Direct Neutrino Mass Measurements

5th International Symposium on Symmetries in Subatomic Physics, Groningen, June 17-22, 2012

Christian Weinheimer

Institut für Kernphysik, Westfälische Wilhelms-Universität Münster weinheimer@uni-muenster.de

Introduction The KArlsruhe TRItium Neutrino experiment KATRIN Other direct neutrino mass approaches Summary

Photo: M. Zacher

Hot Dark Matter: neutrinos Their contribution depends on m_{ν}

Three complementary ways to the absolute neutrino mass scale

1) Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.5 \text{ eV}$ e.g. S. Hannestad, Prog. Part. Nucl. Phys. 65 (2010) 185

2) Search for $\mathbf{0}\nu\beta\beta$

Sensitive to Majorana neutrinos Evidence for $m_{ee}(v) \approx 0.3 \text{ eV}$? GERDA is running, EXO delivered 1st limit ! $m_{BB}(v) = |\sum |U_{ei}^{2}| e^{i\alpha(i)} m(v_{i})|$

3) Direct neutrino mass determination:

No further assumptions needed. no model dependence use $E^2 = p^2c^2 + m^2c^4 \Rightarrow m^2(v)$ is observable mostly most sensitive methode: endpoint spectrum of β -decay

 $m^{2}(v_{e}) = \Sigma |U_{ei}^{2}| m^{2}(v_{i})$

Direct determination of m(v_a)

from β decay

Tritium experiments: source \neq **spectrometer** WILHELMS-UNIVERSITÄT **MAC-E-Filter**

Vestfälische

MÜNSTER

- Two supercond. solenoids compose magnetic guiding field
- adiabatic transformation: $\mu = E/B = const.$
 - \Rightarrow parallel e⁻ beam
- Energy analysis by electrostat. retarding field

The Mainz Neutrino Mass Experiment Phase 2: 1997-2001

After all critical systematics measured by own experiment (atomic physics, surface and solid state physics: inelastic scattering, self-charging, neighbour excitation):

 $m^{2}(v) = -0.6 \pm 2.2 \pm 2.1 \text{ eV}^{2} \Rightarrow m(v) < 2.3 \text{ eV} (95\% \text{ C.L.})$

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

SSP 2012, Groningen, June 21, 2012 6

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

The Troitsk Neutrino Mass Experiment

3 electrode system in 1.5m

Vladimir Mikhailovich Lobashev 1934-2011

Luminosity: $L = 0.6 cm^2$

 $(L = \Delta \Omega / 2\pi * A_{source})$

Re-analysis of Troitsk data

(better source thickness, better run selection) Aseev et al, Phys. Rev. D 84, 112003 (2011) m_{β} < 2.2 eV, 95% CL

Christian Weinheimer

SSP 2012, Groningen, June 21, 2012 7

SSP 2012, Groningen, June 21, 2012 8

Molecular Windowless Gaseous Tritium Source WGTS

Christian Weinheimer

SSP 2012, Groningen, June 21, 2012 9

Very successful cool-down and stability tests of the WGTS demonstrator

Transport and differential & cryo pumping sections

 \Rightarrow adiabatic electron guiding & T₂ reduction factor of ~10¹⁴

Christian Weinheimer

SSP 2012, Groningen, June 21, 2012 11

WESTFÄLISCHE WILHELMS-UNIVERSITÄT Münster.

FT-ICR Penning traps:

M. Ubieto-Diaz et al.,

Int. J. Mass. Spectrom.

288 (2009) 1-5

Commissioning of DPS2-F

outgoing

gas flow

≈ 3×10¹²

molecules/s

Currently: Problem of a broken diode from the safety system of a superconducting coil

First gas flow reduction

measurements

with Ar

S. Lukic et al.,

Vacuum 86 (2012) 1126

Ion test source:

S. Lukic et al.,

Rev. Scient. Instr.

82 (2011) 013303

gas inlet

≈ 3×10¹⁷

molecules/s

Electromagnetic design: magnetic fields

SSP 2012, Groningen, June 21, 2012 13

_	
	WESTFÄLISCHE
	WILHELMS-UNIVERSITÄT
	Münster

The detector

Requirements

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (< 1 mHz) (passive and active shielding)
- good energy resolution (< 1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- detector magnet 3 6 T
- post acceleration (30kV) (to lower background in signal region)
- segmented wafer (145 pixels)
 - → record azimuthal and radial profile of the flux tube
 - \rightarrow investigate systematic effects
 - \rightarrow compensate field inhomogeneities

KATRIN detector is being commissioned at KIT

SSP 2012, Groningen, June 21, 2012 15

Main Spectrometer – Transport to Karlsruhe Institute of Technology

KATRIN has a 100-times larger surface, but requests same bg \rightarrow something new

SSP 2012, Groningen, June 21, 2012 17

Design, construction and mounting of WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Design, construction and mounting of the 690m² 2-layer wire electrode system

- 200 μm precision
- out-bakeable 350 °C
- 10⁻¹¹ mbar compatiible
- 1 kV difference voltage
- non magnetic

Two-layer wire electrode modules installation inside main spectrometer

SSP 2012, Groningen, June 21, 2012 19

Westfälische WILHELMS-UNIVERSITÄT MÜNSTER

Background from stored electrons: methods to avoid or to eliminate them

Stored electron by magnetic mirrors F. Fränkle et al., Astropart. Phys. 35 (2011) 128 Time 69e-05 .60e-05 1.20e-05 8.00e-06 4.00e-06 9.966-09 radial E x B drift Trans Momentum 1.74e-23 due to electric 1.600-23 .400-23 dipole pulse 1.20e-23 1.00e-23 8.00e-24

Radon suppression by LN₂ cooled baffle

Nulling magnetic field by magn. pulse

Mechanical eliminating stored particles: M. Beck et al, Eur. Phys. J. A44 (2010) 499

Radon elimination by LN2-cooled baffles in the main spectrometer

SSP 2012, Groningen, June 21, 2012 21

As smaller m(v) as smaller the region of interest below endpoint E_0

 \rightarrow quantum mechanical thresholds help a lot !

A few contributions with $\Delta m_{v}^{2} \leq 0.007 \text{ eV}^{2}$ each:

3. WGTS charging due to remaining ions (MC: ϕ < 20mV)

- monocrystaline rear plate short-cuts potential differences

- 4. final state distribution
 - reliable quantum chem. calculations

- detailed simulations, angular-selective e-gun measurements
- 6. HV stability of retarding potential on ~3ppm level required
 precision HV divider (with PTB), monitor spectrometer beamline

Christian Weinheimer

SSP 2012, Groningen, June 21, 2012 22

tritium source

- spectrometer

KATRIN's sensitivity

Expectation for 3 full data taking years: $\sigma_{\mbox{\tiny syst}} \thicksim \sigma_{\mbox{\tiny stat}}$

Sensitivity is still statistically limited,

because with more statistics would go closer to the endpoint,

where most systematics nearly vanish

Sensitivity still has to proven, but there might be even some more improvements

KATRIN's sensitivity

Cryogenic bolometers with ¹⁸⁷Re MIBETA (Milano/Como)

Measures all energy except that of the neutrino detectors: 10 (AgReO₄) rate each: 0.13 1/s energy res.: $\Delta E = 28 \text{ eV}$ pile-up frac.: 1.7 10⁻⁴ $M_v^2 = -141 \pm 211_{\text{stat}} \pm 90_{\text{sys}} \text{ eV}^2$

M_v<15.6 eV (90% c.l.)

(M. Sisti et al., NIMA520 (2004) 125)

MANU (Genova)

- Re metalic crystal (1.5 mg)
- BEFS observed (F.Gatti et al., Nature 397 (1999) 137)
- sensitivity: m(v) < 26 eV (F.Gatti, Nucl. Phys. B91 (2001) 293)

Christian Weinheimer

SSP 2012, Groningen, June 21, 2012 25

MARE neutrino mass project:

WESTFÄLISCHE WILHELMS-UNIVER 187 Re beta decay with cryogenic bolometers

Advantages:

- measures all released energy except that of the neutrino
- no final atomic/molecular states
- no energy losses
- no back-scattering

Challenges:

- measures the full spectrum (pile-up)
- need large arrays to get statistics
- understanding spectrum
- still energy losses or trapping possible

MARE-1 @ Genova

- R&D effort for Re single crystals on transition edge sensors (TES)
- → improve rise time to ~ µs and energy resolution to few eV
- large arrays (≈10³ pixels) for 10⁴-10⁵ detector experiment
- high bandwidth, multiplexed SQUID readout
- also used with ¹⁶³Ho loaded absorbers

MARE-1 @ Milano-Bicocca

- 6x6 array of Si-implanted thermistors (NASA/GSFC)
- 0.5 mg AgReO₄ crystals
- $\Delta E \approx 30 \text{ eV}, \text{ } \text{T}_{R} \approx 250 \text{ } \mu\text{s}$
- experimental setup for up to 8 arrays completed
- starting with 72 pixels in 2011
- up to 10^{10} events in 4 years $\rightarrow \sim 4 \text{ eV}$ sensitivity

Angelo Nucciotti, Meudon 2011 SSP 2012, Groningen, June 21, 2012 26

ECHO neutrino mass project: ¹⁶³Ho electron capture with metallic magnetic calorimeters

Summary & Outlook

Neutrinos do oscillate → non-zero neutrino mass which is very important for nuclear & particle physics (which model beyond the Standard Model ?) for cosmology & astrophysics (evolution of the universe)

3 complementary approaches to the neutrino mass: cosmology, $0\nu\beta\beta$, direct (no further assumptions)

KATRIN is the next generation direct neutrino mass experiment with 0.2 eV sensitivity

> 2012-2013: commissioning of spectrometer & detector 2011-2015: commissioning of tritium source & elimination lines 2015 (?): regular data taking for 5-6 years (3 full-beam-years)

MARE, ECHO: cryo-bolometers may achieve similar sensitivity after a lot of successful R&D

