP Polarizer PTB: Xe

Detection of magnetic field produced by oriented nuclei

(Cohen-Tannoudji et al., PRL 22 (1969),758)

False effects :

Barometric formula

:
$$p(h) = p^0 exp(\frac{-h}{h^0}).$$
 $h^0 = \frac{RT}{Mg}$

drops out in $\delta v = \frac{1}{2} (\Delta v_{right sample} - \Delta v_{left sample}) = (4.8 \pm 7.0 \pm 0.4) \text{ nHz}$

From the measured value of δv we get:

 $g_{s}g_{p} < 4 (2\pi)^{2} m_{3He} \delta v / (NV \hbar < V^{*}(\lambda))$

Gain in sensitivity compared to measurements with short coherence times:

Example "short spin coherence time":

 $\Delta T = 5 \text{ min} \rightarrow \approx 300 \times \text{less sensitive }!$